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A B S T R A C T

The field of neuropathology, a subspecialty of pathology which studies the diseases affecting the nervous system, 
is experiencing significant changes due to advancements in artificial intelligence (AI). Traditionally reliant on 
histological methods and clinical correlations, neuropathology is now experiencing a revolution due to the 
development of AI technologies like machine learning (ML) and deep learning (DL). These technologies enhance 
diagnostic accuracy, optimize workflows, and enable personalized treatment strategies. AI algorithms excel at 
analyzing histopathological images, often revealing subtle morphological changes missed by conventional 
methods. For example, deep learning models applied to digital pathology can effectively differentiate tumor 
grades and detect rare pathologies, leading to earlier and more precise diagnoses. Progress in neuroimaging is 
another helpful tool of AI, as enhanced analysis of MRI and CT scans supports early detection of neurodegen
erative diseases. By identifying biomarkers and progression patterns, AI aids in timely therapeutic interventions, 
potentially slowing disease progression. In molecular pathology, AI’s ability to analyze complex genomic data 
helps uncover the genetic and molecular basis of neuropathological conditions, facilitating personalized treat
ment plans. AI-driven automation streamlines routine diagnostic tasks, allowing pathologists to focus on complex 
cases, especially in settings with limited resources. This review explores AI’s integration into neuropathology, 
highlighting its current applications, benefits, challenges, and future directions.

1. Introduction

Neuropathology, the branch of pathology focused on the study of 
diseases of the nervous system tissue, is pivotal for the diagnosis and 
understanding of various neurological disorders. Traditionally reliant on 
histological examination and clinical correlation, neuropathology is 
undergoing a significant change due to advancements in molecular pa
thology and artificial intelligence (AI) [1]. AI encompasses a range of 
technologies, including machine learning (ML) and deep learning (DL), 
which enable computers to perform tasks typically requiring human 
intelligence [2] (Table 1).

The integration of artificial intelligence (AI) into neuropathology 
represents a significant advancement, promising to enhance diagnostic 

accuracy, streamline workflows, and personalize treatment strategies 
[3]. AI algorithms have demonstrated remarkable capabilities in 
analyzing histopathological images with high precision [4]. This ability 
leads to significant improvement of traditional methods, enabling pa
thologists to identify subtle morphological changes that might be missed 
during routine examinations [5]. For instance, DL models applied to 
digital pathology can help distinguish between various tumor grades 
and identify rare pathologies, ensuring early and accurate diagnoses [6]. 
In the field of neuroimaging, AI-enhanced analysis of MRI and CT scans 
facilitates the early detection of neurodegenerative diseases [7] and the 
pre-operative prediction of tumor biology of meningiomas [8]. In this 
regard, some authors validated the development of a ML classifier to 
predict the Integrated Risk Score (IRS) pertaining to tumor biology in 
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WHO grade 2/3 meningiomas using pre-operative MRI data, showing 
that radiomic features, such as tumor shape, can noninvasively predict 
the molecular IRS of meningiomas with high accuracy, especially for 
low-risk patients [8]. Similarly, in neurosurgery, new tools such as 
confocal laser technology have been employed in recent decades to 
obtain intraoperative histological data, particularly regarding tumor 
type and the presence of neoplastic cells at the resection margins during 
surgical procedures [9].

By identifying biomarkers and patterns indicative of disease pro
gression, AI aids in the timely initiation of therapeutic interventions, 
potentially slowing disease progression and improving patient outcomes 
[10]. AI’s role in molecular pathology is of increasing importance: it 
enables the analysis of complex genomic data, providing insights into 
the genetic and molecular basis of neuropathological conditions [11]. 
This facilitates the development of personalized treatment plans, as AI 
can identify mutations in brain tumors, guiding the selection of targeted 
therapies and improving treatment response [12]. Moreover, AI-driven 
automation in routine diagnostics allows pathologists to focus on more 
complex and critical cases. This is particularly advantageous in 
resource-limited settings, where there is a shortage of skilled pro
fessionals [13]. By enhancing efficiency and reducing diagnostic work
loads, AI contributes to a better use of healthcare resources and to 
improve patient care [14].

This literature review delves into the integration of AI in neuropa
thology, exploring key applications, benefits, challenges, and future 
directions.

2. Historical overview of central nervous system tumor 
diagnosis: from histology to molecular profiling

Traditionally, brain tumors diagnosis and grading have relied on the 
visual examination of hematoxylin and eosin (H&E)-stained slides. This 
approach usually establishes a differential diagnosis, guiding further 
diagnostic steps like special stains and immunohistochemistry (IHC), 
which help the neuropathologist in rendering a better-defined diagnosis 
[15]. However, this approach has notable limitations due to interob
server variability and inconsistent correlations between histopathologic 
features and patient outcomes [16].

Advances in understanding the molecular mechanisms of brain tu
mors led to the inclusion of molecular diagnostic criteria in the 2016 
WHO Classification of Central Nervous System (CNS) Tumors [17]. For 
instance, research by Parsons et al. and Yan et al. showed that diffuse 
gliomas with IDH1 and/or IDH2 (IDH1/2) mutations tend to have a less 
aggressive clinical course compared to IDH-wildtype tumors [18,19]. 
Consequently, tumors with IDH1/2 mutations were classified as either 
IDH-mutant astrocytoma or IDH-mutant secondary glioblastoma multi
forme, depending on their morphological features. Furthermore, the 
presence of an IDH1/2 mutation along with a 1p/19q co-deletion is 
diagnostic of oligodendroglioma, regardless of whether the tumor ex
hibits astrocytic or oligodendroglial morphology [20].

The 2016 classification also brought significant changes to the 

categorization of embryonal tumors. Medulloblastomas were divided 
into four molecular subtypes based on WNT, SHH, and TP53 status [21]. 
SMARCB1/SMARCA4 loss became a crucial criterion for diagnosing 
atypical teratoid/rhabdoid tumors, and embryonal tumors with multi
layered rosettes and C19MC amplifications were recognized as a distinct 
diagnostic category [22].

The concept of an integrated "histomolecular" diagnosis was further 
expanded in the 2021 WHO update to cover several tumor entities [23]. 
A major revision distinguished pediatric-type diffuse gliomas from 
adult-type diffuse gliomas due to their unique molecular signatures 
[24]. In the classification of adult-type diffuse gliomas, the significance 
of an IDH mutation evolved from the 2016 classification. Nowadays, 
tumors with an IDH mutation are designated as either IDH-mutant as
trocytoma or IDH-mutant oligodendroglioma, depending on the 1p/19q 
status, thus making the term "IDH-mutant glioblastoma" obsolete [25]. 
The updated grading scheme for IDH-mutant astrocytomas also reflects 
the importance of CDKN2A/B homozygous deletion as a marker for poor 
prognosis [26].

Numerous molecular alterations, including those used in classifica
tion criteria, have shown prognostic relevance, such as IDH-mutation 
status or the WNT molecular subgroup of medulloblastoma [27]. 
Others, like O6-methylguanine-DNA methyltransferase (MGMT) pro
moter hypermethylation, predict therapeutic response [28]. Recently, 
DNA methylation profiling has emerged as an additional tool for diag
nosing and subclassifying brain tumors beyond histopathologic and 
genomic characteristics [29]. For some CNS tumors, DNA methylation 
profiling serves as a supplementary diagnostic tool, while for others, 
such as high-grade astrocytoma with piloid features (HGAP), it is crucial 
for confirming the diagnosis [30].

Neoplastic cells undergo significant changes in DNA methylation 
patterns, which can be used to classify tumor types with high specificity 
through epigenome-wide methylation assays [31]. Capper et al. made 
significant contributions by developing a ML algorithm that classifies 
CNS tumors based on DNA methylation profiles [23]. They trained the 
algorithm using methylation data from 2801 pre-classified samples of 
nearly every type of CNS tumor. This algorithm employed supervised ML 
to recognize methylation patterns from known classifications, and un
supervised learning to identify patterns that could independently clas
sify samples into computer-generated categories. As a result, the 
algorithm classified tumors into 82 distinct groups – about one-third 
corresponded to known WHO tumor types, another third represented 
sub-classes of WHO tumor types, and the rest were new tumor types that 
did not match WHO groupings, including previously unrecognized 
tumor types and those with histologic overlap but distinct methylation 
profiles.

When tested prospectively on 1104 new samples, the algorithm’s 
classification matched the pathologist’s diagnosis in 60.4 % of cases. In 
15.5 % of the cases, the classifications matched, but the algorithm 
identified subgroups which were not recognizable through histopa
thology alone. In 12.6 % of cases, the pathologist and the algorithm 
made a different diagnosis, and further analysis, including gene 
sequencing, led to a reclassification in 92.8 % of these cases, often 
assigning a new tumor grade. The algorithm could not classify 11.5 % of 
the samples [23,32]. Since then, numerous studies have validated the 
algorithm’s accuracy, and it has been adopted into clinical workflows at 
different centers worldwide [23,33–35]. This approach has proven 
particularly useful for classifying tumors with heterogeneous or 
difficult-to-distinguish morphology, such as ependymomas, medullo
blastomas, and diffuse glioneuronal tumors [23,35]. Its role in guiding 
diagnoses for these tumors has been incorporated into the 2021 WHO 
guidelines for CNS tumor classification [19,36–38].

3. Artificial intelligence application in neuropathology

Histopathologic analysis has long been essential in oncology diag
nosis, yet it is prone to interobserver variability that can hinder accurate 

Table 1 
Overview of AI Integration in Neuropathology.

Area Details

Histopathological 
Analysis

AI algorithms improve precision in analyzing 
histopathological images, identify tumor grades, and 
rare pathologies.

Neuroimaging AI aids in early detection of neurodegenerative diseases 
by analyzing MRI and CT scans for biomarkers and 
patterns.

Molecular Pathology AI analyzes genomic data, identifies mutations, and helps 
in personalized treatment planning.

Automation AI-driven automation enhances efficiency, especially in 
resource-limited settings, by reducing diagnostic 
workloads.
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diagnosis and optimal management [39–41]. In neuro-oncology, 
grading gliomas based on atypia, mitosis, microvascular proliferation, 
and necrosis involves a degree of subjectivity [42–45]. The incorpora
tion of molecular features such as IDH mutation and 1p/19q co-deletion 
status into the WHO grading of gliomas, along with the growing avail
ability of individualized tumor genetic data, makes AI a helpful tool for 
pathologists in interpreting large, multiparametric data sets to establish 
diagnoses [42–44,46].

The emergence of high-quality digitized whole slide images (WSIs) 
has enabled the use of DL in histopathologic diagnosis [42–44,46]. In 
oncology, DL algorithms have been applied to detect metastatic breast 
cancer in lymph node biopsies [39], assess Gleason score in prostate 
cancer biopsies [40], and differentiate lung adenocarcinoma and squa
mous cell carcinoma from normal lung tissue [41], among other appli
cations, with high accuracy.

In neuro-oncology, convolutional neural networks (CNNs) trained on 
WSIs of gliomas have been used to provide unbiased diagnoses of gli
omas [47,48]. Ertosun et al. trained two CNNs on publicly H&E-stained 
images of gliomas from The Cancer Genome Atlas (TCGA) [42]. One 
CNN aimed to differentiate glioblastoma (GBM) from low-grade glioma 
(LGG), while the other aimed to distinguish between grade 2 and grade 3 
gliomas. The CNNs showed a 96 % accuracy for GBM vs. LGG distinc
tion, and 71 % accuracy for differentiating between a grade 2 and a 
grade 3 glioma [42]. Pei et al. developed a deep learning-based model 
that fused molecular and histopathologic features to predict glioma 
grade, with an accuracy of 93.8 % in distinguishing high-grade glioma 
(HGG) from LGG, and 74 % in distinguishing grade 2 vs. grade 3 gli
omas. They used digital WSIs from 549 patients in TCGA with molecular 
information on IDH, 1p/19q, ATRX, and MGMT promoter alterations 
[47,48]. Another study by Truong et al. trained multiple CNNs using 
TCGA WSIs, with the best models achieving a 73 % mean accuracy in 
distinguishing GBM from LGG, and 53 % accuracy in distinguishing 
grade 2 from grade 3 gliomas [43]. All the above-mentioned studies, 
except for the one by Pei et al. [47], are limited by the absence of 
IDH-mutation and 1p/19q co-deletion status of the tumors.

Hollon et al. developed a rapid (<90 seconds), AI-based diagnostic 
screening system to streamline the molecular diagnosis of diffuse gli
omas. In a cohort of 153 patients with diffuse glioma, the authors 
showed that this system was able to predict the molecular alterations 
used by the WHO to define adult-type diffuse gliomas (IDH mutation, 
1p/19q co-deletion and ATRX mutation), achieving a mean molecular 
classification accuracy of 93.3 % [49].

Jin et al. developed a platform named “AI Neuropathologist”, which 
trained a CNN on over 79,000 H&E-stained WSIs from 267 patients to 
distinguish GBM, anaplastic astrocytoma, anaplastic oligoden
droglioma, astrocytoma, oligodendroglioma, and background glia [44]. 
The CNN derived histopathologic features and classified gliomas from 
59 unique patients with 83 % accuracy. The authors concluded that “AI 
Neuropathologist” may represent a useful tool for glioma grading, 
emphasizing that it should be used in conjunction with clinical infor
mation and molecular data.

In the field of molecular neuropathology, ML models are increasingly 
used to predict prognosis, therapy responses, and patient outcomes [46]. 
For example, in medulloblastoma, DL models trained on DNA methyl
ation profiles have improved tumor classification accuracy and provided 
insights into underlying biological mechanisms [46]. Similarly, AI has 
been employed to analyze genomic and transcriptomic data to identify 
potential therapeutic targets in gliomas [46].

A recent approach, which has been used by Ravi et al., aimed at 
characterizing GBMs by spatially resolved transcriptomics, metab
olomics and proteomics [50]. They inferred that GBM is organized by 
spatial segregation of lineage states. In their study, they used a two-step 
approach to explore transcriptional diversity in a spatial context: i) a 
machine-learning-based segmentation technique, and ii) an artificial 
neural network model trained to predict the number of tumor cells per 
spot [46]. Some researchers tested rapid nanopore sequencing combined 

with ML to enhance intraoperative diagnosis of CNS tumors, developing 
“Sturgeon”, a neural network trained to subclassify CNS tumors during 
surgery using sparse methylation profiles obtained via nanopore 
sequencing [51]. They found that 45 out of 50 retrospectively sequenced 
samples could be diagnosed accurately within 40 minutes [51]. During 
real-time application in 25 surgeries, the tool achieved a 72 % overall 
accuracy rate [51]. Similarly, Hoang et al. validated “Deploy”, a DL 
model designed to enhance the diagnosis and classification of brain 
tumors, using histopathology images by leveraging deep learning, 
thereby overcoming the limitations of DNA methylation profiling, which 
is time-consuming and not widely available [52]. An accurate prediction 
(95 % overall accuracy; 91 % balanced accuracy) of DNA methylation 
beta values from histopathology images was achieved for 10 major 
tumor categories [52].Integrating these AI models with traditional his
topathologic data could further enhance diagnostic precision and 
patient-specific treatment strategies [53–55].

AI technologies have made considerable progress in neuropathology, 
enhancing diagnostic accuracy, streamlining workflows, and paving the 
way for personalized treatment strategies (Table 2). As AI continues to 
evolve, its integration with traditional neuropathologic methods prom
ises to further improve patient outcomes and lead to a revolution in the 
field.

4. Challenges to overcome

The success of AI models is highly dependent on the availability of 
high-quality, annotated datasets. In the field of neuropathology, 
achieving standardized and representative data is difficult due to vari
ations in how samples are prepared, stained, and interpreted by different 
observers [53,54]. Creating large, diverse, and well-annotated datasets 
is essential for developing robust AI models. To improve the possibility 
of generalization of these models, it is important to establish uniform 
protocols for data collection and annotation and to promote collabora
tion among institutions to create centralized data repositories [53,54].

Table 2 
Main AI Applications in Neuropathology.

Study Details Accuracy

Ertosun et al. 
[42]

Trained CNNs to distinguish 
glioblastoma from low-grade 
glioma and grade 2 vs. grade 3 
gliomas.

96 % for GBM vs. 
LGG; 71 % for grade 2 
vs. 3

​

Truong et al. 
[43]

Trained CNNs on TCGA WSIs to 
differentiate GBM from LGG and 
grade 2 from grade 3 LGGs.

73 % mean accuracy 
for GBM vs. LGG; 
53 % for grade 2 vs. 3

​

Jin et al. [44] Developed “AI Neuropathologist” 
CNN to classify gliomas into 
several categories with high 
accuracy.

86.5 % patch-level; 
87.5 % patient-level

​

Pei et al. [47] Developed model integrating 
molecular and histopathologic 
features for glioma grading.

93.8 % for high vs. 
low-grade gliomas; 
74 % for grade 2 vs. 3

​

Faust et al. 
[48]

Developed a workflow coupling 
different computer vision tools 
including SIFT and deep learning 
to integrate histopathological 
information.

91 % overall accuracy ​

Hollon et al. 
[49]

Developed DL-based method for 
rapid molecular classification of 
diffuse gliomas from intraoperative 
samples.

93.3 % overall 
accuracy

​

Vermeulen 
et al. [51]

Developed “Sturgeon”, neural 
network to subclassify brain 
tumors during surgery using 
methylation profiles obtained via 
nanopore sequencing.

72 % overall accuracy ​

Hoang et al. 
[52]

Developed “Deploy”, a DL model 
designed to predict DNA 
methylation beta values from 
histopathologic images.

95 % overall accuracy ​
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Another critical aspect is represented by the fact that WSIs are 
commonly divided into patches, and each patch is analyzed separately, 
such as for ROI detection. The methodology used for integrating the 
results of all patches still has room for improvement [55]. Artifacts 
affecting tissue structure and color variation of standard stains can be 
introduced at various stages of the WSI creation process. Because these 
artifacts may impair interpretation, specific algorithms for detecting 
artifacts such as blur and tissue folds have been proposed that can be 
used during WSI preprocessing [55].

A significant challenge to the clinical adoption of AI models is their 
"black box" nature. Pathologists and clinicians need to understand the 
reasoning behind AI-generated outcomes to trust and effectively inte
grate these tools into clinical practice. It is crucial to develop AI models 
that are interpretable and provide clear and understandable results. 
Techniques like attention mechanisms, saliency maps, and explainable 
AI frameworks can clarify how AI models make decisions. Engaging 
clinicians in the development and validation processes can ensure that 
AI tools meet clinical needs and gain easier acceptance.

Furthermore, deploying AI in clinical settings brings up important 
regulatory and ethical concerns. Protecting data privacy and security is 
critical, particularly with sensitive patient information. Regulatory 
frameworks must adapt to address the specific challenges of AI, 
including the validation, approval, and continuous monitoring of AI 
systems. Ethical issues, such as potential biases in AI algorithms and 
their effects on patient care, need to be carefully considered. Trans
parent reporting on AI model performance, including their limitations 
and biases, is essential. Additionally, informed consent procedures 
should be updated to account for the use of AI in diagnosis and treatment 
planning.

5. Future perspectives

Future research should aim to integrate various data types, including 
imaging, genomic, and clinical information, to develop comprehensive 
AI models. These multimodal approaches may offer a more complete 
understanding of neuropathological conditions, improving diagnostic 
precision and guiding treatment decisions. It is crucial for researchers, 
clinicians, and data scientists to work together to create and validate 
these integrated models. The formation of interdisciplinary teams will 
help to reach an effective combination of various data types and ensure 
that AI tools remain relevant in clinical settings.

Improving the interpretability of AI models is essential for their 
acceptance in clinical practice. Research should focus on methods that 
make AI decisions clearer and more understandable for clinicians. 
Techniques such as explainable AI (which aim to clarify how AI models 
make their decisions) need further exploration and refinement. 
Involving clinicians in the development process can provide crucial 
feedback on interpretability requirements and practical applications of 
AI tools. This collaborative approach will help design AI models with 
user-friendly interfaces and straightforward explanations of their 
results.

Rapid progress in AI research with relevance to microscopy can be 
anticipated in the coming years. However, rather than seeing it as a 
threat to morphological diagnostics, we agree that, in the appropriate 
setting and by providing more quantitative evidence and appropriate 
decision support, ML and DL can improve medical decisions and ulti
mately patient care [55].

Ongoing collaboration between AI researchers, neuropathologists, 
and clinicians is vital for effectively incorporating AI into neuropa
thology. Cooperative efforts can help identify clinical needs, develop 
appropriate AI tools, and ensure smooth integration into existing 
workflows. Creating collaborative research networks and consortia can 
promote knowledge sharing, standardize best practices, and speed up 
the development and validation of AI models. Funding agencies and 
academic institutions should support interdisciplinary research to 
advance AI applications in neuropathology.

6. Conclusions

Incorporating AI into neuropathology presents significant advan
tages, such as improved diagnostic precision, customized treatment 
plans, and more efficient use of resources. Nevertheless, challenges 
related to data quality, model transparency, and ethical issues need to be 
addressed to unlock the full potential of AI in this field. Continuous 
research, collaboration, and the establishment of strong regulatory 
frameworks are crucial for overcoming these obstacles and ensuring that 
AI-driven innovations benefit both patients and healthcare providers. As 
the field evolves, the collaboration between AI and neuropathology is set 
to transform the diagnosis and management of neurological disorders, 
leading to better patient outcomes and advancing the field of medical 
science.
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U. Kuliesiute, J. von Ehr, J.K. Benotmane, N. Neidert, M. Follo, F. Scherer, J. 
M. Goeldner, S.P. Behringer, P. Franco, M. Khiat, J. Zhang, U.G. Hofmann, C. Fung, 
F.L. Ricklefs, K. Lamszus, M. Boerries, M. Ku, J. Beck, R. Sankowski, 
M. Schwabenland, M. Prinz, U. Schüller, S. Killmer, B. Bengsch, A.K. Walch, D. Delev, 
O. Schnell, D.H. Heiland, Spatially resolved multi-omics deciphers bidirectional 
tumor-host interdependence in glioblastoma, Cancer Cell 40 (2022) 639–655.e13, 
https://doi.org/10.1016/j.ccell.2022.05.009.

51 C. Vermeulen, M. Pagès-Gallego, L. Kester, M.E.G. Kranendonk, P. Wesseling, 
N. Verburg, P. de Witt Hamer, E.J. Kooi, L. Dankmeijer, J. van der Lugt, K. van 
Baarsen, E.W. Hoving, B.B.J. Tops, J. de Ridder, Ultra-fast deep-learned CNS tumour 
classification during surgery, Nature 622 (2023) 842–849, https://doi.org/10.1038/ 
s41586-023-06615-2.

52 D.T. Hoang, E.D. Shulman, R. Turakulov, Z. Abdullaev, O. Singh, E.M. Campagnolo, 
H. Lalchungnunga, E.A. Stone, M.P. Nasrallah, E. Ruppin, K. Aldape, Prediction of 
DNA methylation-based tumor types from histopathology in central nervous system 
tumors with deep learning, Nat. Med 30 (2024) 1952–1961, https://doi.org/ 
10.1038/s41591-024-02995-8.

53 M. Kocher, M.I. Ruge, N. Galldiks, P. Lohmann, Applications of radiomics and 
machine learning for radiotherapy of malignant brain tumors, Strahl. Onkol. 196 
(2020) 856–867, https://doi.org/10.1007/s00066-020-01626-8.

54 Machine Learning Improves Diagnosis of CNS Cancers. Cancer Discov. 8 (2018) 523- 
524. doi: 10.1158/2159-8290.CD-NB2018-040.

55 I. Alzoubi, G. Bao, Y. Zheng, X. Wang, M.B. Graeber, Artificial intelligence techniques 
for neuropathological diagnostics and research, Neuropathology 43 (2023) 277–296, 
https://doi.org/10.1111/neup.12880.

G. Broggi et al.                                                                                                                                                                                                                                  Pathology - Research and Practice 263 (2024) 155671 

6 

https://doi.org/10.1016/j.ccell.2015.04.002
https://doi.org/10.1016/j.ccell.2015.04.002
https://doi.org/10.1186/s13148-019-0766-2
https://doi.org/10.1186/s13148-019-0766-2
https://doi.org/10.1007/s00401-016-1540-6
https://doi.org/10.1007/s00401-016-1540-6
https://doi.org/10.1016/S2352-4642(19)30342-6
https://doi.org/10.3389/fonc.2022.861078
https://doi.org/10.3389/fonc.2022.861078
https://doi.org/10.1007/s00262-022-03215-3
https://doi.org/10.1007/s00262-022-03215-3
https://doi.org/10.3389/fonc.2022.871798
https://doi.org/10.1001/jama.2017.14585
https://doi.org/10.1038/s41746-019-0112-2
https://doi.org/10.1038/s41591-018-0177-5
http://refhub.elsevier.com/S0344-0338(24)00582-X/sbref42
http://refhub.elsevier.com/S0344-0338(24)00582-X/sbref42
http://refhub.elsevier.com/S0344-0338(24)00582-X/sbref42
https://doi.org/10.1093/noajnl/vdaa110
https://doi.org/10.1093/noajnl/vdaa110
https://doi.org/10.1093/neuonc/noaa163
https://doi.org/10.1093/neuonc/noaa163
https://doi.org/10.1111/nan.12432
https://doi.org/10.3389/fnins.2023.1217629
https://doi.org/10.3389/fonc.2021.668694
https://doi.org/10.3389/fonc.2021.668694
https://doi.org/10.1093/noajnl/vdac001
https://doi.org/10.1038/s41591-023-02252-4
https://doi.org/10.1016/j.ccell.2022.05.009
https://doi.org/10.1038/s41586-023-06615-2
https://doi.org/10.1038/s41586-023-06615-2
https://doi.org/10.1038/s41591-024-02995-8
https://doi.org/10.1038/s41591-024-02995-8
https://doi.org/10.1007/s00066-020-01626-8
https://doi.org/10.1158/2159-8290.CD-NB2018-040
https://doi.org/10.1111/neup.12880

	The emerging role of artificial intelligence in neuropathology: Where are we and where do we want to go?
	1 Introduction
	2 Historical overview of central nervous system tumor diagnosis: from histology to molecular profiling
	3 Artificial intelligence application in neuropathology
	4 Challenges to overcome
	5 Future perspectives
	6 Conclusions
	Ethics
	Research data statement
	Funding
	CRediT authorship contribution statement
	Declaration of Generative AI and AI-assisted technologies in the writing process
	Declaration of Competing Interest
	References


