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BACKGROUND AND OBJECTIVES: This study identified a clinically significant subset of patients with glioma with tumor
outside of contrast enhancement present at autopsy and subsequently developed a method for detecting nonenhancing
tumor using radio-pathomic mapping. We tested the hypothesis that autopsy-based radio-pathomic tumor probability
maps would be able to noninvasively identify areas of infiltrative tumor beyond traditional imaging signatures.
METHODS: A total of 159 tissue samples from 65 subjects were aligned to MRI acquired nearest to death for this
retrospective study. Demographic and survival characteristics for patients with and without tumor beyond the contrast-
enhancing margin were computed. An ensemble algorithm was used to predict pixelwise tumor presence from pathological
annotations using segmented cellularity (Cell), extracellular fluid, and cytoplasm density as input (6 train/3 test subjects). A
second level of ensemble algorithms was used to predict voxelwise Cell, extracellular fluid, and cytoplasm on the full data set
(43 train/22 test subjects) using 5-by-5 voxel tiles from T1, T1 + C, fluid-attenuated inversion recovery, and apparent diffusion
coefficient as input. The models were then combined to generate noninvasive whole brain maps of tumor probability.
RESULTS: Tumor outside of contrast was identified in 41.5% of patients, who showed worse survival outcomes (hazard
ratio = 3.90, P< .001). Tumor probabilitymaps reliably tracked nonenhancing tumor on a range of local and external unseen
data, identifying tumor outside of contrast in 69% of presurgical cases that also showed reduced survival outcomes (hazard
ratio = 1.67, P = .027).
CONCLUSION: This study developed a multistage model for mapping gliomas using autopsy tissue samples as ground
truth, which was able to identify regions of tumor beyond traditional imaging signatures.

KEY WORDS: Artificial intelligence, Autopsy, Glioma, MRI, Pathology, Radiology

ABBREVIATIONS: ADC, apparent diffusion coefficient; Cyt, cytoplasm; ECF, extracellular fluid; PN, pseudopalisading necrosis; pTOC, predicted TOC;
RMSE, root mean squared error; RUS, random undersampled; TMZ, temozolomide; TOC, tumor outside of contrast enhancement; TPM, tumor probability map.
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G lial brain tumors are the most common primary central
nervous system tumors, with an incidence of around 6 per
100 000 persons.1 High-grade gliomas such as glioblas-

tomas (GBMs) are difficult to treat because of their aggressiveness
and pathological heterogeneity, contributing to 1- and 5-year
survival rates of 41% and 5%, respectively.2,3 Current standard of
care requires precise tumor localization to maximize efficacy of
frontline treatments such as surgical resection and targeted ra-
diation therapy. Studies examining resection extent in gliomas
have demonstrated that maximizing tumor removal improves
patient survival outcomes, underscoring the importance of
identifying the full extent of gliomas.4-7

MRI is the primary method for noninvasively monitoring
gliomas. Gadolinium contrast agents are used to highlight an-
giogenic disruptions in the blood-brain barrier, which results in an
enhanced T1-weighted signal that defines the primary tumor
mass.8-10 Hyperintensities on T2-weighted fluid-attenuated in-
version recovery (FLAIR) images correspond to a mixture of
tumor and edema although differentiation remains difficult.11-14

Apparent diffusion coefficient (ADC) images derived from
diffusion-weighted imaging identify areas of diffusion restriction
associated with hypercellularity although studies validating this
beyond contrast-enhancing margins have suggested a weaker
relationship.14-18 Machine learning approaches have also sought
to maximize the amount of clinically relevant information
extracted from noninvasive imaging, using recent advances in
computing to segment radiologist-defined margins, identify
patient-level genetic signatures, and predict cellular-level infor-
mation using biopsies as validation.19-23

Despite the promise of these recent techniques, identifying areas
of tumor beyond contrast- and FLAIR-hyperintense margins re-
mains difficult. Studies of autopsy samples aligned toMRI acquired
near death found areas of active tumor as far as 10 cm beyond the
treated margin, indicating need for tumor tracking improve-
ments.16,24,25 Therefore, studies with access to tissue beyond
contrast enhancement are essential for identifying the true extent of
tumor, particularly in the posttreatment state. This study uses
autopsy tissue samples, collected within and beyond the traditional
tumor margin, to assess the prevalence of tumor outside the MRI-
defined margin and develop a multistage model for noninvasive
tumor probability mapping. Specifically, we tested the hypothesis
that an MRI-based model for tumor probability trained on autopsy
tissue samples can track glioma invasion beyond the currently
defined margin associated with worse prognoses.

METHODS

Patient Populations
This study was approved by the Institutional Review Board of the

Medical College of Wisconsin. Written informed consent was obtained
from 65 patients to participate in this study as part of our ongoing brain
tumor bank starting in 2010, each diagnosed with a primary brain tumor.
The study size was selected based on maximizing the number of complete

imaging data sets with high-quality aligned tissue samples from autopsy.
Clinical and demographic characteristics of this data set are presented in
Table. Portions of this study sample have been used to explore radio-
pathomic characteristics in previous publications,14,24 but this is the first
study to develop noninvasive maps of tumor pathology using these data.
Tumor probability map (TPM) software, study data, and other code
required for preprocessing data will be made available on request.

MR Imaging Acquisition and Preprocessing
Clinical imaging was collected from each patient’s last MRI session

before death. T1, T1 + C, FLAIR, and ADC images were selected as input
for this study because they provide a wide range of information regarding
tissue characteristics while remaining ubiquitous across clinical acquisitions.
T1, T1 +C, and ADC images were each rigidly aligned to the FLAIR image
using SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/).
Qualitative images (T1, T1 + C, and FLAIR) were then divided by the
intensity SD within the brain to normalize values across patients.8,14

Tissue Segmentation and Processing
A total of 159 tissue samples were collected at autopsy using previously

published methods.14,16,25 Board-certified pathologists (EJC, DC)
collected large-format tissue samples, with additional MRI-based sam-
pling guidance from research staff (PSL, AKL, SAB). Tissue samples were
processed, digitized, and segmented using a previously published tool.24

Additionally, 33 tissue samples from a subset of 9 participants were
annotated for the presence of infiltrative tumor, tumor with pseudo-
palisading necrosis (PN), nontumor necrosis, and unlabeled tissue by a
pathologist-trained technician (AKL).

MRI Histology Coregistration
Tissue samples were aligned to each participant’s FLAIR image using

previously published MATLAB (MathWorks Inc.) software.14,16,25-27

Manually defined control points were used to identify architectural
landmarks on the tissue data and MRI using autopsy images to guide
accurate placement. Control points were used to compute a nonlinear

TABLE. Demographic and Clinical Information for the Study
Sample

Train Test

Number of patients 43 22

Age (y) 58.4 (14.1) 60.9 (11.7)

Overall survival (mo) 48.8 (71.2) 34.8 (42.3)

Time between MRI and death (d) 78.8 (73.6) 69.6 (66.5)

GBM/non-GBM 29/14 18/4

Radiation (yes/no) 39/4 21/1

Chemotherapy (yes/no) 39/4 20/2

Bevacizumab (yes/no) 34/9 15/7

Tumor treating fields (yes/no) 17/26 6/16

GBM, glioblastoma.
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transform that warped tissue to the same space as the MRI, and regions of
interest were drawn to exclude areas of tissue distortion (ie, rips, folds) and
MRI artifacts. After MRI-tissue coregistration, all MRI and tissue data
were resampled to 0.4397 × 0.4397mm per pixel resolution to harmonize
all subjects to the most common acquisition parameters.

Assessing Prevalence of Tumor Beyond
MRI-Defined Margin

Aligned autopsy tissue was compared with the T1 + CMRI to estimate
the prevalence of tumor outside of contrast enhancement (TOC). Tissue
samples were inspected for tumor presence using histological charac-
teristics and available immunohistochemical staining (ie, Ki-67, CD31).
Patients were coded for the presence of TOC by comparing manually
segmented maps of contrast with aligned tissue samples. χ2 tests were used
to determine differences in TOC frequency among patients who did and
did not receive radiation with temozolomide (Rad + temozolomide
[TMZ]), bevacizumab (Bev), and tumor treating fields (TTFields), as well
as among diagnostic grade groups. A Cox proportional hazards regression
was fit to compare survival durations between patients with and without
TOC, including time between MRI and death as a covariate. Survival
curves were limited to patients who received standard treatment (Rad +
TMZ) to exclude a small number of untreated patients who survived
shorter than similarly treated patients. Analysis was performed for the full
data set (N = 65), as well as on subjects with scans less than 90 days before
death (N = 47) and patients with a primary GBM at first surgery (N = 37)
to compare results across potential confounds.

Predicting Tumor Presence from
Pathological Segmentations

A chart indicating the flow of patients across the multiple model training
stages is presented in Supplemental Digital Content 1 (http://links.lww.
com/NEU/E159). The first component of the multistage tumor prediction
model involved predicting tumor annotations from the segmented pa-
thology data. Several different candidate models were assessed, including
k-nearest neighbors, näıve bayes, decision trees, and random-under-
sampling-boosted random forest (random undersampled [RUS] Tree)
models. Eachmodel was trained using pixelwise cellularity, cytoplasm (Cyt)
density, and extracellular fluid (ECF) density as input to predict tumor
(infiltrative tumor/PN) vs nontumor (nontumor necrosis/unlabeled).
Models were trained on slides from 6 subjects and validated on the 3
remaining subjects. Model performance was evaluated using receiver op-
erator characteristic plots and area under the curve (AUC) metrics. The
model with the highest AUC was then incorporated into the multistage
model.

Predicting Pathological Segmentations from MRI Data
The second stage of the multistage model focused on training separate

models to predict cell, Cyt, and ECF density using MRI data. Bootstrap
aggregating random forest models were trained to predict voxelwise
densities using 5-by-5 voxel tiles from T1, T1 + C, FLAIR, and ADC as
input. This framework was selected based on our previous publication,
which developed a proof of concept for predicting cellularity using MRI
data in a smaller patient sample.24 These models were developed on 2/3rd
of the full data set (n = 43) and tested on the heldout set (n = 22) to assess
generalizability. No patients in the pathological tumor prediction test set
overlapped with the training set for these radio-pathomic models, en-
suring that the test set contained only data unseen in training for every

component model. Quantitative performance was evaluated using root
mean squared error (RMSE) estimates within each test set subject, and
example segmentations were plotted and compared with ground truth
segmentations.

Predicting Tumor Presence from MRI Data
After model training, the best performing pathological tumor pre-

diction model was used to convert whole brain cell, ECF, and Cyt density
maps to TPMs. These maps were plotted against ground truth tissue
segmentations and annotations to assess accuracy at identifying novel
tumor areas. In addition, TPMs were generated for 3 external subjects to
assess the quality of the maps and ability to identify nonenhancing tumor
on MRI data acquired at other institutions. The first external subject was
a 61-year-old male diagnosed with a recurrent GBM, whose scan was
collected by our external collaborators at the University of California, Los
Angeles. The second external case was a pretreatment acquisition from a
50-year-old male diagnosed with GBM, taken from the publicly available
TCGA-GBM data set (https://cancergenome.nih.gov/).28,29 The third
case was a 53-year-old female diagnosed with an IDH1 wild-type GBM,
whose scan was collected by an external collaborator from University of
California, San Francisco, for which biopsy data from surgical resection
were available for an area beyond contrast enhancement. Finally, TPMs
were generated from an independent local data set of 84 GBM cases30

with imaging acquired presurgery to determine areas of predicted tumor
outside of contrast enhancement (pTOC). A Kaplan–Meier curve was fit
to assess differences in overall survival between patients with and without
pTOC (n = 58 and 26, respectively).

RESULTS

Prevalence of Nonenhancing Tumor
Figure 1 shows prevalence estimates for TOC presence and

corresponding Kaplan–Meier plots for survival analyses. TOC was
observed in 41.5% of patients, with increased presence among
patients with GBM (G4) (χ2 = 10.73, P = .005), patients treated
with Rad + TMZ (χ2 = 3.99, P = .046), and patients treated with
bevacizumab (Bev) (χ2 = 5.41, P = .020). Treated patients with
TOC showed decreased survival rates compared with patients
without TOC (hazard ratio = 3.90, 95%CI = 2.50-5.30, P < .001).
Patients with MRI data within 90 days of death also showed in-
creased TOC presence among Rad-TMZ and bevacizumab-treated
(χ2 = 4.50, P = .033 and χ2 = 4.50, P = .033, respectively) patients
and reduced survival associated with TOC (hazard ratio = 3.85,
95% CI = 2.33-5.37, P = .001). Patients with primary GBM did
not show significant differences in TOC presence for treatment but
showed reduced survival within patients with TOC (hazard ratio =
2.95, 95% CI = 1.32-4.57, P = .025).

Predicting Tumor Presence from
Pathological Segmentations
Figure 2 shows performance results for the pathological tumor

prediction model, along with example TPMs and ground truth
annotations. The RUS Tree model gave the best receiver operator
characteristic AUC of 0.857 and was therefore selected as the
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model used to convert MRI-based pathological segmentations
into TPMs. Example predictions show good concordance be-
tween areas of high tumor probability and actual tumor presence
within both infiltrative tumor and PN, while correctly avoiding
edema and other nontumor areas.

Predicting Pathological Segmentations from MRI Data
Segmentation prediction results are shown in Figure 3, along

with example whole brain predictions on test set subjects. Each
radio-pathomic model had a mean subject-level RMSE value
within a SD of the ground truth (cell RMSE = 0.756; Cyt
RMSE = 0.917; ECF RMSE = 0.941), indicating satisfactory
model performance for each tissue type. Example predictions
indicate regions where these maps improve pathological inter-
pretations of the MRI data, such as discrimination between areas
of edema and hypercellularity within the FLAIR hyperintense
region and hypercellularity beyond contrast enhancement.

Predicting Tumor Presence from MRI Data
An example TPM generated from the full multistage model is

presented in Figure 4. Test set TPM with pathological annotations
available showed good correspondence between areas of predicted
and actual tumors, with separation between areas of PN (high
cellularity, high ECF) and areas of non-PN tumor (high cellularity,
normal ECF) seen on the corresponding segmentation maps.
Tumor was also accurately observed in an area without contrast
enhancement. TPMs for patients with imaging acquisitions close to

death are presented in Figure 5. The first example shows a case of
successfully identified tumor outside contrast that extends beyond
the FLAIR hyperintense region. The second example demonstrates
the ability for TPMs to both identify tumor within enhancement
and avoid false positives, as well as identify edges of the tumor with
increased proliferation relative to others. The third example shows a
false positive from the model, where the model labels a region
containing a mixture of nonenhancing tumor and reactive gliosis
that is entirely labeled as tumor, indicating a potential source of
error in the model. Additional TPMs for external data and survival
analysis for pTOC are presented in Figure 6. Predictions on ex-
ternal data sets demonstrated that TPMs generated from this
framework provided low-noise, interpretable maps on new data and
identified new areas of possible tumor infiltration in an area without
contrast enhancement. Biopsy data from an area of predicted high
tumor probability on the UCSF subject was pathologically con-
firmed as tumor, with a Ki-67 positive staining rate of 13%.
Survival analyses for presurgical cases revealed that patients with
pTOC demonstrated worse overall survival than patients without
pTOC (hazard ratio = 1.67, CI = 1.07-2.62, P = .027).

DISCUSSION

Key Results
This study developed a multistage predictive model that iden-

tifies areas of tumor beyond traditional imaging signatures.

FIGURE 1. Imaging examples, clinical characteristics, and survival analyses for patients with tumor outside contrast enhancement. Analyses were performed separately for the
full data set, patients with MRI less than 90 days before death, and patients with a primary GBM. Survival analyses were conducted using Cox proportional hazards regression
and only include patients who have received Rad + TMZ treatment. Results indicate increased TOC frequency among GBMs and patients who have received Rad + TMZ or
Bev treatment. Patients with TOC also show reduced survival compared with patients without TOC. *P < .05, **P < .01. GBM, glioblastoma; TMZ, temozolomide; TOC,
tumor outside of contrast enhancement.
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A pathological tumor prediction model based on histology seg-
mentations was combined with MRI-based maps of tissue com-
position to bridge the gap between histopathological assessment
and noninvasive glioma tracking.We validated this technique using
autopsy tissue samples as ground truth and successfully applied our
models to external data to demonstrate generalizability. This study
is the first of its kind to provide TPMs validated using tissue well
beyond the current treatment margin, and is, to date, the largest
study of radio-pathomic signatures at autopsy in brain cancer.

Interpretation
Autopsy-based TPMs have several benefits compared with other

techniques for identifying tumor extent. Contrast-basedmethods such
as traditional T1-weighted contrast enhancement and dynamic
susceptibility-based perfusion imaging both rely on disruptions in the
blood brain barrier to highlight regions of vascular tumor, which are
prone to both missing areas of nonangiogenic infiltration and false
positives (ie, pseudoprogression) after radiation and other treat-
ments.31-33 TPMs can apply the same set of weights across the brain
based on data-driven texture features that identify areas of tumor in
both the presence and absence of contrast enhancement, indicating
novel radiographic signatures that function in the absence of angio-
genic activity, which is particularly useful for nonenhancing low-grade
glioma cases. While other studies have developed radio-pathomic
approaches to identifying tumor presence, many of these tools have
been developed on pretreatment biopsy tissue, which is prone to

misregistration errors and loss of orientation information, and typically
offer only a single data point per pathological sample.18,20,34-37

Furthermore, these samples are extracted from regions that are al-
ready surgically viable and therefore are yet to be validated on suspected
normal tissue beyond the identifiable tumor margin. The use of
autopsy tissue, while adding timing of tissue collection as an important
source of uncertainty, allows for unprecedented tissue alignment,
extent of sampling, and pathological richness because our data set
includes over 2 million voxels with matched pathology. Several ad-
vanced imaging tools have also been proposed to probe new areas of
tumor biology to circumvent the restrictions of contrast-based
methods, including pH-based amide proton transfer chemical ex-
change saturation transfer38,39 imaging and MR spectroscopy–based
measures of tumor metabolism.40-42 However, these tools often re-
quire substantial effort to implement to introduce the tools and
protocols required for clinical translation and often increase both scan
time and cost of acquisition. Because TPMs only require standard
imaging contrasts to extract novel texture information, they can be
applied on most clinical MRI sessions without additional scan time
and can be applied to longitudinal and retrospective scans for rapid
validation at many institutions.

Generalizability
This technology has several use cases in both clinical and

research settings. The use of TPMs to identify the full extent of
nonenhancing tumor regions can be used in surgical planning in

FIGURE 2. Pathological tumor prediction. A, The pathological tumor prediction model uses cell density, ECF, and Cyt segmentations to distinguish tumor vs nontumor using the
pathological annotations as ground truth. B, The RUS Tree algorithm was the highest-performing tumor prediction model (AUC = 0.857) and was used in the final multistage TPM
model.C, Example segmentations and D, TPMs from the RUS Tree model show accurate tumor prediction in both infiltrative tumor and PN areas, while avoiding both normal tissue
and areas of necrosis. AUC, area under the curve; Cyt, cytoplasm; ECF, extracellular fluid; PN, pseudopalisading necrosis; RUS, random undersampled; TPM, tumor probability map.
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conjunction with fluorescence-based guidance to help plan su-
pramarginal resections because this would allow visualization of
distant tumor areas where fluorescence would not be seen from

the main resection cavity. In addition, this tool is useful post-
surgery in the planning of radiation dosing because the current
standard of high-dose administration to the contrast-enhancing

FIGURE 3. Radio-pathomic maps of tissue segmentations. A, 5 by 5 voxel tiles from T1, T1 + C, FLAIR, and ADC were used to predict voxelwise cell density, ECF, and Cyt
using bagging random forests. B, Test set performance indicates an average subject-level root mean squared error within a standard deviation of the tissue ground truth for each
tissue class, indicating satisfactory model performance for most subjects. C, Example tissue predictions show areas of accurately predicted cellularity beyond contrast en-
hancement, distinguishing between vasogenic edema and hypercellular areas within the FLAIR hyperintense region. The subject on the left shows a portion of hypercellularity
extending posterior to the contrast-enhancing margin, while highlighting a reduction in cell density within the FLAIR hyperintensity anterior to the contrast enhancement. The
subject on the right shows an area of increased cellularity in the absence of contrast enhancement and diffusion restriction. ADC, apparent diffusion coefficient; Cyt, cytoplasm;
ECF, extracellular fluid; FLAIR, fluid-attenuated inversion recovery; GBM, glioblastoma.
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region and low-dose administration to FLAIR hyperintensity runs
the risk of both underdosing nonenhancing tumor and radiating
normal tissue. Because TPMs can differentiate between tumor
and nontumor components of the FLAIR-enhancing region, it
may be able to spare eloquent tissue while providing the full
radiation dose to occult tumor areas. Use cases in the research

setting include further understanding the molecular, genetic, and
demographic factors that impact the degree of nonenhancing
tumor presence across tumor types, as well as better understanding
on how nonenhancing tumor affects prognosis. Critically, this
tool has the potential to visualize the impact of treatment on the
full extent of tumor infiltration postradiation and

FIGURE 4. Example TPM for a test set subject (GBM, Female, 80yo), along with corresponding MRI and segmentation predictions. The TPM for this patient accurately
highlights an area of tumor outside contrast enhancement and in the absence of diffusion restriction. In addition, the cell density map highlights that the entire tumor area is
hypercellular, whereas the ECFmap highlights a high-ECF core to the hypercellular area, which correctly suggests an area of PN (high cellularity, high ECF). This demonstrates
the ability for TPMs to distinguish between pathologically distinct regions of tumor. Cyt, cytoplasm; ECF, extracellular fluid; FLAIR, fluid-attenuated inversion recovery; PN,
pseudopalisading necrosis; TPM, tumor probability map.
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postantiangiogenic therapy, and future research developing
treatment response metrics for later-stage interventions may
improve detection of therapeutic benefit.

Limitations
Because of the use of autopsy tissue samples, the time between

imaging and death is an important limiting factor in this study. We
have accounted for this in our study by reproducing our frequency
assessment of TOC and its impact on survival to imaging within
3 months of death and have matched our train and test data sets for
time between MRI and death. Future studies using longitudinal
imaging to model tumor growth rates that can then extend the
imaging-defined margins to their full extent at death may control
for this factor more precisely. Incorporating biopsy tissue from
earlier clinical timepoints may also provide control over time be-
tween MR and death by including tissue and MRI data collected

simultaneously. Potential tissue distortions may result in imperfect
alignment withMRI data; however, our previously published tissue
processing protocol controls for this at every step of tissue col-
lection, and regions of interest defined after warping are used to
exclude regions of suboptimal tissue quality. Future research will
also be essential for determining how well the model operates in
both the presence and absence of angiogenic activity, as well as in
conjunction with other treatments. In addition, while this study has
found a link between nonenhancing tumor presence and overall
survival, it is likely underpowered to account for a range of common
factors such as Karnofsky Performance Status or genetic signatures
such as isocitrate dehydrogenase 1 mutation status and O6-
methylguanine-DNA methyltransferase methylation status. Ap-
plying these models to large, publicly available data sets will allow
for large-scale validation of this signature’s prognostic value in
relation to these potentially confounding effects.

FIGURE 5. Example TPMs for 3 individuals. The first case presents an area of high tumor probability outside of contrast enhancement, avoiding a central necrotic area and
identifying tumor extent that goes beyond the FLAIR hyperintense signal with pathological conformation of tumor presence. The second case shows high tumor probability well
circumscribed within the contrast-enhancing lesion, correctly identifying a lack of tumor outside of contrast in this area while highlighting increased cellularity in the posterior
edge of the tumor relative to the anterior. The third case not only shows an area of high tumor probability in an area with some tumor invasion but also includes reactive gliosis
in the high tumor probability area, indicating a representative false positive. FLAIR, fluid-attenuated inversion recovery; PN, pseudopalisading necrosis; TPM, tumor
probability map.
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CONCLUSION

Autopsy tissue samples aligned to MRI were used to develop a
multistage model for tumor probability to predict areas of non-
enhancing tumor in patients with glioma. This technique has the
potential to improve disease tracking and could expand the treated
margin to encompass additional infiltrative tumor missed by current
tracking techniques.
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T his study represents a significant step forward in the field of neuro-
oncology, particularly in the treatment and surgical approach to

glioma. By leveraging autopsy tissue samples aligned with clinical MRI,
the authors have developed a novel artificial intelligence tool capable of
detecting invasive tumor areas beyond traditional imaging boundaries.
This approach, which contrasts with previous studies limited to biopsy
samples within resectable margins, offers a more comprehensive un-
derstanding of tumor presence beyond contrast enhancement and FLAIR
hyperintensity.

The methodology, involving a retrospective study design with a
substantial sample size and an impressive ensemble algorithm for pix-
elwise tumor prediction, is rigorously executed. The findings that a
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significant proportion of patients had tumor invasion outside the contrast
region, with clear links to survival outcomes, underline the importance of
this research. Such advancements are crucial for enhancing tumor
mapping techniques and potentially extending the treatable margin for
gliomas.

While the study’s limitations are acknowledged, including the time
gap between the last MRI and autopsy samples, these do not significantly
detract from the overall validity and impact of the research. The predictive
maps generated are a promising tool, offering a pathway for more accurate
tumor identification and potentially improving survival outcomes.
However, further clarification on the application of these maps, whether
for maximizing resection or clinical monitoring, would enhance the
study’s coherence.

The inclusion of both gliomas and GBMs raises questions about the
handling of non–contrast-enhancing aspects in the study. Additionally,
the consideration of tumor genetics and other confounding factors in
glioma prognosis would provide a more comprehensive understanding of
the study’s implications.

In summary, this research is a commendable and essential addition
to the literature. It not only advances our understanding of glioma
mapping and treatment but also sets a precedent for future studies in
the field. The potential for these findings to influence clinical practices
and improve patient outcomes is substantial, marking a pivotal
moment in the journey toward more effective glioma treatment
strategies.

David Jaehyun Park, MD, PhD
Palo Alto, California, USA

T he authors should be commended for developing tools to identify
glioma infiltration probability maps. In glioma surgery, cytoreduction

through surgically removing tumor improves survival. Not all tumor regions
have similar tumor cell density. For example, the majority of progression of
glioblastoma occurs within 2 centimeters of the contrast-enhancing tumor.
Recent work by Molinaro et al (2020) demonstrated that supramaximal
resection of T2 FLAIR regions improves survival in GBM. Aggressive re-
moval of T2 FLAIR signals in GBM is limited by large volumes of FLAIR
signal in some patients and risks for new neurological deficits. Identifying
high-risk tumor regions within FLAIR signals can help guide surgical re-
section, making us more successful surgeons. To accomplish this task, the
authors developed an ensemble algorithm which utilizes routine MRI images
to generate tumor infiltration probability maps based on cellularity, extra-
cellular fluid, and cytoplasm density. The innovation for this group is de-
veloping radio-pathomic models using MRI brains of recently deceased
patients with GBM. When applied to a sample set of patients with imaging
and autopsy results, the algorithm produced density maps that reliably
identified infiltration beyond enhancing areas, and the presence of this spread
was associated with poorer survival. This technique requires further validation
to demonstrate its accuracy in larger data sets; however, it represents a
powerful new tool in evaluation of patients and planning for intervention.
One major limitation in the current form is the use of only the MR images
collected closest to patient death. Inclusion of longitudinal imaging to track
progression would significantly improve the value of the technique.

Ryan A. Cloyd, MD, PhD, Matthew Pease, MD, and Angela M
Richardson, MD, PhD

Indianapolis, Indiana, USA
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