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 CURRENT
OPINION Chimeric antigen receptor adoptive immunotherapy

in central nervous system tumors: state of the art
on clinical trials, challenges, and emerging
strategies to addressing them
1040-8746 Copyright © 2024 The A
a,b c a
Giada Del Baldo , Andrea Carai and Angela Mastronuzzi
Purpose of review

Central nervous system (CNS) tumors represent a significant unmet medical need due to their enduring
burden of high mortality and morbidity. Chimeric antigen receptor (CAR) T-cell therapy emerges as a
groundbreaking approach, offering hope for improved treatment outcomes. However, despite its successes
in hematological malignancies, its efficacy in solid tumors, including CNS tumors, remains limited.
Challenges such as the intricate tumor microenvironment (TME), antigenic heterogeneity, and CAR T-cell
exhaustion hinder its effectiveness. This review aims to explore the current landscape of CAR T-cell therapy
for CNS tumors, highlighting recent advancements and addressing challenges in achieving therapeutic
efficacy.

Recent findings

Innovative strategies aim to overcome the barriers posed by the TME and antigen diversity, prevent CAR T-
cell exhaustion through engineering approaches and combination therapies with immune checkpoint
inhibitors to improving treatment outcomes.

Summary

Researchers have been actively working to address these challenges. Moreover, addressing the unique
challenges associated with neurotoxicity in CNS tumors requires specialized management strategies. These
may include the development of grading systems, monitoring devices, alternative cell platforms and
incorporation of suicide genes. Continued research efforts and clinical advancements are paramount to
overcoming the existing challenges and realizing the full potential of CAR T-cell therapy in treating CNS
tumors.
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INTRODUCTION

Central nervous system (CNS) tumors that affect
both children and adults remain an unmet medical
need as they are still burdened by highmortality and
morbidity. New therapeutic approaches are indis-
pensable to address these needs. Chimeric antigen
receptor (CAR) T-cells are a groundbreaking form of
immunotherapy where T-cells are genetically modi-
fied to express a synthetic receptor called CAR on
their surface [1] designed to recognize a specific
tumor antigen expressed on cancer cells. Once the
CAR T-cells are infused back into the patient, they
can recognize and bind to the tumor antigen, trig-
gering immuno-mediated death of cancer cells. CAR
T-cells are engineered from patient or donor-derived
uthor(s). Published by Wolters Kluwer Health, Inc. www.co-oncology.com
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KEY POINTS

� Brain tumors are still associated to high mortality and
morbidity and CAR T-cells could be an effective strategy
to improve outcome

� CAR T-cells in brain tumors possesses many challenges
that need to be overcome, including
immunosuppressive microenvironment, heterogeneous
antigens, CAR T-cell exhaustion, cell trafficking
and neurotoxicity.

� New strategies and research are being explored to
overcome these obstacles.

� To date are available about 40 clinical trial to treat
pediatric and adults patient affected by refractory or
recurrent CNS tumors and some data have recently
been published.

� Both preclinical and clinical data have shown that
locoregional delivery CAR T cells is well tolerated.

Brain and nervous system
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T-cells and designed to target specific tumor antigen
independently of the major histocompatibility
complex [2]. These receptors typically comprise
three key components: an extracellular or antigen-
recognition domain, a transmembrane domain, and
an intracellular signaling domain [3]. CAR design
has undergone progressive refinement to enhance
efficacy. Second- and third-generation CARs inte-
grate one or two co-stimulatory domains, such as
CD28and/or 4-1BB, to increase T-cell proliferation,
cytotoxicity, and persistence. Fourth-generation
CARs also termed T-cells redirected for universal
cytokine-mediated killing, build upon second-gen-
eration constructs by introducing an inducible
transgenic protein, like interleukin-12 (IL-12), to
amplify antitumor effect. The fifth generation of
CARs is currently under development, featuring a
novel design based on second-generation constructs
but with the addition of a truncated cytoplasmic
receptor and a binding motif for transcription fac-
tors like STAT3/5 [4].

The CAR T-cell approach has shown remarkable
success in treating hemopoietic cancers, such as B-
cell malignancies [5]. Improvements in survival rate
for solid tumors, including CNS tumors, have
been limited.

The main challenges of CAR T-cell therapy for
solid tumors include the immunosuppressive and
hostile tumor microenvironment (TME), heteroge-
neous antigen expression, and rapid CAR T-cell
exhaustion. These limitations are evenmore evident
in CNS tumors. Moreover, additional specific chal-
lenges exist in targeting CNS tumors, such as the
peculiarity of the location, presence of the blood-
brain barrier (BBB), and risk of neurotoxicity.
2 www.co-oncology.com
Although cellular immunotherapy represents a
new potential treatment for CNS tumors, clinical
experiencewithCAR T-cells in this setting is limited,
but the field is continuously expanding, and most
trials are ongoing in different contexts.
Antigen selection and target

Optimal antigen candidates should exhibit high and
uniform expression in tumor cells, demonstrate
minimal inter-tumor heterogeneity, and show little
to no expression in normal tissue [6].

In contrast to hematological diseases, CNS
tumors are characterized by antigenic heterogeneity
on the cell surface as largely demonstrated in glio-
blastoma (GBM), the most common target of pre-
clinical and clinical studies [7].

Epidermal growth factor receptor variant III
(EGFRvIII), human epidermal growth factor recep-
tor 2 (HER2), interleukin-13 (IL-13) receptor alpha 2
subunit (IL-13R2), B7-H3, and disganglioside-GD2
are among the main antigens expressed in GBM.

IL-13Ra2 is a single-chain, high-affinity receptor
for IL-13 found in over 75% of GBMs with limited
expression in health tissue. IL-13Ra2 serves as one of
the binding subunits of the IL-13 receptor. Produced
by activated T-cells, IL-13 plays a pivotal role in
triggering both pro and anti-inflammatory immune
responses [8]. Overexpression and/or mutation of
tyrosine kinase receptor EGFR contribute to tumor
development and progression [9]. The variant III
mutation of the EGFR is the most commonly found
variant in GBM and is not expressed in normal
tissue, rendering it an optimal target for CAR T-cell
therapy [10,11]. Moreover, EGFRvIII is a crucial
oncogenic driver in GBM associated with episomal
amplification and genomic instability, representing
a valuable example of temporal versatility. Its role in
continuous cell signaling and tumor progression
makes it a significant focus for targeted therapies
[12,13].

HER2, 80% expressed in GBM [14], is a receptor
with tyrosine kinase activity. The activated signal-
ing pathways result in cell proliferation, survival,
differentiation, invasiveness, and tumorigenesis
[15]. Ephrin type-A receptor (Epha2) is a transmem-
brane glycoprotein belonging to the Eph family of
receptor tyrosine kinases and is overexpressed in
most cancers, including GBM, promoting tumori-
genesis through its involvement in cell prolifera-
tion, invasion, and migration [16]. B7-H3 is a
transmembrane protein belonging to the B7-CD28
family, a class of checkpoint molecules that regulate
immune responses through co-stimulatory and co-
inhibitory signaling. In cancer, B7H3 expression has
been associated with tumor progression and
Volume 36 � Number 00 � Month 2024
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immune evasion and it is expressed in different CNS
tumors [17]. GD2 is a glycosphingolipid containing
two sialic acids (disialylganglioside) and serves as a
potential target for various tumors includingmedul-
loblastoma and diffuse midline glioma [18

&&

,19].
Extensive preclinical experience with these tar-

gets has enabled translation into clinical trials
(Table 1) with preliminary results suggesting that
targeting of single antigens in a heterogeneous dis-
ease results in limited impact in the clinical setting
[19–24,25&&–27&&,28,29&&] (Table 2).

Therefore, various strategies to allowCAR T-cells
to concomitantly engage multiple antigens are
being investigated. Schmidts et al. [30

&&

] developed
a dual-specific tandem CAR T (TanCART)-cell with
the ability to target both EGFRvIII and IL-13Ra2
demonstrating high cytotoxicity in vitro against het-
erogeneous GBM populations and in multiple
orthotopic preclinical models. A few years earlier,
Hegde et al. [31] described their experience on co-
targeting both HER2 and IL-13Ra2 and Bielamowicz
et al. [32] conceived a kind of universal CAR T, which
could express even trivalent CARs co-targeting
HER2, IL-13Ra2, and EphA2 with promising results
in Patient-Derived Xenograft (PDX) models. More
recently, Bagley et al. [26

&&

] published interim find-
ings from a phase 1 trial encompassing 6 patients
with multifocal recurrent GBM who received intra-
thecal injections of bivalent CAR T-cells targeting
both IL-12Ra2 and EGFR. Despite not meeting
objective radiological response criteria, reduction
in tumor enhancement and size was observed in
all cases [26

&&

].
With the latest CAR T-cells developments, inno-

vative targets are being evaluated. Members of the
unfolded protein response (UPR) represent a prom-
ising option due to their role in regulating cancer
cell survival, proliferation, and metastasis. Glucose-
regulated protein 78 (GRP78), a critical UPR regu-
lator, is frequently overexpressed to the cell surface
in various cancers under increased endoplasmic
reticulum stress conditions. Ibanez et al. [33

&

]
described significant cell surface expression of
GRP78 inmultiple solid andCNS tumors, suggesting
its potential as a CAR T-cell target. They demon-
strated the ability of GRP78-CAR T-cells to effec-
tively recognize and eliminate GRP78-positive
tumors both in vitro and in vivo. Also, Wang et al.
[34

&

] documented that GRP78-CAR T-cells selec-
tively targeted and eliminated GBM tumor cells
and glioma stem cells, inducing release of IFN-g in
co-culture assays. Comparable results were obtained
in PDX after systemic administration, without any
noticeable off-target effects [34

&

].
In recent years, macrophages have surfaced as

promising contenders for addressing solid tumors,
1040-8746 Copyright © 2024 The Author(s). Published by Wolters Kluwe
owing to their natural ability to infiltrate tumors
and their copious presence within the TME. The
first-generation CD3z-based CAR macrophages
could phagocytose tumor cells in an antigen-
dependent manner [35]. Jin et al. [36

&

] developed
a protocol to generate macrophages from human
pluripotent stem cells (hPSCs). In their study, a
GBM-specific CARwas genetically incorporated into
hPSCs to generate CAR hPSC-derived macrophages
and a potent anticancer activity against GBM cells in
vitro was demonstrated [36

&

]. These findings open
new avenues for the treatment of solid tumors,
including GBM. Moreover, Lei et al. [35] engineered
induced pluripotent stem cell-derived macrophages
(iMACs) with toll-like receptor 4 intracellular toll/
IL-1R (TIR) domain-containing CARs resulting in a
markedly enhanced antitumor effect over first-gen-
eration CAR-macrophages. The design of a tandem
CD3z-TIR dual signaling CAR endows iMACs with
both target engulfment capacity and antigen-
dependent M1 polarization and M2 resistance in a
nuclear factor kappa B (NF-kB)-dependent manner
conferred the capability to modulate the TME [35].
Tumor microenvironment

The TME poses numerous challenges to CAR T ther-
apy, including the presence of a suppressive tumor
stroma consisting of tumor-associated macrophages
and myeloid-derived suppressor cells (MDSCs), as
well as hypoxic conditions that impede its effective-
ness [37]. Countless research studies have been con-
ducted to counteract the antagonistic effect of the
microenvironment on the efficacy of CAR T-cells
against cancer.

The transgenic expression of IL-15 represents an
appealing approach to regulate the TME. Zannikou
et al. [38

&

] found that MDSCs from both human and
murine GBMs express IL-15Ra. They engineered T-
cells to express an IL-13Ra2-CAR alongside secretory
IL-15 or an IL-13Ra2-CAR with IL-15 directly fused
to the CAR to concurrently targetMDSCs andmalig-
nant GBM cells while further enhancing T-cell effec-
tor function. In vitro, CAR.IL15 s and CAR.IL15f T-
cells effectively eliminated MDSCs and reduced
their secretion of immunosuppressive molecules,
with CAR.IL15f T-cells exhibiting greater efficacy.
Likewise, CAR.IL15f T-cells substantially prolonged
survival in two GBM mouse models. Analysis of the
TME revealed that treatment with CAR.IL15f T-cells
led to increased frequencies of CD8þ T-cells, NK
cells, and B cells while decreasing CD11bþ cells
within tumors compared to therapy with CAR T-
cells. Overall, targeting ofMDSCs showed antitumor
efficacy in murine gliomamodels [38

&

], suggesting a
r Health, Inc. www.co-oncology.com 3
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Table 1. Overview on CAR-T cell phase 1 clinical trial for pediatric and adults central nervous system tumors

Study number Target antigen Disease Site Status

ADULTS

NCT03696030 HER-2 - Malignant brain tumor
- Other solid tumors

City of Hope Medical Center, Duarte,
California

Recruiting

NCT04406610 GD2 Glioma of brain Fuda Cancer Hospital, Guangzhou, China Withdrawn

NCT03638167 EGFR806 Central nervous system
tumors

Seattle Children’s Hospital, Washington Active, not
recruiting

NCT05474378 B7-H3 Central nervous system
tumors

Stanford University, California Recruiting

NCT04661384 IL13Ralpha2 - Ependymoma
- GBM
- Medulloblastoma
- Recurrent Metastatic
Malignant Neoplasm in
the Leptomeninges

City of Hope Medical Center, Duarte,
California

Recruiting

NCT05353530 IL-8 receptor GBM University of Florida, Florida Recruiting

NCT02541370 CD133 - Brain Tumor
- Other solid tumors

Chinese PLA General Hospital, China Completed

NCT05063682 EGFRvIII GBM Finland
India

Unknown status

NCT01454596 EGFRvIII - GBM
- Malignant glioma

National Cancer Institute (NCI) Completed

NCT05366179 B7-H3 GBM UNC Lineberger Comprehensive Cancer
Center, North Carolina

Recruiting

NCT03423992 Personalized
chimeric antigen
receptor T cells

Malignant glioma Xuanwu Hospital, Beijing, China Unknown status

NCT05835687 B7-H3 Central nervous system
tumors

St. Jude Children’s Research Hospital,
Memphis, Tennessee

Recruiting

NCT03726515 EGFRvIII
pembrolizumab

GBM University of Pennsylvania, Philadelphia,
Pennsylvania

Completed

NCT00730613 IL13Ra2 High-grade malignant
glioma

City of Hope Medical Center, Duarte,
California

Completed

NCT05241392 B7-H3 GBM Beijing Tiantan Hospital, Beijing, China Recruiting

NCT04077866 B7-H3 GBM Second Affiliated Hospital, School of
Medicine, Zhejiang University, China

Recruiting

NCT04214392 CAR T with
Chlorotoxin

Tumor-Targeting
Domain

GBM City of Hope Medical Center, Duarte,
California

Recruiting

NCT03389230 HER2 Grade III-IV Glioma City of Hope Medical Center, Duarte,
California

Active, not
recruiting

NCT03638206 EGFRvIII -Glioma
-Other solid tumors

The First Affiliated Hospital of Zhengzhou
University, China

Unknown

NCT03941626 EGFRvIII -Glioma
-Other solid tumors

Henan Provincial People’s Hospital, China Unknown

NCT05540873 IL13Ra2 Malignant glioma National Cancer Center, Korea, Goyang-si,
Gyeonggi, Republic of Korea

Recruiting

NCT04003649 IL13Ra2 GBM City of Hope Medical Center, Duarte,
California

Recruiting

NCT05131763 NKGD2 GBM
Medulloblastoma

Xunyang Changchun Shihua Hospital,
Jiujiang, China

Unknown

NCT05024175 CARv3-TEAM-E
EGFR

GBM Massachusetts General Hospital, Boston,
Massachusetts

Not yet
recruiting

Brain and nervous system
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Table 1 (Continued )

Study number Target antigen Disease Site Status

NCT05577091 IL7Ra GBM Beijing Tiantan Hospital, Beijing, China Recruiting

NCT04717999 NKG2D GBM Not listed Unknown

NCT04550663 NKG2D - Glioma
- Other solid tumors

The Affiliated Nanjing Drum Tower Hospital
of Nanjing University Medical School,
Nanjing, Jiangsu, China

Unknown

NCT03383978 NK-92/5.28.z þ
Ezabenlimab

GBM HER2 pos Johann Wolfgang Goethe University
Hospital, Germany

Active, not
recruiting

NCT05168423 EGFR-IL13Ra2 GBM University of Pennsylvania, Philadelphia,
Pennsylvania

Recruiting

NCT05660369 CARv3-TEAM-E GBM Massachusetts General Hospital, Boston,
Massachusetts

Recruiting

CHILDREN AND YOUNG
ADULTS

NCT05298995 GD2 Recurrent and refractory
pediatric and young
adults brain tumors

Bambino Gesu Hospital and Research
Institute, Rome, Italy

Recruiting

NCT06221553 B7H3 IL-7Ra DMG Chulalongkorn University, Bangkok,
Thailand

Recruiting

NCT04099797 C7R-GD2 - Diffuse Intrinsic Pontine
Glioma

- High Grade Glioma
- Embryonal Tumor
- Ependymal tumor

Baylor College of Medicine, Houston, Texas Recruiting

NCT04510051 IL13Ralpha2 Recurrent and refractory
pediatric brain tumors

City of Hope Medical Center, Duarte,
California

Recruiting

NCT03170141 Antigen-specific IgT
cells

GBM Shenzhen Geno-Immune Medical Institute,
China

Enrolling by
invitation

NCT03500991 HER2 Recurrent and refractory
pediatric brain tumors

Seattle Children’s Hospital, Washington Active, not
recruiting

NCT03638167 EGFR806 Recurrent and refractory
pediatric brain tumors

Seattle Children’s Hospital, Washington Active not
recruiting

NCT04185038 B7-H3 Recurrent and refractory
pediatric brain tumors

Seattle Children’s Hospital, Washington Recruiting

NCT02442297 HER-2 Recurrent and refractory
pediatric brain tumors

Baylor College of Medicine, Houston, Texas Active, not
recruiting

NCT04196413 GD2 DMG Stanford University, California Recruiting

NCT01109095 HER.CAR CMV-
specific CTLs

GBM Baylor College of Medicine, Houston, Texas Completed

NCT05768880 B7-H3, EGFR806,
HER2, And IL13-
Zetakine (Quad)

- DMG
- Recurrent and refractory
CNS Tumor

Seattle Children’s Hospital, Washington Recruiting

Chimeric antigen receptor adoptive immunotherapy Del Baldo et al.
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potential advantage in co-targeting MDSCs and
tumor cells for various malignancies.

Moreover, as largely demonstrated, human neu-
trophils possess effective capabilities to pass phys-
iological barriers and demonstrate effector
immunity against pathogens and tumor cells. How-
ever, their brief lifespan and resistance to genome
editing have constrained their extensive utilization
in immunotherapy. Chang et al. [39] generate CAR-
neutrophils with optimal antitumor efficacy,
1040-8746 Copyright © 2024 The Author(s). Published by Wolters Kluwe
designed to deliver and release tumormicroenviron-
ment-responsive nanodrugs to target GBM specifi-
cally and noninvasively, obviating the need for
inducing additional inflammation at the tumor
sites. They modified human pluripotent stem cells
through CRISPR/Cas9-mediated gene knock-in to
express diverse anti-GBM CAR constructs, incorpo-
rating either T-specific CD3z or neutrophil-specific
g-signaling domains. This combined chemo-immu-
notherapy demonstrated superior and targeted anti-
r Health, Inc. www.co-oncology.com 5
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Table 2. Clinical data published on adults and pediatrics patients affected by central nervous system tumors and treated with chimeric antigen receptor T cells

Study number NCT00730613 NCT01975701 NCT02209376 NCT01109095 NCT03423992. NCT05660369 NCT05168423 NCT02208362 NCT03500991 NCT04196413 NCT04185038

Author
Years

Brown et al. [20] Brown et al. [21] O’Rourke et al. [22] Ahmed et al. [23] Lin et al. [24] Choi et al. [25
&&

] Bagley et al. [26
&&

] Brown et al. [27
&&

] Vitanza et al. [28] Majzne et al. [19] Vitanza et al.
[29

&&
]

Number of patients 3 (adult) 1 (adult) 10 (adult) 17 (10 adults, 7
children)

3 (adult) 3 (adult) 6 (adult) 65 (adult) 3 (children, young
adults)

4 (children, young
adults)

3 (children, young
adults)

Brain tumor GBM GBM GBM GBM GBM GMB GBM GBM 1 anaplastic
astrocytoma

2 ependymoma

DMG DMG

Antigen target IL13Ra2 IL13Ra2 EGFRvIII HER2 EphA2 CARv3-TEAM-E EGFR- IL13Ra2 IL13Ra2 HER2 GD2 B7H3

construct First generation First generation Second generation Second generation Second generation Second generation Third generation Second generation Second generation Second generation Second generation

Mode of administration Locoregional Locoregional Intravenously Intravenously Intravenously Locoregional Locoregional Locoregional Locoregional Intravenously and
locoregional for
patients who
exhibited clinical
benefit

Locoregional

Response Transient antitumor
activity in 2 patients
on MRI (necrosis and
inflammation)

CR per RANO
criteria

SD at week 4 MRI in
90% of patients

PR 1 patient, SD in 7
patients at week 6
MRI

1 SD
2 PD

2 PR, 1 near CR per
RANO criteria

100% radiographic
regression, none
fulfilling objective
response for RANO
criteria

29/58 (50%) SD or
better, 2 PR, 2 CR
per modified RANO
criteria

1 SD and 2 PD at
first
examination
after CAR T
infusion

three of four patients
exhibited clinical
and radiographic
improvement

2 PD
1 PR through

12 months on
study

Toxicity Grade 3 headache in
one individual and
grade 3 neurologic
event in another one

Grade 1-2
headaches,
fatigue,
myalgia and
olfactory auras

Grade 3 toxicity in 2
patients and grade 4
in 1

No dose-limiting toxicity
was observed.
Grade 2 seizures
and/or headaches
in 2 patients

2 CRS. No dose-
limiting toxicity
was observed

Grade 3
encephalopathy in 1
case and grade 3 in
another one

ICANS
One patient in dose

level 2 experienced
a dose-limiting
toxicity (grade 3
anorexia,
generalized muscle
weakness and
fatigue)

Grade 3 toxicities in
35%, one grade 3
encephalopathy and
one grade 3 ataxia.
Transient grade 4
cerebral edema in 2
cases

No associated
dose-limiting
toxic effects.
Mild CRS and
transient
worsened
neurological
symptoms

CRS and TIAN
(reversible in all
cases)

No associated
dose-limiting
toxic effects.
Mild CRS and
transient
worsened
neurological
symptoms

CR, complete remission; CRS, cytokine release syndrome; DMG, diffuse midline glioma; GBM, glioblastoma; ICANS, immune effector cell-associated neurotoxicity syndrome; MRI, magnetic resonance images; PD,
progressive disease; PR, partial response; RANO, Response Assessment in Neuro-Oncology; SD, stable disease; TIAN, tumor inflammation-associated neurotoxicity.
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GBM effects, diminishes off-target drug delivery,
and extends lifespan in female tumor-bearing mice.
Collectively, this biomimetic CAR-neutrophil drug
delivery system emerges as a secure, potent, and
adaptable platform for treatment of GBM and other
debilitating conditions [39].

Furthermore,Wang et al. [40]described their expe-
rience in combining an oncolytic adenovirus with a
chemokineCXCL11 to increase the infiltrationofCAR
T-cells and reprogramming the immunosuppressive
TME, thus improving its therapeutic efficacy.
Chimeric antigen receptor T-cell exhaustion

The mechanisms underlying CAR T-cell exhaustion
are incredibly intricate andwarrant thorough explo-
ration. Inadequate CAR T-cell structure may trigger
ligand-independent tonic signaling, consequently
predisposing CAR T-cells to exhaustion. Addition-
ally, both the cytokine milieu and the duration of
in-vitro expansion play roles in influencing CAR T-
cell exhaustion. Finally, the TME harbors immuno-
suppressive factors, which further contribute to
this phenomenon.

Prolonged persistence of CAR T-cells is a feature
of new-generation CAR T constructs. Numerous
studies have delved into CAR T engineering strat-
egies, highlighting that prioritizing a central mem-
ory phenotype could be pivotal in inhibiting
exhaustion and bolstering CAR T-cells proliferation
and persistence [41,42]. In addition to modifying
the CAR costimulatory signals themselves, engi-
neering approaches aimed at producing suitable
cytokines are also essential for the full activation
of CAR T-cells [43].

Moreover, the hypoxic tumor microenviron-
ment can enhance tumor progression through var-
ious mechanisms, such as increasing adenosine
receptor expression in immunosuppressive cells
[44,45]. Inhibiting the adenosine signaling of CAR
T-cells using the CRISPR/Cas9 system, shRNA, or
overexpressing adenosine deaminase 1 has been
shown to enhance the antitumor function and pre-
vent CAR T-cell exhaustion in vitro [46–49].

A combined therapeutic approachcouldmitigate
this issue. Zhang et al. [50] recently described an
orthotopic NOD/SCID GBM animal model to assess
the safety and efficacy of a combined treatment
approach across various doses of GD2 CAR T and
Nivolumab. In-vitro studies demonstrated that the
addition of Nivolumab to GD2 CAR T enhanced the
persistence of GD2 CAR T-cells cytotoxicity. Animal
models confirmed that GD2 CAR T-cells effectively
infiltrated tumor tissue. The longest survival was
achieved combining moderate doses of CAR T with
Nivolumab. Further examination of toxicity revealed
1040-8746 Copyright © 2024 The Author(s). Published by Wolters Kluwe
that high doses of GD2 CAR T-cells induced tumor
apoptosis via thep53/caspase-3/PARP signalingpath-
way [50].
Trafficking and route of administration

Activated T-cells are known to cross the BBB [51] and
three pathways are described: via postcapillary ven-
ules into the perivascular space; by extravasation
through the choroid plexus into the cerebrospinal
fluid (CSF); and through superficial leptomeningeal
vessels into the subarachnoid space [52]. These find-
ings suggest that T-cells delivered through systemic
infusion may reach tumors, challenging the notion
that the brain is an immune sanctuary. Moreover,
studies employing intravenously administered
CD19-targeted CAR T-cells have demonstrated that
they are capable of breaching the BBB, having
detected them in the CSF through flow cytometry
and immunofluorescence after treatment [53,54].
Local delivery of T-cells within the CNS presents
an appealing strategy to mitigate systemic toxicity
while enhancing CAR T-cell migration and accumu-
lation in the tumor site. Research comparing deliv-
ery methods in preclinical models of GBM has
demonstrated that local administration surpasses
systemic delivery. Direct intratumoral injection of
IL-13Ra2-CAR T-cells led to prolonged survival in
orthotopic GBM models, while IV delivery did not
yield significant benefits over control groups [55].

The clinical evidence available are summarized
in Table 2. Intrathecal and intraventricular delivery
of CAR-T-cells were evaluated in a patient with
multifocal GBM, proving to be well tolerated, with-
out CRS or severe neurotoxicity. Notably, intraven-
tricular administration resulted in superior disease
control [21]. Similarly, results on safety were
reported by Majzner et al.’s [19]. The safety of the
loco-regional administration of HER-2 CAR T-cells
has been demonstrated also in the BrainChild-01
trial [28]. The optimal administration route could
also vary depending on the molecular target; anti-
gens with broad expression in normal tissues (e.g.,
HER2 and B7H3) may exhibit considerably lower
toxicity following local administration [56].

The existing evidence from limited clinical expe-
riences leans towards locoregional administration.
Neurotoxicity

In addition to the well known CRS and immune
effector cell-associated neurotoxicity syndrome
(ICANS), neurotoxicity can be a more challenging in
patientswithCNS tumors. Tumor inflammation-asso-
ciatedneurotoxicity (TIAN) is abrain tumorassociated
toxicity recently described by Madhi et al. [57

&&

].
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A pseudo-progression can result in the increase of
local mass effect, hydrocephalus, and intracranial
hypertension (ICP). A ventricular access device might
be inserted before the infusionofCART-cells andused
both to directly assess intracranial pressure waves and
to remove determined CSF volumes, if appropriate to
improve intracranial pressure management. More-
over, implantable telemetric ICP monitoring devices
are commercially available. documenting a decrease
in the number of invasive procedures [58]. Other
strategies canbe considered to reduce the riskof severe
TIAN namely multiple administration of low doses of
CART-cells thatcanresult ina lower tumor infiltration
with CAR T-cells and a relatively slow and progressive
tumor disruption. The use of different cell platforms
like NK, with a lower persistence over time and a
reduced inflammatory profile upon activation, could
reduce the risk associated with these treatments.
Lastly, the introduction of a suicide gene capable of
rapidly inducing the apoptosis of CAR T-cells and,
thus, mitigating the inflammation and the pseudo-
progression, represents an attractive option for
increasing the safety profile of the approach [59

&&

].
Regarding safety from the studies published so

far in Table 2, only one case of dose-limiting-toxicity
were described. In the other cases, CRS and neuro-
toxicity were easily managed with steroids and anti-
inflammatory therapy. Neurosurgical measures for
ICP were necessary in only a very few cases.

Regarding efficacy, most patients showed a
response at the first reevaluation imaging,with stable
disease as the most frequent occurrence. Three cases
of complete response were reported according to
Response Assessment in Neuro-Oncology criteria.
CONCLUSION

The advancement of CART-cell therapy holds prom-
ise for treating solid tumors, including CNS tumors,
but challenges remain in achieving similar success
as seen in blood cancers. Complexities like the TME,
antigen diversity and instability/versatility, and
CAR T-cell exhaustion hinder efficacy. Innovative
strategies likemultiantigen targeting, exploring new
targets, combining therapy with drugs, and modu-
lating the TME show potential in preclinical and
early clinical studies. Preventing CAR T-cell exhaus-
tion through engineering approaches and combin-
ing therapy with immune checkpoint inhibitors can
enhance outcomes. However, neurotoxicity in CNS
tumors requires specialized management, including
grading systems, monitoring devices, alternative
cell platforms, and suicide gene incorporation. Con-
tinued research and clinical advancements are cru-
cial to overcome challenges and improve patient
outcomes in this complex disease landscape.
8 www.co-oncology.com
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