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Recent advances in immunotherapy represent a breakthrough in solid tumor

treatment but the existing data indicate that immunotherapy is not effective in

improving the survival time of patients with glioblastoma. The tumor

microenvironment (TME) exerts a series of inhibitory effects on immune

effector cells, which limits the clinical application of immunotherapy. Growing

evidence shows that phosphate and tension homology deleted on chromosome

ten (PTEN) plays an essential role in TME immunosuppression of glioblastoma.

Emerging evidence also indicates that targeting PTEN can improve the anti-

tumor immunity in TME and enhance the immunotherapy effect, highlighting the

potential of PTEN as a promising therapeutic target. This review summarizes the

function and specific upstream and downstream targets of PTEN-associated

immune cells in glioblastoma TME, providing potential drug targets and

therapeutic options for glioblastoma.
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1 Introduction

Glioma is the most common primary malignant tumor of the central nervous system

(1). Its pathological types and molecular characteristics are varied, and about 80% of cases

manifest as glioblastoma (GBM). Primary glioblastoma is the brain tumor with the highest

degree of intracranial malignancy, characterized by strong invasion and poor prognosis; the

average survival time of GBM patients is only 15 months (2, 3). Currently, postoperative

adjuvant chemoradiotherapy is the standard treatment for glioblastoma (GBM) but only

provides limited survival benefit. Immunotherapy, represented by immune checkpoint

inhibitors, has revolutionized the treatment paradigm for many solid tumors, but only a
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small percentage of GBM patients have shown objective efficacy (4).

Compared with other tumors, GBM demonstrates stronger

heterogeneity, lower tumor mutation load, and a highly

immunosuppressive microenvironment. Due to the strong

immunosuppressive tumor microenvironment (TME) of GBM,

the application of immunotherapy in GBM remains suboptimal

and requires further research (5). The most significant feature of the

GBM tumor immune microenvironment is the absence of tumor-

infiltrating lymphocytes (TILs) and natural killer cells (NK cells), as

well as the elevated levels of tumor-associated macrophages

(TAMs), myelogenic suppressor cells (MDSCs) and regulatory T

cells (Tregs) (6). Enhancing the immune system’s targeting effect on

GBM has emerged as a promising approach to treating tumors.

Phosphate and tension homology deleted on chromosome ten

(PTEN) is the first tumor suppressor gene with protein phosphatase

activity and lipid phosphatase activity discovered so far. It is located

on human chromosome 10q23.3 and regulates a variety of signaling

pathways through its bispecific phosphatase activity, thereby

regulating the life process of various cells (7). PTEN can be

involved in cell cycle regulation, inhibition of tumor cell

proliferation, adhesion, metastasis, angiogenesis, and promotion

of cell apoptosis, differentiation, senescence, and other physiological

and pathological activities. PTEN plays a crucial role in the

occurrence and development of a variety of tumors (breast,

melanoma, glioblastoma, prostate, liver, lung), and even a slight

decrease in PTEN enzyme activity can affect cancer susceptibility

(8). Mutations in IDH, PTEN, 1p/19g, TERT, ATRX, BRAF, and

H3F3A in gliomas are of great significance for patient prediction

and prognosis (Table 1) (9, 10). Overall, 40% of GBM cases exhibit

PTEN mutation or deficiency, which is associated with a poorer

prognosis than PTEN non-deletion GBM (11). Many recent studies

have shown that PTEN mediates multiple mechanisms of

immunosuppression in GBM immune regulation, and targeting

PTEN can enhance the immune response of GBM (12, 13). This

study summarizes the direct and indirect effects of PTEN on the

various pathways of immune response in GBM, the mechanisms of

mutual regulation between PTEN and immune cells in the
Frontiers in Oncology 02
immunosuppressive microenvironment, and the latest

immunotherapy strategies for glioblastoma.
2 PTEN is involved in the GBM
immunosuppressive pathway

In glioblastoma, PTEN deletion or mutation may affect the

genomic stability, autophagy, and other aspects of the immune

response, leading to immunotherapy failure (Figure 1). The P13K/

Akt/mTOR signaling pathway mediates important physiological

functions by regulating the cell cycle, protein synthesis, cell energy

metabolism, and other pathways, and plays a central regulatory role

in the process of cell proliferation, growth, and differentiation.

Moreover, activation of this signal transduction pathway

promotes cell survival and proliferation and participates in

angiogenesis, thereby promoting tumor formation, tumor

invasion, and metastasis (14). Studies (15) suggest that the P13K/

Akt/mTOR signaling pathway also plays a key role in the

occurrence and development of cerebral glioblastoma. The

regulation of PTEN and mTOR plays an essential role in this

transduction pathway. The protein encoded by the PTEN gene

has phosphatase activity and can negatively regulate the P13K/Akt/

mTOR signal transduction pathway by catalyzing the

dephosphorylation of 3,4,5 phosphatidylinositol to 4,5

monophosphatidylinositol, thereby inducing cell apoptosis (16).

As the upstream site of the P13K/Akt/mTOR signaling pathway,

the PTEN gene inhibits tumor formation through negative

regulation of this signaling pathway, whereas inactivating the

PTEN gene reduces the negative regulation of this pathway and

causes malignant changes in cells. Research (17) has shown that

PTEN is involved in the tumor immune response, and PTEN

deficiency activates the phosphatidylinositol 3-kinase (PI3K-AKT)

pathway to form an immunosuppressive microenvironment. The

combination of PI3K inhibitor and PD-1 blocker was found to have

a synergistic effect in PTEN-deficient tumors and can improve

patient prognosis. Furthermore, the PI3K-AKT-mTOR pathway
TABLE 1 The mutations genes in GBM patients.

Mutation
genes

Location Function Clinical
trial
drugs

IDH 2q33;15q26
Mutated IDH has a gain of function to produce 2-hydroxyglutarate by NADPH-dependent reduction of

alpha-ketoglutarate
Ivosidenib

PTEN 10q23.3
PTEN can be involved in cell cycle regulation, inhibition of tumor cell proliferation, adhesion, metastasis, angiogenesis,

and promotion of cell apoptosis, differentiation, senescence, and other physiological and pathological activities

1p/19q 1p/19q Heterozygous deletions are important in determining the prognosis of glioma patients

TERT 5p15.33
The TERT is an important component and functional unit of telomerase, which plays a key regulatory role in

tumorigenesis and malignant proliferation, among others

ATRX Xq21.1
ATRX forms the ATRX-DAXX complex by binding to death structural domain-associated protein (DAXX), which

accelerates the process of histone deposition and is involved in the regulation of remodeling chromatin, all of which are
of considerable value for the maintenance of the stability of the human genome

BRAF 7q34
BRAF is a serine/threonine kinase that functions in the MAPKs signaling pathway and is involved as a proto-oncogene

in the development of many cancers, including gliomas
Vemurafenib;
Dabrafenib
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can directly affect the immune response in PTEN-deficient

glioblastoma TME (18). Increased PD-L1 cell surface expression

induced by PTEN loss led to decreased T-cell proliferation and

increased apoptosis. Because PTEN loss is one mechanism

regulating PD-L1 expression, agents targeting the PI3K pathway

may increase the antitumor adaptive immune responses (19).

PIK3CA-mutated PTEN-lost tumors showed a higher prevalence

of CD274-positivity than PIK3CA-wild-type PTEN-lost tumors and

PTEN-expressed tumors. These findings support the role of PI3K

signaling in the CD274/PDCD1 pathway (20). AKT-mediated b-
catenin S552 phosphorylation and nuclear b-catenin are positively

correlated with PD-L1 expression and inversely correlated with the

tumor infiltration of CD8+ T cells in human glioblastoma

specimens, highlighting the clinical significance of b-catenin
activation in tumor immune evasion (21).

In addition to cytoplasmic functions that regulate cell growth

and proliferation, PTEN also regulates genomic integrity and the

stability of DNA repair in the nucleus. Studies (22) have shown that

mice with PTEN deletion tumors exhibit increased genomic and

chromosomal instability, resulting in centromeric breaks,

chromosomal translocations, and spontaneous DNA double-

strand breaks that occur independently of the PI3K-AKT-mTOR

pathway. About 40% of GBM cases show a deficiency or mutation

of the PTEN gene, which influences neurogenesis and gliogenesis,

resulting in increased DNA damage repair and malignant
Frontiers in Oncology 03
progression of brain tumors (23). In glioblastoma (24), after cell

exposure to ionizing radiation, DNA repair is weakened when

nuclear PTEN is phosphorylated at position 240. Phosphorylated

PTEN binds to chromatin and recruits RAD51 to facilitate DNA

repair (25). Due to PTEN inactivation promoting higher genomic

instability (26, 27), PTEN-deficient tumors are generally considered

pro-inflammatory, exhibiting a greater mutation burden and higher

immunogenicity in the TME. To counteract the effects of

neoantigens, tumors with highly unstable genomes are likely to be

able to suppress the host immune response against pro-

inflammatory activity (28).

The expression of PTEN can induce autophagy, while the loss of

PTEN function down-regulates autophagy, effectively supporting

the development of tumors (29, 30). The etiology and pathogenesis

of GBM remain incompletely understood, but growing evidence

indicates the involvement of the ubiquitin-proteasome system

(UPS) and autophagy-lysosome pathway (ALP) in the occurrence,

development, and drug resistance of GBM. These effects are carried

out by regulating the degradation of cancer-promoting/cancer-

suppressing factors and mediating endoplasmic reticulum stress

tolerance and misfolded protein reaction (31, 32). PTEN is

frequently mutated in glioblastoma, and ectopic expression of

functional PTEN in glioma cells induces autophagy flux and

lysosomal mass. Furthermore, proteasome activity and protein

ubiquitination are inhibited, restricting tumor development.
FIGURE 1

PTEN-mediated signaling pathway and molecular mechanism in GBM.
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Interestingly, these effects were independent of PTEN lipid

phosphatase activity and the PI3K/AKT/mTOR signaling pathway

(33). These findings suggest a novel mTOR-independent signaling

pathway through which PTEN can act on intracellular protein

degradation, regulating autophagy. In addition, studies reported

that the activation of the PI3K/Akt/mTOR-mediated signaling

pathway can also inhibit autophagy (34–36). Therefore, the

molecular components of the proteolytic system regulated by

PTEN could represent an innovative therapeutic target for cancer

treatment. Moreover, proteasome inhibitors were found to induce

cell death in PTEN-deficient GBM organoids and inhibit tumor

growth in mice (37). Proteasome inhibitors could be used as

targeted therapies for GBM. Mechanistically, PTEN-deficient

GBM cells secrete high levels of galectin-9 (Gal-9) via the AKT-

GSK3b-IRF1 pathway. The secreted Gal-9 drives macrophage M2

polarization by activating its receptor Tim-3 and downstream

pathways in macrophages. These macrophages, in turn, secrete

VEGFA to stimulate angiogenesis and support glioma growth

(38). Therefore, this study suggests that blockade of Gal-9/Tim-3

signaling is effective to impair glioma progression by inhibiting

macrophage M2 polarization, specifically for PTEN-null GBM.

PI3Kb inactivation in the PTEN- null setting led to reduced

STAT3 signaling and increased the expression of immune

stimulatory molecules, thereby promoting anti-tumor immune

responses (39). These findings demonstrate a molecular

mechanism linking PTEN loss and STAT3 activation in cancer

and suggest that PI3Kb controls immune escape in PTEN-mutation

tumors, providing a rationale for combining PI3Kb inhibitors with

immunotherapy. NF-kB activation was necessary and sufficient for

inhibition of PTEN expression. The promoter, RNA, and protein

levels of PTEN are down-regulated by NF-kB. The mechanism

underlying suppression of PTEN expression by NF-kB was

independent of p65 DNA binding or transcription function and

involved sequestration of limiting pools of transcriptional

coactivators CBP/p300 by p65. Restoration of PTEN expression

inhibited NF-kB transcriptional activity and augmented TNF-

induced apoptosis, indicating a negative regulatory loop involving

PTEN and NF-kB. PTEN is, thus, a novel target whose suppression

is critical for antiapoptosis by NF-kB (40).

In the context of tumor cell death, autophagy may lead to the

secretion of damage-related molecular chaperones (41, 42). In

addition, dead cancer cells may also release autophagosomes

containing multiple tumor antigens, which subsequently induce

the maturation of dendritic cells (DCS) and cross-present to T cells,

promoting tumor immunity (43, 44). PTEN inhibits autophagy,

which hinders an effective anti-tumor immune response. Research

(45, 46) has revealed that the biology of the immune system

determines the occurrence and progression of tumors through a

balance between the effects of autophagy regulation and the

tolerance response. Autophagy affects the biological functions of

various cell types of the immune system, including natural killer

cells, dendritic cells, macrophages, and T and B lymphocytes.

Autophagy also regulates the secretion of cytokines and

antibodies, which in turn impact the autophagy process itself.

Transforming growth factor-b, interferon-gamma-g, and several

interleukins (IL) promote autophagy, whereas IL-4, IL-10, and IL-
Frontiers in Oncology 04
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immune receptors such as toll-like receptors (48); in adaptive

immunity, it is a determinant of antigen presentation, lymphocyte

differentiation, and cytokine secretion with tumor suppressor

activity (49). Therefore, the ideal treatment combination could

involve the combination of existing treatment strategies and

autophagy-based inducers (PTEN inducers) to trigger cancer cell

death and patient response.
3 PTEN affects the GBM
immune microenvironment

The glioblastoma microenvironment (TME) is composed of

tumor cells, extracellular matrix (ECM), blood vessels, innate

immune cells (monocytes, macrophages, mast cells, microglia,

and neutrophils), T cells and neurons, astrocytes, and

oligodendrocytes (Figure 2). Infiltrating immune cells in GBM are

mainly composed of tumor-associated macrophages (TAMs),

myelo-derived suppressor cells (MDSC), and T lymphocytes

(Table 2) (59). A growing number of studies have shown that the

tumor immune microenvironment (TIME) plays a crucial role in

regulating the growth and metastasis of GBM. Moreover, PTEN

participates in the regulation of immune cell signaling; in contrast,

PTEN deficiency can lead to an immunosuppressive tumor

microenvironment (60) and hinder the anti-tumor immune

response. For example, previous studies revealed that the loss of

PTEN is significantly associated with reduced T-cell infiltration at

the tumor site and resistance to PD-1 blocking therapy (61–64). The

loss of PTEN also promotes the accumulation of inhibitory immune

cells, such as MDSCs and Tregs, as well as the formation of an

immunosuppressive microenvironment during tumorigenation and

development (65–67).
3.1 Tumor-associated macrophages

In the glioblastoma microenvironment, tumor-associated

macrophages are the most common infiltrating immune cells,

accounting for 40% of the total tumor cells (68). Macrophages

constitute the most prevalent non-tumor cells in GBM (23).

GiomettoB also found that TAMs can be detected in 100% of

GBM cases (69). Two different sources of tumor-associated

macrophages have been reported in human glioma, namely from

embryonic yolk sac monocytes (70) and from peripheral bone

marrow-derived monocytes (50). The immunosuppressive

anticancer microenvironment is maintained through the

recruitment of monocytes, which are converted into macrophages

in the glioma environment. TAMs can be divided into two types,

M1 type and M2 type. M1-type TAMs typically express high levels

of pro-inflammatory factors, promoting Th1 response and strong

tumor-killing ability. In contrast, M2 TAMs promote tissue

remodeling and tumor progression and secrete inhibitory

inflammatory factors (51). Moreover, glioblastoma-associated

macrophages have been reported to exert immunosuppressive

effects (52). Previous studies have demonstrated that TAMs in the
frontiersin.org

https://doi.org/10.3389/fonc.2024.1409519
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Du et al. 10.3389/fonc.2024.1409519
GBM microenvironment primarily adopt the M2-type polarization

(53, 68), which fills the glioma microenvironment and controls

tumor progression and immune escape mechanism. The M2

phenotype induces differential expression of receptors, cytokines,

and chemokines, which produce IL-10, IL-1, and IL-6, thereby

stimulating tumorigenesis and negatively affecting prognosis (54).

M2 macrophages stimulate the proliferation and invasion of glioma

cells and support the immune escape mechanism (71–73). Giotta’s

study confirmed (74) the prevalence of PTEN gene mutation in

GBM, which is closely associated with poor prognosis and ultra-low

survival rate. A recently published report on GBM showed (75, 76)

that PTEN deficiency is associated with high macrophage density.

Additionally, PTEN-deficient gliomas can recruit a large number of

macrophages in the glioma microenvironment. Another study by

Ni et al. (38) revealed that the ability of PTEN-deficient gliomas to

induce M2 polarization in macrophages was significantly stronger

than that of PTEN wild-type gliomas. In PTEN-deficient glioma

cells, the activated AKT pathway inactivates GSK-3b by promoting

Ser9 phosphorylation, thereby reducing GSK-3b-mediated

degradation of IRF1, leading to the up-regulation of the

transcription factor IRF1, which enters the nucleus to promote

LGALS-9 gene transcription and Gal-9 expression. The activation

of the Tim-3 receptor on macrophages by the Gal-9 ligand, in turn,

activates transcription factors associated with M2-type polarization

and induces macrophage migration, activation, and enrichment of

macrophage-associated angiogenesis pathways in PTEN-null

gliomas. Gal-9/Tim-3 is a promising target for the treatment of

PTEN-deficient gliomas. Blocking Gal-9/Tim-3 can inhibit the

malignant progression of gliomas by inhibiting the M2
Frontiers in Oncology 05
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deletion on glioblastoma demonstrated (71) increased infiltration of

macrophages via the YES-associated protein 1-Lysyl oxidase b1

(LOX-b1) -integrin-PYK2 axis. Furthermore, LOX expression was

found to activate specific pathways in macrophages, facilitating the

recruitment of macrophages to the TME. In the GBM model of

PTEN deficiency (77), the loss of PTEN leads to the up-regulation

of the macrophage chemotactic LOX in a YAP-1-dependent

manner. In circulating monocytes, LOX-dependent up-regulation

of b1 integrin receptor signaling drives its penetration into GBM

tissues to obtain tumor-associated macrophage phenotype and

promotes GBM survival and angiogenesis by secreting SPP1.

Interfering with these interactions by inhibiting LOX signals can

reduce TAM invasion and inhibit tumor growth. Other studies have

found that PTEN regulates the activation of macrophages by

activating the PI3K signaling pathway to increase the release of

arginase I (78), resulting in a low-inflammation environment.

Therefore, arginase I is also a potential therapeutic target.
3.2 T lymphocytes

GBM with PTEN mutation shows a reduced number of T cells

(17). PTEN mutation can induce an immunosuppressive tumor

microenvironment, which is not derived from traditional Treg cells

but from tumor cells overexpressing CD44. Other studies have

discovered (79) that PTEN regulates the type I interferon pathway

in a PI3K-independent manner, inhibits the release of inflammatory

factors, and reduces the number of CD8+T cells in GBM. Studies
FIGURE 2

PTEN deficiency immunosuppressive mechanisms in GBM.
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have shown (80) that PTEN lacks the upregulation of mTORC2-

Akt activity, and loss of this activity can restore the function of Treg

lacking in PTEN. From a mechanism perspective, PTEN can

maintain the stability of Treg. Meanwhile, the phosphatase PTEN

links Treg stability with inhibition of TH1 and follicular T-helper

cell (TFH) responses. Further studies on glioblastoma (18) have

revealed that anti-inflammatory cytokine release and T cell activity

are significantly reduced in the absence of PTEN and dysregulation

of PI3K signaling. Moreover, PTEN inducers or PI3K inhibitors

may improve T cell function. Giotta’s study (74) suggested that

PTEN mutations were prevalent in GBM, regulating Foxp3

expression and promoting the production of Tregs. Tregs down-

regulate T cell activity and regulate innate and adaptive responses to

autoantigens, allergens, and infectious agents (81–84). PTEN-

deficient tumors usually exhibit a high density of Treg cells in the

TME, and Tregs inhibit the function of CD4+, CD8+, and NK cells,

and exert immunosuppressive effects in the TME (55, 85, 86).

In addition, T lymphocytes are down-regulated and also exhibit

impaired killing function, which is related to TAMs (56).
Frontiers in Oncology 06
Prostaglandin E2 was found to be produced in the GBM

microenvironment, further inhibiting T-cell activity by TAMs and

inducing apoptosis. In addition, glioma cells can down-regulate the

expression of MHC Class II molecules in microglia and induce

ineffective cloning of T cells (87). However, YangI et al. reported

that GBM had higher CD8+T cell infiltration compared with

pilocytic astrocytoma (57). This differential expression suggests

that glioblastoma has a more obvious effect on the local immune

microenvironment, but the number does not necessarily represent

the potency of the killer cell function. Previous studies have shown

that in addition to functional downregulation, CD8+T cells in the

GBM microenvironment are involved in the immune

escape mechanism.
3.3 Medullary inhibitory cells MDSC

Vidotto’s study (81) reported that PTEN deficiency induces an

increase in the density of tumor-infiltrating MDSC in TME. MDSCs
TABLE 2 The role of PTEN in regulating signaling proteins in immune cells.

Immune
cells

Proteins Relationship with PTEN References Clinical trials

TAMs IRF1 PTEN deficiency can activate the PI3K-AKT pathway, and IRF1 is
up-regulated to promote the secretion of Gal-9, which in turn
activates Tim-3 receptor on macrophages, resulting in
macrophage enrichment.

(50) Peng, Guang et al. Oncoimmunology vol. 12,1
2173422. 6 Feb. 2023

LOX The loss of PTEN causes the macrophage chemoattractant LOX to
be upregulated in a YAP-1 dependent manner.

(51) Gondek, Tomasz et al. BioMed research
international vol. 2014 (2014): 102478.

Arginase I PTEN deficiency regulates macrophage activation by activating the
PI3K signaling pathway to increase the release of arginase I

(52) Lorentzen, Cathrine Lund et al. Frontiers in
immunology vol. 13 1023023. 17 Oct. 2022,

T
lymphocyte

CD44 PTEN mutation induces CD44 overexpression and decreases the
number of T cells

(12) Pazhohan, Azar et al. The Journal of steroid
biochemistry and molecular biology vol. 178
(2018): 150-158.

CD8+T IFN PTEN regulated the type I interferon pathway via PI3K-
independent way

(13, 53) Boucher, Yves et al. Clinical cancer research:
an official journal of the American Association
for Cancer Research vol. 29,8 (2023):
1605-1619.

Tregs Foxp3 PTEN directly regulated the expression of Foxp3, and promoted the
Tregs generation and immunosuppressive abilities

(23) Revenko, Alexey et al. Journal for
immunotherapy of cancer vol. 10,4
(2022): e003892.

mTORC2 PTEN deficiency modulates mTORC2-Akt activity and maintains
Treg stability

(54) Banerjee, Susana et al. JAMA oncology vol. 9,5
(2023): 675-682.

MDSCs arginase PTEN deficiency up-regulates arginase activity by activating PI3K
signaling pathway, promotes the release of MDSCs, and inhibits T
cell function.

(55) Okła, Karolina et al. Frontiers in immunology
vol. 10 691. 3 Apr. 2019

GM-CSF PTEN activates the STAT3 signaling pathway, which promotes GM-
CSF to up-regulate IL-4Ra on MDSCs, and then mediates IL-13-
induced arginase production, thereby inhibiting T cell function.

(56, 57) Mody, Rajen et al. Journal of clinical oncology:
vol. 38,19 (2020): 2160-2169.

TGF-b1 PTEN activates the Akt pathway to regulate the expression of miR-
494 in MDSCs induced by TGF-b1, which promotes the formation
of bone marrow mesenchymal stem cells

(58) Chen, Gang et al. Journal of experimental &
clinical cancer research: CR vol. 40,1 218. 30
Jun. 2021,

IL-6,
VEGF,
PGE-2

PTEN activates PI3K/AKT/mTOR or STAT3 signaling pathway, and
increases the release of factors related to MDSCs proliferation (IL-6,
VEGF, PGE-2)

(56, 57) Bennouna, Jaafar et al. The Lancet. Oncology
vol. 14,1 (2013): 29-37.
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are a heterogeneous population composed of a large number of

immature bone marrow precursor cells, which are activated under

pathological conditions and show strong immunosuppressive

activity (88). MDSCs protect tumor cells from host immune

attack by negatively regulating immune response, including the

depletion of amino acids required by T cells such as arginine and

cysteine, the generation of reactive oxygen species nitric oxide and

peroxynitrite, direct inhibition of macrophages and natural killer

cells, and promotion of tumor angiogenesis (58).

In GBM, MDSCs account for a large proportion of tumor

immune cells and play an essential role in promoting tumor

growth, tumor cell survival, migration, and immune suppression

(89). The glioma microenvironment contributes to the

immunosuppressive function of MDSCs (90, 91). MDSCs

promote glioma growth, invasion, and angiogenesis as well as the

proliferation of Tregs cells (92). GIELEN et al. (93) confirmed that

the increase of MDSCs in GBM is related to the increase of arginase

activity and that the immunosuppressive function was mediated by

inhibiting T cells. Studies have found that glioma cells express many

factors related to the proliferation of MDSCs (IL-6, IL-10, VEGF,

PGE-2, GM-CSF, and TGF-b2); however, blocking the chemokine

CCL2 signaling pathway in glioma cells effectively reduces the

recruitment of MDSCs (94). Relevant research data revealed a

high proportion of microglial cells/macrophages (GAMs) and

MDSCs in malignant GBM, with both GAMs and MDSCs having

the ability to recruit Tregs to the tumor, further inhibiting the

tumor immune response (59, 95). Studies have found that multiple

miRNAs in the tumor microenvironment promote the expansion

and immunosuppression of MDSCs by targeting inhibiting PTEN

and activating the PI3K/AKT/mTOR or STAT3 signaling pathways

(96, 97). In addition, GM-CSF up-regulates IL-4Ra on MDSCs via

signal transduction and the transcriptional activator STAT3,

thereby mediating IL-13-induced arginase production and

inhibiting T cell function.
4 Glioma immunotherapy
targeting PTEN

(1) Evidence suggests that PTEN deficiency plays a crucial role

in the development of immunosuppressive cancer phenotypes in

glioblastoma and is involved in tumor immune responses.

Furthermore, PTEN deficiency activates the phosphatidylinositol

3-kinase (PI3K-Akt) pathway to form an immunosuppressive

microenvironment. Since restoring PTEN’s function is currently

not feasible, suppressing PI3K signaling represents a potential

approach to mitigate PTEN loss (98). Another study showed (17)

that the combination of PI3K inhibitor and PD-1 blocker exerts a

synergistic effect in PTEN-deficient tumors and can improve the

prognosis of patients. In primary cultures of PTEN-deficient

gliomas, inhibition of components of the PI3K-AKT-mTOR

network resulted in reduced T cell death (99) and enhanced

immune response.

(2) PTEN can regulate autophagy and affect GBM immune

response through the PI3K/Akt/mTOR mediated signaling pathway
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and new mTOR independent signaling pathway. Therefore, the

inducers of autophagy (PTEN inducers) and the molecular

components of the proteolytic system associated with autophagy

could be new therapeutic directions for GBM. In addition, some

studies have found (37) that proteasome inhibitors specifically

induce cell death in GBM organoids with PTEN defects and

inhibit tumor growth in mice. Proteasome inhibitors can be used

as targeted therapies for GBM.

(3) PTEN mediates immune responses independently of PI3K,

so future therapies could also target other downstream pathways

and signaling molecules that directly control the immune response

in the microenvironment of glioblastoma. For example, PTEN-

deficient glioblastomas overexpress CD44 cell-surface adhesion

receptors and have a tighter tumor cell phenotype than wild-type

glioblastomas (100), which can exclude angioforming and immune

cells in TME, making them less responsive to immune checkpoint

inhibitors (ICI) (17).

(4) From the above presentation of tumor-associated

macrophages in glioblastoma with PTEN deletion or mutation,

PTEN deletion or mutation was shown to lead to enhanced

aggregation of macrophages into the tumor microenvironment

(TME). These findings suggest that targeting M2-type TAMs may

be particularly effective against gliomas with PTEN deletion.

Inhibition of macrophage M2 polarization by targeting Gal-9/

Tim-3 represents a potential target for precise immunotherapy

for PTEN-deficient gliomas (38).

Immunotherapy is a therapeutic approach to achieve anti-

tumor effects through the action of antibodies on the

corresponding receptors. Currently, immunotherapy for gliomas

includes vaccine therapy, immune checkpoint therapy, chimeric

antigen receptor T-cell immunotherapy (CAR-T), natural killer

(NK) cell therapy, and lysosomal viral therapy. However, some

problems need to be solved. The main problem with

immunotherapy is that normal tissues often have antigenic

epitopes identical to those of tumor cells, and activation of the

immune response can lead to cross-reactivity between the tumor

and the body, resulting in toxicity and autoimmune disease (101).

another key challenge is whether immunotherapeutic strategies can

overcome the multiple mechanisms of immune evasion in gliomas

and generate tumor-specific immune responses (102).In addition,

the production of immunotherapeutic vaccines is often complex,

with multiple methods of constructing the same vaccine, but the

effects of the vaccine will vary (103), and the future of

immunotherapy will not be limited to single-pharmacological

treatments, but will require a combination of therapies to achieve

a broad and long-lasting clinical benefit (101).
5 Conclusions and future prospects

A large number of studies have supported the role of PTEN in

immune cells and illustrated the immunomodulatory effects of

PTEN on glioblastoma TME. PTEN inhibits CD4+/CD8+T cells

and dendritic cells while favoring M2 macrophages, Tregs, and

MDSCs, participating in glioblastoma progression, metastasis, and
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immunity. This study outlines the function of PTEN in

glioblastoma TME immune cells, as well as their cascade gene

activation and clinical outcomes. Increasing evidence demonstrates

that targeting PTEN can not only improve the anti-tumor immune

function of TME but also enhance the immunotherapy effect,

highlighting PTEN as a promising therapeutic target.

Nevertheless, whether the recovery of functional PTEN can

regulate TME in tumors and improve the sensitivity of tumors to

ICB therapy requires further research. Investigating the

effectiveness of recovering functional PTEN as a means of cancer

treatment holds important clinical significance.
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