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Simple Summary: Despite recent advances in diagnosing and treating glioma, the prognosis remains
poor. It is crucial to investigate its clinical characteristics and prognostic factors to provide a basis
for treating and managing patients with glioma. We examined how clinical variables and molecular
profiles may have affected overall survival (OS) over the past 10 years. A correlation between IDH
status, TERT mutations, MGMT methylation, and tumor location characteristics was also studied. Our
study demonstrates that patients with higher tumor histological grades who had received adjuvant
radiotherapy exhibited isocitrate dehydrogenase 1 (IDH1) mutations or presented with wildtype
telomerase reverse transcriptase promoter (TERTp) experienced improved OS.

Abstract: Gliomas are primary brain lesions involving cerebral structures without well-defined
boundaries and constitute the most prevalent central nervous system (CNS) neoplasms. Among
gliomas, glioblastoma (GB) is a glioma of the highest grade and is associated with a grim prognosis.
We examined how clinical variables and molecular profiles may have affected overall survival (OS)
over the past ten years. A retrospective study was conducted at Sina Hospital in Tehran, Iran
and examined patients with confirmed glioma diagnoses between 2012 and 2020. We evaluated
the correlation between OS in GB patients and sociodemographic as well as clinical factors and
molecular profiling based on IDH1, O-6-Methylguanine-DNA Methyltransferase (MGMT), TERTp,
and epidermal growth factor receptor (EGFR) amplification (EGFR-amp) status. Kaplan–Meier and
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multivariate Cox regression models were used to assess patient survival. A total of 178 patients were
enrolled in the study. The median OS was 20 months, with a 2-year survival rate of 61.0%. Among
the 127 patients with available IDH measurements, 100 (78.7%) exhibited mutated IDH1 (IDH1-mut)
tumors. Of the 127 patients with assessed MGMT promoter methylation (MGMTp-met), 89 (70.1%)
had MGMT methylated tumors. Mutant TERTp (TERTp-mut) was detected in 20 out of 127 cases
(15.7%), while wildtype TERTp (wildtype TERTp-wt) was observed in 107 cases (84.3%). Analyses
using multivariable models revealed that age at histological grade (p < 0.0001), adjuvant radiotherapy
(p < 0.018), IDH1 status (p < 0.043), and TERT-p status (p < 0.014) were independently associated with
OS. Our study demonstrates that patients with higher tumor histological grades who had received
adjuvant radiotherapy exhibited IDH1-mut or presented with TERTp-wt experienced improved OS.
Besides, an interesting finding showed an association between methylation of MGMTp and TERTp
status with tumor location.

Keywords: glioma; glioblastoma; overall survival; genomic profiling; tumor heterogeneity; tumor
location

1. Introduction

Gliomas are primary brain lesions involving cerebral structures without well-defined
boundaries and constitute the most prevalent central nervous system (CNS) neoplasms.
Glioblastoma (GB) is a glioma of the highest grade with a very dismal prognosis. Gliomas
can develop at any age but are most common in older adults [1–3]. Patients under 70 years
of age with GB showed a median life expectancy of around 14.6 months, even with the best
current standard of treatment, which includes adjuvant chemotherapy with temozolomide
(TMZ) and chemoradiotherapy after tumor excision. Population-based research indicates
that chances of survival decline with age [4–6].

Considering most GB patients pass away from the illness in under a year and almost
none survive long-term [7], GB tumors have attracted a lot of interest in the research
community [8–10]. Even after extensive surgery, concomitant radiation, adjuvant TMZ,
and rigorous treatment, the median survival period for adult patients is still only around
10 months, which may become up to 14 months with combination treatment and radiation;
just 3–5% of patients live longer than three to five years after diagnosis [11–15]. In addition
to patient characteristics like age and gender, various molecular markers such as mutations
in IDH 1/2 (isocitrate dehydrogenase) [16], codeletion of chromosome arms 1p and 19q
(1p19q co-del) [17], mutations in the telomerase reverse transcriptase promoter (TERT-
p) [18], mutations in the MGMT promoter [19], and mutations in the EGFR gene [20] may
impact disease susceptibility and progression [21], which makes predicting GB survival a
challenging task.

IDH enzymes, consisting of three isoforms, are vital in several significant metabolic
processes, including the Krebs cycle, glutamine metabolism, lipogenesis, and redox regula-
tion [22]. More than 80% of World Health Organization (WHO) Grade 2/3 cases of glioma
are characterized by IDH mutations [23]. In instances of WHO Grade 4 glioblastoma (GB),
IDH mutations are often seen in secondary GB, which comprises 73% of clinical cases, and
are less prevalent in primary GB (3.7%) [24].

Diffuse gliomas with mutations of the promoter region of TERT (TERT-p) have am-
bivalent prognoses. TERT-p mutations are frequently found in low-grade and glioblastoma
tumors, but they are associated with a contrary prognosis. In low-grade gliomas (Grades 2
and 3), TERT-p mutant patients have a better prognosis than wildtype patients, but in GBs
(Grade 4), TERT-p mutations are associated with poor outcomes [25,26]. Approximately
83% of primary GBs [27] have a specific mutation where a C nucleotide is changed to
a T nucleotide in the promoter region of the TERT gene [28]. As a consequence of the
mutation, GABPA (GA-binding protein A) recognizes an additional binding site for ETS
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(E26 transformation-specific family transcription factor), which facilitates the reactivation
of telomerases [29].

Numerous studies have linked MGMT gene promoter methylation to chemotherapy
response, especially alkylating medications like temozolomide [30–32]. The MGMT gene
on chromosome 10q26 produces a DNA-repair protein that removes alkyl groups from
guanine’s O6 position, a crucial DNA alkylation site. MGMT is implicated in DNA repair
and glioma cell alkylating drug resistance [33,34]. Hypermethylation of CpG islands in the
promoter region suppresses MGMT activity in glioma cells [35]. Hyper-methylation of the
MGMT promoter improves OS and TMZ responsiveness in GBM patients [36,37].

Nearly 40–50% of GB patients had EGFR amplification detected by next-generation
sequencing (NGS), while 14.4–26% have EGFR mutations [38,39]. The Consortium to Inform
Molecular and Practical Approaches to CNS Tumor Taxonomy (cIMPACT-NOW) proposed
a diagnostic entity for Grade 2 and 3 isocitrate dehydrogenase (IDH)-wildtype astrocytoma,
which resembles GB due to TERTp mutation, EGFR amplification, or a combination of
whole chromosome 7 gain and 10 loss (+7/−10) [40]. As of 2021, only IDH wildtype
tumors are classified as GB in the 5th edition of the WHO classification of CNS tumors. The
previously classified GBs with IDH mutations have been reclassified as astrocytomas with
IDH mutations in grade 4 [41]. The molecular characteristics of this novel tumor type make
EGFR a potential diagnostic and prognostic biomarker [42].

Age at diagnosis, surgical resection, tumor grade, chemo/radiotherapy, and genetic
profiling affect glioma survival. This study evaluated the characteristics of glioma patients
treated at Sina Hospital in Tehran over the past decade. We highlighted and discussed criti-
cal issues such as the importance of molecular profiling in predicting OS, the association of
glioma survival with prognostically favorable clinical factors, and future research priorities
for this patient population.

2. Materials and Methods
2.1. Population Characteristics and Study Design

This retrospective study involved patients at Sina Hospital in Tehran, Iran, from March
2012 to September 2020. The Ethics and Research Committee of Tehran University of Medical
Science, Neurosurgical Department of Sina Hospital (IR.TUMS.SINAHOSPITAL.REC.1399.111)
approved this project. Included patients had a confirmed diagnosis of glioma based on
histological examination. In addition, pediatric patients were excluded. Various data
points were collected, including age, gender, extent of tumor resection, tumor location,
chemo/radiotherapy details, and genomic profiling information such as IDH1 status,
MGMT-met, TERTp-mut, and EGFR-amp. Data were obtained by examining patient
hospital records and using a data collection form. The classification of all tumors was
performed according to the WHO classification system. The male-to-female ratio and
average age at diagnosis were calculated for each histological subtype. To maintain ethical
standards, patient information was extracted from archived records using pseudonyms to
ensure the confidentiality of participants. This study does not include any patient-specific
information. Patients who underwent emergency operations and those with a Karnofsky
Performance Status (KPS) score below 70 and/or a history of psychiatric diseases were
excluded (please see Figure 1 for further details).
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2.2. Genetic Profile

Formalin-fixed GB tumor samples were encompassed with paraffin selected for DNA
extracting according to the Reinfenberger et al. study [43]. Genetic profile information
included (1) MGMTp-met, (2) IDH1-mut, (3) TERTp-mut, and (4) EGFR-amp registered in
the database.

(1) MGMT promoter methylation (MGMTp-met) was analyzed and recorded by
methylation-specific polymerase chain reaction (PCR) according to the reported data by
Mollemann et al. [44]. The primer sequences used to detect methylated MGMT promoter
sequences were “5-GTT TTT AGA ACG TTT TGC GTT TCG AC-3 and 5-CAC CGT CCC
GAA AAA AAA CTC CG-3”. The primer sequences used to detect unmethylated MGMT
promoter sequences were “5-TGT GTT TTT AGA ATG TTT TGT GTT TTG AT-3 and
5-CTA CCA CCA TCC CAA AAA AAA ACT CCA-3”. (2) IDH1 specific part of exon
4, comprising the R132 mutation hotspot, was amplified from genomic DNA by poly-
merase chain reaction (PCR), and the high-resolution melting curve analysis (HRM) was
followed by sequence analysis [45]. Previous worthwhile studies reported amplifications
of a 122 bp base pairs length fragment spanning IDH1 [46]. Based on the HRM guid-
ance on a Light Cycler 480, HRM analysis was performed, and the result was entered
into our study database. (3) Real-time quantitative PCR (qPCR) using the Light Cycler
480 format recognized the mRNA expression levels of TERT, which was reported before by
Arita et al. [47]. Moreover, Light Cycler 480 was used in relative quantification analyses.
TERT-specific primers, which are located in exon 5, were used from formalin-fixed paraffin-
embedded samples: “GCCTGAGCTGTACTTTGTC” (P0155), and the reverse primer on

BioRender.com


Cancers 2024, 16, 2121 5 of 21

exon 6: “CGTGTTCTGGGGTTTGATG” (P0156). TERT mRNA expression measurement
was incompatible with human total brain RNA.

(4) According to the manufacturer’s recommendations, 12 µL of the RNA isolated from
1 mL of CSF was reverse-transcribed using the Superscript VILO cDNA synthesis kit (Invitrogen
(Waltham, MA, USA)). Samples were then preamplified using the TaqMan PreAmp Master
Mix (Applied Biosystems (Norwalk, CT, USA)). Briefly, 12.5 µL of the cDNA was added to
the PreAmp Master Mix together with all the genes of interest and preamplified for 14 cycles
according to the manufacturer’s recommendations. The samples were then diluted 1:10, and
TaqMan quantitative reverse transcription PCR was performed on all samples for all the se-
lected genes. The amplification was performed using ABI PRISM 7500 with the following
program: 50 ◦C, 2 min; 95 ◦C, 10 min; 40 cycles of 95 ◦C, 15 s, 60 ◦C, 1 min on standard
mode. Logarithmic amplifications were interpreted as positive, and relative quantities versus
GAPDH/18S were reported for each analyzed sample. Wildtype EGFR primer sequences: “5′-
TATGTCCTCATTGCCCTCAACA”. “3′-CTGATGATCTGCAGGTTTTCCA”. EGFRvIII primer
sequences: “5′-CTGCTGGCTGCGCTCTG”. “3′-GTGATCTGTCACCACATAATTACCTTTC”.
To prepare the templates for Sanger sequencing, genomic DNA was amplified using the
BigDye Terminator Cycle Sequencing Kit v3.1 with the same primer pair as pyrosequencing
without biotinylating the reverse primer [48].

2.3. Statistical Analysis

The primary focus of our study was to assess the impact of specific clinical variables
and molecular profiles on overall survival (OS), defined as the duration from the day of
tumor diagnosis to the date of death from any cause. To gain insights into the characteristics
of the patients, we conducted a thorough descriptive analysis. Descriptive statistics were
employed to summarize continuous measures, including the number of observed values,
median, standard deviation, median, and range. To examine the differences between
subgroups, categorized data were compared using the Chi-square (χ2) test. Furthermore,
we employed the two-tailed Student’s t-test to analyze the age distribution comparison.
The reverse Kaplan–Meier method was utilized to estimate the median survival time.
Survival curves were generated using Kaplan–Meier estimates, and differences between the
curves were analyzed using the log-rank test. A two-tailed p-value < 0.05 was considered
statistically significant. We used Cox proportional hazards regression analysis to evaluate
the impact of measured variables on patient survival in multivariate adjusted models, using
a stepwise Wald backward selection procedure. All statistical analyses were performed
using R software version 4.1.0.

3. Results

A complete flow diagram of patient selection is provided in Figure 1. This study
investigated the association between OS and various factors, including gender, age, distinct
tumor grades, the extent of resection, multiple surgeries, radio- and chemotherapy received,
mutational profiles in IDH1 and TERTp, EGFR amplification, and MGMTp-met. Among
the cohort of 178 patients meeting the inclusion criteria, a combined treatment approach
incorporating radiation therapy and chemotherapy was administered to 56 patients. Addi-
tionally, 11 patients received radiation therapy as a standalone treatment, while 5 patients
exclusively underwent chemotherapy.

3.1. Association between Glioma Grades and Parameters Studied

Figure 2 provides an overview of the prevalence of genetic and epigenetic alterations
identified in the 178 glioma patients with available follow-up. A detailed description of
the clinical characteristics and molecular profiling observed in the patients can be found
in Table 1. The median ages of patients with Grade 2, 3, and 4 tumors were 40.8, 45.9,
and 46.5 years, respectively. This patient cohort with newly diagnosed glioma comprised
115 (64.6%) males and 63 (35.4%) females, as shown in Figure 3. The χ2 value was esti-
mated to compare the expected and observed ratios for sex groups, age groups, tumor
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grade, radiotherapy, and chemotherapy across different tumor grades. Both men and
women demonstrated an increase in mortality with an increasing glioma grade (Grade 4)
(Figure 4A). An analysis of patient age and mortality rates revealed that in both age groups
(age < 50 and age ≥ 50), the mortality rate was significantly higher in patients with Grade
4 glioma compared to the other groups (Figure 4B). The mortality rate of patients with
Grade 4 tumors in both the unilobar and multilobar groups was significantly higher than
in patients with Grade 2 and 3 glioma (Figure 4C). Only patients with Grade 4 tumors who
underwent chemotherapy showed significantly lower mortality rates and higher survival
than patients who did not (Figure 4D). Similarly, patients with Grade 4 tumors subjected
to radiotherapy showed a higher survival rate compared to those not treated (Figure 4E);
both chemo- and radiotherapy appeared to improve survival in Grade 3 patients as well,
although these effects did not reach statistical significance (Figure 4D,E).
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Table 1. Characteristics of the 178 patients with glioma in this study.

Characteristics Cases %

Age group
<50 years 109 61.2
≥50 years 69 38.8

Median age (range); years 45 (22–81)

Gender
Male 115 64.6
Female 63 35.4

Distinct tumor grades
Grade 2 38 21.3
Grade 3 43 24.2
Grade 4 97 54.5

Extent of resection (EOR)
Gross-total resection (GTR) 148 83.1
Near-total resection (NTR) 30 16.9



Cancers 2024, 16, 2121 7 of 21

Table 1. Cont.

Characteristics Cases %

Tumor location by lobe
Multilobar 83 46.6
Temporal 14 7.9
Frontal 36 20.2
Occipital 10 5.6
Parietal 17 9.1
Insular or cerebellum 6 3.4
Unknown 12 6.7

Survival
Alive 55 30.9
Dead 123 69.1
Survival ≤ 12 19 15.4
12 < Survival ≤ 24 56 45.5
24 < Survival ≤ 36 18 14.6
Survival ≥ 36 30 24.4

Multiple surgeries
Yes 60 33.7
No 118 66.3

Anesthesia
Awake 20 12.1
General 146 87.9

Chemotherapy
Yes 61 34.3
No 117 65.7

Adjuvant radiotherapy
Yes 67 37.6
No 111 62.4

Radio/chemotherapy
Yes 56 31.5
No 122 68.5

Type 2 diabetes mellitus
Yes 14 7.9
No 164 92.1

3.2. IDH1 and EGFR Status

In this study, the IDH1 and EGFR status was evaluated in tissue samples from each
patient (Figure 2), and the IDH1 and EGFR-amp were determined (Table 2). It should be
noted that genetic profile information was available for 127 out of the total 178 patients
included in the study. Among the Grade 2 gliomas (n = 26), 17 cases (65.3%) exhibited IDH1
mutations, while 3 patients (11.5%) had EGFR-amp. In grade 3 gliomas (n = 26), 22 cases
(84.6%) showed IDH1 mutations, and no EGFR-amp was observed. In Grade 4 gliomas
(n = 75), 61 patients (81.3%) had IDH1 mutations and 1 patient (1.3%) had an EGFR-amp.
Among the 26 grade 3 glioma samples, 4 cases (15.3%) had wildtype IDH1, and 26 cases
(100%) had no EGFR-amp. On the other hand, in the 75 Grade 4 glioma cases, 14 cases
(18.6%) had wildtype IDH1 and 74 cases (98.6%) had no EGFR-amp. It is worth noting that
the frequency of IDH1 mutations was higher compared to EGFR-amp in Grade 2, 3, and
4 gliomas. Specifically, we observed only 3, 0, and 1 EGFR-amp among Grade 2, 3, and
4 gliomas, respectively.
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Table 2. The distribution of IDH1, MGMT, TERT, and EGFR mutations among different histological
grades of glioma in 127 patients with available genetic profiling.

Molecular Assay
Different Grades of Glioma Tumor

Total
Grade 2 (26) Grade 3 (26) Grade 4 (75)

IDH1 status
Wild type 9 4 14 27
Mutant 17 22 61 100

MGMT methylation status
Methylated 19 17 53 89
Unmethylated 7 9 22 38

TERT promoter status
Wild type 21 26 60 107
Mutant 5 0 15 20

EGFR amplification status
Non-amplified 23 26 74 123
Amplified 3 0 1 4

3.3. TERT and MGMT Genes and Clinical Response in Patients

In the study cohort of 127 cases, the IDH1, MGMT, TERT, and EGFR statuses were eval-
uated successfully. Among these cases, 100 (78.7%) exhibited IDH1 mutations, 20 (15.7%)
had TERTp-mut, 89 (70.0%) were classified as MGMTp-met tumors, and 4 (3.1%) showed
EGFR-amp. MGMTp-met rates were lower (6 patients) in patients with IDH1 wildtype
tumors and higher (83 patients) in patients with IDH1 mutant tumors. Of the 178 patients
with treatment recorded, 61 (34.3%) and 67 (37.6%) received TMZ and radiotherapy, respec-
tively. As of the time of final data collection, 56 patients (31.5%) were still alive or lost to
follow-up.

In this study of 166 patients, tumors in the frontal lobe were the most prevalent (93 patients),
followed by tumors in the temporal lobe (73 patients), parietal lobe (68 patients), occipital lobe
(27 patients), and insular cortex or cerebellum (17 patients). The most common tumor
combinations were observed in the frontal + temporal (18 patients), parietal + frontal
(15 patients), and parietal + frontal + temporal (15 patients) lobes (Figure 5A). None of the
patients had tumors in all four brain lobes simultaneously. Occipital lobe tumors tended
to manifest as isolated cases in glioma patients, with 10 out of 27 cases showing no signs
of tumors in other brain lobes (Figures 3 and 5A). Anatomically, the location of tumors
was primarily multilobar (83 of 166 patients), with a subset of patients demonstrating
frontal (21.6%, n = 36) and temporal (9.0%, n = 15) gliomas. Other tumor locations included
the parietal lobe (10.2%, n = 17), insular cortex or cerebellum (3.6%, n = 6), and occipital
lobe (6.0%, n = 10) (Figure 5A,B). The tumor location was unknown in 12 patients due to
unavailable clinical follow-up and imaging data.

The distribution of MGMT methylation and unmethylation frequencies demonstrated
distinctive patterns across different tumor locations within the brain (Figure 5C,D). Our
analysis involved 127 glioma patients, revealing a significant prevalence of MGMTp-met
in the multilobar tumors (30.7%, 39/127), followed by the frontal lobe (15.0%, 19/127)
and parietal lobe (8.7%, 11/127). Importantly, no instances of MGMT unmethylation
were identified in the insular or cerebellum lobes and the temporal lobe. We conducted
a chi-square test to explore the association between MGMT status and tumor location,
which yielded a statistically significant correlation (χ2 = 13.77, p-value = 0.048) between
these variables (Figure 5C). Furthermore, the distribution of TERTp-mut and TERTp-wt
frequencies varied depending on the tumor location within the lobe. In CNS tumors,
TERTp-wt (70.1%, 89/127) was more prevalent than TERTp-mut (29.9%, 38/127). Among
specific lobes, the multilobar region displayed the highest frequency of TERTp-wt (35.4%,
45/127), followed by the frontal lobe (21.3%, 27/127), and parietal lobe (8.7%, 11/127).
No mutations were detected in the insular or cerebellum lobes and the occipital lobe.
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Figure 5D shows the association between TERT-p status and tumor location based on the
lobe in CNS tumor patients. Notably, the chi-square test revealed a significant correlation
(χ2 = 14.62, p-value = 0.042) between these variables. A meticulous examination of the
data highlights the impact of the TERT-promoter status and MGMT methylation on the
specific lobes, offering valuable insights into the molecular characteristics of CNS tumors.
A comprehensive analysis of the data reveals significant implications of the TERT-p status
and MGMT methylation on distinct lobes, providing valuable insights into the molecular
characteristics of CNS tumors.
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Figure 5. (A) Venn diagram illustrating the distribution of 167 patients with tumors in the “Temporal”,
“Frontal”, “Occipital”, “Parietal”, and “Insular or cerebellum” lobes of the brain. (B) The lobes of the
brain (created with BioRender.com). The association between (C) MGMT promoter methylation and
(D) TERT-promoter status with tumor location is based on the lobe investigated in this study.

The alluvial plot (Figure 6) shows the distribution and relationships between survival
rate, tumor grade, TERT genetic profile, and adjuvant radiotherapy. A considerable number
of patients with tumor grade 4 (n = 86) had a high mortality rate (88.6%). Furthermore, the
chart illustrates that patients who received adjuvant radiotherapy had a significantly lower
mortality rate. The association between the TERT genetic profile and survival rate further
underscores the relevance of genetic characteristics in prognostic evaluations.
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3.4. Survival Analysis

Results of multivariate Cox regression analyses for clinical characteristics and molecu-
lar profiles, including IDH1, TERT, and MGMT, are presented in Table 3. In multivariate
models, the histological grade of the tumor (HR, 5.82; 95% CI, 3.53–9.58; p < 0.0001), adju-
vant radiotherapy (HR, 1.87; 95% CI, 0.37–2.70; p < 0.018), IDH status (HR for IDH1 mutant
status, 2.25; 95% CI, 0.99–3.86; p < 0.043), TERT status (HR for unmethylated status, 0.889;
95% CI, 0.290–1.19; p < 0.0143) were significantly associated with OS (Table 3).

Table 3. Prognostic univariate and multivariate Cox regression analyses in glioma patients.

Characteristic Patients
Number

Univariate Multivariate

p-Value p-Value HR
95% CI for HR

Lower Upper

Age, per year (<50 vs. >50) 123 0.010 * 0.224 1.370 0.866 1.845
Gender (Male vs. Female) 123 0.288 0.530 1.148 0.773 1.707
Histological grade (Grades 2, 3, and 4) 123 2.2 × 10−16 * 8.57 × 10−11 * 5.823 3.539 9.580
Extent of resection (GTR vs. NTR) 123 0.513 0.331 1.291 0.787 2.118
Glioma (unilobar vs. multilobar) 123 0.764 0.311 0.806 0.531 1.224
Chemotherapy (Yes vs. No) 123 0.791 0.539 1.297 0.569 2.957
Adjuvant radiotherapy (Yes vs. No) 123 0.0057 * 0.0181 * 1.807 0.375 2.705
IDH1 status (WT vs. Mutant) 88 0.430 0.043 * 2.255 0.990 3.863
TERT mutation (WT vs. Mutant) 88 0.00041 * 0.0143 * 0.889 0.290 1.196
MGMT methylation (WT vs. Mutant) 88 0.769 0.553 0.848 0.493 1.461

* p-value ≤ 0.05.

3.5. Factors Associated with Overall Survival

The median survival of patients was 20 months (600 days; Figure 7A), with 15.4%
and 61.0% of patients alive at 12 and 24 months, respectively. In total, 19 patients (15.3%)
survived for longer than 48 months (4 years) and were considered long-term survivors. In-
terestingly, the four patients who were still alive when the dataset was finalized (OS > 50, 53,
65, and 71 months) exhibited IDH1-mut and MGMTp-met. Initially, we assessed whether
any genetic alterations were associated with survival through univariate and multivari-
ate analyses (Table 3). A more stringent multivariate analysis, which only incorporates
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parameters with p > 0.05 in the univariate analyses, revealed the same parameters were
independent prognostic factors. The distributions of the survival curves are shown in
Figure 7B–I. The survival analysis using Kaplan-Meier estimation did not demonstrate
any significant differences in survival among glioma patients based on sex, extent of resec-
tion, and tumor location (Figure 7D–F). Glioma patients with IDH1-mut had a median OS
of 21 months compared to 17.5 months for those without an IDH1 mutation (Figure 7G).
Methylation of MGMT was associated with a median OS of 21 months compared to
19 months in non-methylated cases (Figure 7I). Patients with a TERTp-mut exhibited a me-
dian OS of 16 months, whereas patients with a non-mutated TERT promoter had a median
OS of 21 months (Figure 7H). Notably, patients with solely an IDH1 mutation exhibited the
most favorable survival, with a median survival of 21 months. Subsequently, patients with
IDH1-mut and MGMTp-met experienced a slightly lower median survival of 20.5 months.
In contrast, patients lacking either an IDH1-mut or MGMTp-met had the shortest median
survival of 16 months. It is worth noting that the molecular profile analysis, specifically
regarding wildtype IDH1 and MGMT methylation, encompassed a limited sample size of
only three patients who exhibited survival durations of 18, 50, and 62 months, respectively.
Furthermore, we assessed the prognostic significance of histological grade and clinical
characteristics. Among the histological subgroups, Grades 2 and 3 demonstrated a more
favorable prognosis, with median OS durations of 52.5 and 47 months, respectively. Con-
versely, Grade 4 was associated with an extremely poor outcome, with an OS of 18 months
(Figure 7B). Additionally, patients under the age of 50 displayed a more favorable prognosis,
with a median OS of 24 months, compared to the subgroup aged 50 years and above, which
exhibited a median OS of 19 months (Figure 7C).
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Figure 7. The distribution of glioma patient survival and Kaplan–Meier curves for overall survival
are shown for 8 risk groups. (A) The box plot illustrates the overall survival (months) of glioma
patients. Kaplan–Meier curves show survival probabilities in relation to (B) the histological grade,
(C) age groups, (D) uni- and multilobar glioma, (E) gender, (F) extent of resection, (G) IDH1 status,
(H) TERT status, and (I) MGMT status.

4. Discussion

Our results showed a difference of 42, 45, and 46 years in the median age of patients
with Grade 2, 3, and 4 tumors, respectively. Gliomas were more common in males than
in females, and the death rate increased with glioma grade, with the highest mortality in
grade 4 patients. GB is the most prevalent malignant brain tumor in adults, accounting for
54% of all cases. The incidence of GB increases with age, and the development of illnesses,
especially those affecting the CNS, is more likely among older people. Wildtype IDH GB is
the most common aggressive primary brain tumor in adults, with an average diagnostic
age of 68–70 years, and progresses rapidly. Elderly (65 and older) GB patients may have a
worse post-treatment survival rate due to age-related changes, such as diminished immune
system function and persistent neuroinflammation [35,49]. A negative correlation exists
between the age at which GB is identified and the prognosis. The 10-year relative survival
rate declines from 15.2% to 5.7% between 20–44 and 45–54 years of age, respectively [50,51].

The results of the current study show that glioma patients with IDH1-mut had a me-
dian OS of 21 months versus 17.5 months for those without an IDH1 mutation. In addition,
MGMTp-met was associated with a median OS of 21 months versus 19 months in patients
with a non-methylated. The combination of IDH1-mut and MGMTp-met status is a more
accurate predictor of survival in glioblastoma compared to either IDH1 or MGMT alone.
Glioblastoma patients were categorized into 3 distinct genotypes based on the genetic and
epigenetic characteristics of IDH1 and MGMT: GB patients with mutant IDH1/MGMT-met
had the longest survival, followed by patients with mutant IDH1/MGMT-unmet or wild-
type IDH1/MGMT-met, and patients with wildtype IDH1/MGMT-unmet had the shortest
survival [52]. Improved prognosis has been linked to tumor molecular characteristics
such as MGMTp-met and IDH1 mutation [34,52,53]. Thus, MGMT methylation positively
impacts survival and responsiveness to TMZ therapy [53]. In addition, IDH and MGMT
co-methylation are linked to a better prognosis and predict the response to chemotherapy
and surgical resection [52].

Most Grade 4 gliomas showed IDH1 mutations in the present study. Unlike most
Grade 4 astrocytomas, these have a greatly different epidemiology. There is still uncertainty
regarding the relative importance of genetic and environmental risk factors in gliomagene-
sis. According to research, however, cancer-causing mutations in gliomas come primarily
from endogenous sources rather than exogenous ones [54]. There is a possible associa-
tion between primary CNS tumors and ionizing radiation, some toxic agents (N-nitroso
compounds, pesticides), air pollution, and radiofrequency electromagnetic waves. A well-
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established risk factor for brain tumors is brain ionizing irradiation, especially in childhood.
There has been scanty exploration of exposure to environmental toxins and even prenatal
exposure to N-nitroso compounds results in brain tumors. Large prospective studies con-
tradict outdoor pollution and brain tumor risk. In adults, the effects of mobile phones on
brain tumor risk have not been established for glioma and meningioma [55].

Surgical resection, radiation, and TMZ chemotherapy constitute the standard treat-
ment for GB. Despite the intensive nature of this therapy, the tumor reoccurs within 7 to
10 months following surgery in 75–90% of GB patients [56–58]. A study utilizing molecular
testing revealed distinct genetic profiles among GB survivors. Notably, mutations in the
IDH genes (IDH1 and IDH2) and methylation of the MGMT promoter were identified
as two significant factors associated with a more favorable response to standard clinical
care [59]. Patients with mutant IDH1/2 GB exhibited superior outcomes to those with
wildtype IDH tumors, with 42- and 14-months survival, respectively [60]. The literature
suggests a strong correlation between TERT gene polymorphisms and an increased risk of
glioma in patients [61]. TERT mutations are also linked to biomarkers such as IDH1, 1p19q,
TP53, and EGFR [62].

Gliomas are more prevalent in men than in women. The tumors of glioblastoma
patients showed huge genetic sex differences linked to survival. According to a study
on differentially expressed genes in the tumor clusters, survival in men was impacted
the most by genes that govern cell division. Regarding survival in females, integrin gene
expression was the most critical mechanism for tumor dissemination [61]. Other work
indicated that male patients had the lowest cancer-specific survival (CSS) rates throughout
localized cancer stages and various age groupings, which was confirmed by stratified
analysis [63,64].

One study reported that women with IDH1-mutant tumors were concentrated in the
group with the most favorable prognosis, while in males, the mutations were spread out
across all groups. Considering IDH1 mutations have been linked to higher survival in
glioblastoma patients, the longest-surviving female cluster is consistent with this theory.
However, this was not the case for men [63]. Sex variations in disease incidence and
prognosis are well acknowledged but seldom understood enough to permit sex-specific
therapy. Endocrinology and cancer research shows gonadal steroid hormones contribute to
GB development and prevalence [65]. According to some studies, females have a longer
survival rate than males [66,67]. In an orthotopic model of glioblastoma, Barone et al. [68]
demonstrated that estrogen increased survival, and a study based on estradiol may be
beneficial for treating GBM. Observations by Li et al. [69] indicate that estrogen protects
patients from GBM by methylating estrogen receptors. Yu et al. [70] also found that andro-
gen receptor signaling promoted GBM tumorigenesis by inhibiting TGF-β (transforming
growth factor β) receptor signaling. Another study suggests estrogen may protect against
GBM genesis and promote a more favorable biology once GBM occurs [64].

Our present study indicates that patients with a mutation in TERT had a median OS
of 16 months compared to 21 months in those without a TERTp-mut. In addition, MGMTp-
met status was shown to affect the prognostic value of a TERTp-mut. Only TERTp-mut
GB with MGMTp-met may respond to TMZ; therefore, TMZ may not benefit all patients
with MGMTp-met GB [71]. Long-term follow-up of patients with TERTp-mut GBs showed
a high correlation between the prognosis and the presence of multifocal/distant lesions.
There was an association between EGFR amp/gain, CDKN2A deletion, and PTEN loss as
well as a negative correlation between CDK4 and TP53 deletion for the TERTp mutation [72].
EGFR mutations have been demonstrated to be effective prognostic indicators of OS in
IDH-wildtype GBM patients. Moreover, data suggests that EGFR amplification is evident
in high-grade gliomas (25%). EGFR amplification was also observed to be limited to IDH
wildtype (26%) and TERT mutant (27%) gliomas, occurring irrespective of MGMT promoter
methylation status and being mutually exclusive with 1p/19q co-deletion (LOH) [73]. The
functional connection between EGFR and p53 in GBM is intriguing. Thus, EGFR has
been shown to reduce the activity of wildtype p53 by increasing the interaction between
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DNA-PKcs and p53. Either EGFR or DNA-PKc knockdown enhanced the transcriptional
activity of wildtype p53 due to a reduced interaction between p53 and DNA-PKcs. These
results revealed a unique non-canonical regulatory axis between EGFR and wildtype p53
in GBM, with unexpected biological functions [74].

We observed an apparent difference (although not statistically significant) in the
OS of gross (GTR) versus near-total resection (NTR) glioma patients, which is consistent
with findings by Abdelfath et al. [75]. GTR appears to be more beneficial than subtotal
resection (STR) in extending the life of elderly individuals with high-grade glioma [76].
Aggressive surgical resection should be considered for older GBM patients, especially those
with relatively low KPS. Intraoperative magnetic resonance imaging (ioMRI) does not
seem to provide any significant advantage over intraoperative ultrasonography (ioUS) in
experienced hands in this population. Still, it may significantly prolong the duration of
surgery, which is a modifiable prognostic factor that affects care [77]. Other work showed
a correlation between maximal tumor excision and OS in all categories of glioblastoma
patients. Additionally, maximal resection of non–contrast-enhanced (NCE) tumors was
associated with longer OS in younger patients independent of IDH status and in patients
with IDH–wildtype glioblastoma regardless of the methylation status of the promoter
region of the DNA repair enzyme O6-methylguanine-DNA methyltransferase [78].

Within our cohort, the anatomical tumor location was generally confined to a multi-
lobe, primarily multilobar disease (50.0%), with some patients demonstrating tumor growth
in the frontal (21.6%) and temporal (8.4%) lobes. Other tumor locations included the
parietal lobe (10.2%), occipital lobe (6.0%), and insular cortex or cerebellum (3.6%). Most
glioblastomas develop in the periventricular white matter areas close to the subventricular
zone. MGMTp-met tumors are more prevalent in the left temporal lobe, particularly
in patients with GB, an IDH1 mutant tumor, tumors with the proneural gene expression
subtype, or frontal lobe tumors missing PTEN deletion. IDH1 mutation-associated MGMTp-
met tumors tended to manifest in the left frontal lobe, whereas EGFR-amplified and
EGFR variant 3-expressing tumors occurred most frequently in the left temporal lobe. A
comparable area in the left temporal lobe was associated with excellent radiochemotherapy
response and improved survival [79]. In another study, tumors in the right occipitotemporal
periventricular white matter were substantially related to poor survival in both training and
test cohorts and had a greater tumor volume than tumors in other regions. Right parietal
tumors were associated with hypoxia pathway enrichment and platelet-derived growth
factor receptor (PDGFRA) amplification, deeming these processes appropriate subgroup-
specific treatment targets. Additionally, central tumor placement was associated with a
worse prognosis. In elderly individuals, the distance from the center of the third ventricle
to the contrast-enhancing tumor border may be a practical prognostic indicator [79–81].

The location of the glioblastoma may be used as a predictor of the status of the TERT
promoter mutation. Studies have shown that TERTp-mut gliomas are more likely to occur
in the frontal or temporal lobes [82,83]. Most IDH-mutated gliomas were located in a single
lobe, such as the frontal lobe, temporal lobe, or cerebellum, and rarely in the diencephalon
or brain stem. Additionally, IDH-mutated tumors were rarely found in high-risk brain
regions where surgery has a high intraoperative and postoperative mortality rate [84].

Our study recognizes certain limitations, including using data from a single center
and an underpowered analysis for detecting differences among patient subgroups. The
scarcity of data on comorbidities such as lung infections, renal disorders, seizures, high
blood pressure, and paresthesia emphasizes the necessity for more extensive and stan-
dardized data collection. Moreover, we did not adjust for multiple comparisons. In the
current study, another limitation was the lack of additional tests, such as CDKN2A/B and
1p19q status, which could lead to poorer outcomes. However, the study’s strength lies
in its meticulous examination of factors associated with glioma prognosis and treatment
response, presenting valuable insights for clinical decision-making. Additionally, we high-
lighted the synergistic impact of specific genetic profiles and radiotherapy, identifying
potential targets for personalized treatment strategies. Despite the acknowledged limita-
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tions, this study comprehensively analyzes crucial factors influencing glioma prognosis
and treatment response.

5. Conclusions and Future Direction

A disappointing fact is the long-term lack of development in glioma prognosis and
therapy. Predicting clinical outcomes is challenging due to subjective criteria and the
difficulty of distinguishing the heterogeneous histological appearance of glioma tissues.
Conventional histological diagnosis may be hampered by morphological ambiguity and in-
terobserver disagreement. It is crucial to create a reliable and objective molecular marker for
identification. The present study aimed to investigate the impact of clinical and molecular
factors on the overall survival of glioblastoma patients. Multivariate Cox regression analy-
sis revealed that histological tumor grade, adjuvant radiotherapy, IDH status, and TERT-p
status were significantly associated with overall survival. Notably, patients with IDH1
mutations and TERTp-wt exhibited more prolonged survival. Factors such as extensive
tumor removal, smaller tumor size, and prompt initiation of radiation therapy after surgery
were associated with favorable prognoses. Patients with higher tumor grades had poorer
outcomes, while those who received adjuvant radiotherapy showed improved survival. In
conclusion, this study highlights the importance of molecular and clinical characteristics
in predicting overall survival in glioblastoma patients and provides valuable insights for
personalized treatment strategies. As understanding of the molecular underpinnings of
glioblastoma continues to develop, molecular markers will become increasingly important
in prognosis and clinical decision-making. This devastating disease can only be managed
and treated more effectively by integrating molecular profiling into routine clinical practice
and conducting ongoing research.
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