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Abstract 
The field of immunology has traditionally focused on immune checkpoint modulation of adaptive immune cells. 
However, many malignancies such as glioblastoma are mostly devoid of T cells and rather are enriched with im-
munosuppressive myeloid cells of the innate immune system. While some immune checkpoint targets are shared 
between adaptive and innate immunity, myeloid-specific checkpoints could also serve as potential therapeutics. 
To better understand the impact of immune checkpoint blockade on myeloid cells, we systematically summarize 
the current literature focusing on the direct immunological effects of PD-L1/PD-1, CD24/Siglec-10, collagen/LAIR-1, 
CX3CL1/CX3CR1, and CXCL10/CXCR3. By synthesizing the molecular mechanisms and the translational implica-
tions, we aim to prioritize agents in this category of therapeutics for glioblastoma.

Key Points

1.	 Myeloid cells comprise a substantial population in the glioblastoma microenvironment, 
which is relatively devoid of lymphoid cells.

2.	Therapeutic modulation of the myeloid population represents a new opportunity for 
immune therapeutics.

3.	Confounders such as sex dimorphism, age, and target heterogeneity will likely need to 
be incorporated as companion therapeutic biomarkers.

Gliomas are primary intracranial tumors with a controver-
sial cellular origin.1 Recent molecular profiling suggests that 
gliomas may arise from precursor cells, including glial pre-
cursor cells, neural stem cells, and oligodendrocyte precursor 
cells.1–3 High-grade gliomas (grades 3 and 4) frequently recur 
and have a poor prognosis, often presenting with seizures, 
focal neurological deficits, cognitive disorders, or increased in-
tracranial pressure.4,5 Early diagnosis and intervention are key 
to prolonging survival and maintaining the quality of life. The 
classification of gliomas has evolved from a standard histo-
logical appearance to include molecular and genetic features.6 
The World Health Organization (WHO) now recommends mo-
lecular profiling for more accurate diagnosis and grading of 
gliomas.6 Currently, infiltrating gliomas in adults are cat-
egorized into either isocitrate dehydrogenase (IDH) mutant 
astrocytoma, oligodendroglioma, or IDH wild-type (IDH WT) 
glioblastoma.6 High-grade gliomas, including glioblastoma, 

are deemed incurable. For these tumors, standard treatments 
include surgery, radiation, chemotherapy, and in a subset, al-
ternating electrical fields.7,8

Gliomas are highly immunosuppressive, and despite the 
success of immunotherapies for other cancers, these strat-
egies, for the most part, have not improved survival for gli-
oblastoma patients.9–11 Glioma-infiltrating immune cells are 
predominantly myeloid cells, including myeloid-derived sup-
pressor cells (MDSCs), monocytes, microglia, bone marrow-
derived macrophages, and dendritic cells (DCs), which are 
diverse in their phenotypes and functions.12,13 Historically, 
macrophages and microglia have been classified as either 
pro-inflammatory (M1) or immunosuppressive (M2).14 A lower 
M1/M2 ratio is linked to worse outcomes in glioblastoma.15,16 
However, this nomenclature is an oversimplification, as these 
cells exist along the continuum which includes a non-activated 
M0 state (Figure 1).17 The molecular characteristics of myeloid 

Is modulation of immune checkpoints on glioblastoma-
infiltrating myeloid cells a viable therapeutic strategy?  
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cells change dynamically as the tumor microenvironment 
(TME) evolves with glioblastoma progression.18,19 To en-
hance the antitumor effects of myeloid cells, strategies 
to shift them from pro-tumorigenic to pro-inflammatory 
states are actively being pursued, including the use of im-
mune checkpoint inhibitors.

The failure of established immune checkpoint inhibitors in 
glioblastoma is not entirely surprising, given the sequestra-
tion of T cells in the bone marrow, T cell exhaustion, low ex-
pression levels of immune checkpoint blockade targets, and 
non-immunogenic mutational burden.20–26 This is likely fur-
ther compounded by many of the standard therapeutics such 
as radiation and chemotherapy amplifying the immunosup-
pressive mechanisms systemically and in the central nervous 
system (CNS).27,28 In addition, glioblastoma TME is uniquely 
characterized by an abundance of myeloid cells, which are 
highly heterogeneous and profoundly immunosuppres-
sive.29 The interactions of myeloid cells with T cells and tumor 
cells are associated with poor prognosis and survival.12,19 In 
comparison to the widespread use of immune checkpoint 
inhibitors to modulate T cell effector responses, modulators 
targeting myeloid cells have not been advanced as quickly 
but may be more biologically applicable.30 We will specifically 
review immune checkpoint axes contributing to the glioblas-
toma TME, beginning with those most directly relevant to ef-
fector cells of the adaptive immune system that have already 
been extensively used, and then transitioning to those rele-
vant to antigen presentation and phagocytosis of the innate 
immune system. We will then discuss the translational chal-
lenges for implementation and strategies to potentially im-
prove survival for patients with glioblastoma.

PD-L1/PD-1 Axis

Molecular Mechanisms

Programmed cell death 1 (PD-1; CD279) is a type I trans-
membrane receptor highly expressed on the surface of 
T cells, B cells, monocytes, natural killer (NK) T cells, and 

DCs (Figure 2).31 Its most studied ligand, programmed 
cell death ligand 1 (PD-L1; CD274; B7-H1), is a transmem-
brane glycoprotein of the B7 family that is ubiquitously 
expressed in inflamed tissues.32–34 In contrast, the expres-
sion of PD-L2 is more restricted and less frequent in human 
tumors.34,35 Upon PD-1 engagement with PD-L1, the im-
mune receptor tyrosine-based inhibitory motif (ITIM) and 
immune receptor tyrosine-based switch motif of PD-1 be-
come phosphorylated and recruit Src-homology 2 domain-
containing phosphatase 2 (SHP-2), a regulator of the MAPK 
pathway encoded by PTPN11, thereby inhibiting immune 
reactivity (Figure 3).36,37 Although PD-1 is well known 
to restrain effector responses on T cells, PD-1 is also ex-
pressed on tumor-associated macrophages (TAMs) and 
inhibits phagocytosis and antitumor immunity.38 In preclin-
ical genetically engineered murine models of high-grade 
gliomas, treatment with anti-PD-1 in a CD8 knockout back-
ground did not ablate the therapeutic effect but did induce 
reprogramming of the myeloid cells within the TME.39 This 
preclinical data would indicate that myeloid manipulation 
with immune checkpoint inhibitors may be beneficial but 
is still insufficient in glioblastoma patients, suggesting 
additional reprogramming of myeloid cells or other com-
plementary approaches will be needed.40 PD-L1 is typi-
cally expressed on myeloid cells but can be appropriated 
by tumor cells to amplify immune suppression within the 
TME. This is a dynamic process, and most clinical studies in 
glioblastoma evaluate expression at one or 2 time points, 
limiting our understanding of fluctuations in expression 
and what drives these changes in glioblastoma. Blockade 
of the PD-L1/PD-1 interaction can maintain the cytotoxic ef-
fects of T cells.41

Comparison With Other Tumor Types

PD-L1 is expressed across a variety of cancer types and 
is typically correlated with poor prognosis and the level 
of infiltrating immune cells. In contrast, PD-L1 expres-
sion is low in glioblastoma at initial diagnosis but can be 
upregulated in glioblastoma-infiltrated myeloid cells with 
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Figure 1.  The continuum of macrophage/microglia polarization in response to environmental cues. The polarizing signals and molecular markers 
(including surface receptors and secreted cytokines) are denoted. Arg1, arginase-1; CSF1, colony-stimulating factor 1; CXCL10, C-X-C motif che-
mokine 10; IFN, interferon; IL, interleukin; iNOS, inducible nitric oxide synthase; LPS, lipopolysaccharide; TGF, transforming growth factor; TNF, 
tumor necrosis factor.
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radiotherapy.22,42,43 In contrast to other solid cancers, PD-1-
expressing T cells in the glioblastoma TME are infrequent 
and are irreversibly exhausted.21,23 In glioblastoma IDH WT 
patients, neither PD-L1 nor PD-1 is an independent prog-
nostic marker.44,45 Expression of both markers increases 
as a function of glioma grade but is still low relative to 
other cancers.44–46 As such, their contributions to the im-
munosuppression of glioblastoma TME may be limited. 
Monoclonal antibodies (mAbs) targeting this interaction 
include nivolumab, pembrolizumab, and atezolizumab and 
have been approved by the FDA based on their therapeutic 
effects in a wide variety of cancers.47–57 Immune checkpoint 
inhibitors are compatible with standard-of-care treatments 
for many cancers and can be combined with other types of 
therapies such as vaccines or chemotherapy.58,59 However, 
they have marginal clinical benefits in combination with 
standard-of-care in newly diagnosed and recurrent glio-
blastoma patients in phase 3 clinical trials.10,60

Translational Aspects

Combinatorial strategies have been evaluated in both 
the preclinical models and the clinical setting of glioblas-
toma. One study showed that combining a neoantigen 
vaccine with anti-PD-L1 could prolong survival in a mu-
rine glioblastoma model.61 Another study demonstrated 
improved tumor control of anti-PD-L1 therapy with radi-
otherapy in a preclinical model.62 In a phase 2 study, the 

combination of durvalumab and radiotherapy showed 
promising results in newly diagnosed O6-methylguanine-
DNA-methyltransferase (MGMT) promoter unmethylated 
glioblastoma patients.63–65 However, the follow-up phase 
3 studies were negative. The lack of concordance in re-
sponse to immune checkpoint inhibitors between preclin-
ical glioblastoma models and glioblastoma patients has 
stimulated the development of newer models that more 
closely recapitulate the immune biology of human glio-
blastoma.11,66,67 Our group developed lipid nanoparticles 
loaded with a STING agonist with dual-targeting of 
PD-L1 and CD47, a widely expressed anti-phagocytosis 
signal.68,69 Since these targets are low at baseline in un-
treated glioblastoma, the tumors are first treated with 
radiotherapy to up-regulate the targets. Activation of 
the STING pathway triggers the production of pro-
inflammatory cytokines, and this combination elicited 
a robust antitumor effect in a preclinical glioblastoma 
model.68,70 An alternative strategy is to eliminate TAMs 
using lipid nanoparticles loaded with dinaciclib, a multi-
cyclin dependent kinase inhibitor, and targeted to PD-L1, 
which prolonged survival in 2 preclinical models sensitive 
to immune checkpoint inhibitors.71 Notably, glioblastoma 
utilizes multiple redundant mechanisms of immune sup-
pression, and clonotypic preclinical models lack the het-
erogeneity of glioblastoma. Future studies are needed to 
determine if immune checkpoint inhibitors can induce a 
cytotoxic TAM and/or microglia phenotype alongside the 
underlying mechanism for this activity.
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Figure 2.  Scheme illustrating the myeloid immune checkpoint axes including the PD-L1/PD-1 axis, the CD24/Siglec-10 axis, the CX3CL1/CX3CR1 
axis, and the collagen/LAIR-1 axis as well as immunomodulatory therapeutics targeting these axes. PD-1, Siglec-10, CX3CR1, and LAIR-1 are ex-
pressed on myeloid cells, while their ligands PD-L1, CD24, CX3CL1, and collagen are often upregulated by tumor cells. Engagement of the ligand/
receptor pair leads to suppression of immune functions in myeloid cells. The key components and associated drugs targeting these axes are de-
noted in the figure. Receptors are shown in blue color, while ligands are shown in red/yellow color.
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CD24/Siglec-10 Axis

Molecular Mechanisms

CD24 (heat stable antigen, HSA) is a glycosylated 
protein anchored to the cell membrane by 
glycosylphosphatidylinositol (Figure 2).72,73 CD24 is widely 
expressed by hematopoietic, neuronal, epithelial, and 
muscle cells.74 Glycosylation of CD24 is highly variable and 
specific to cell type, leading to diverse interactions with 
various cell ligands to perform various functions.75–81 Sialic 
acid-binding immunoglobulin-type lectins-10 (Siglec-10) 
is a type I transmembrane protein, and its intracellular do-
main contains an ITIM tail and other ITIM-like sequences.82 
Ligand recognition leads to tyrosine phosphorylation by 
the Src family kinases that trigger SHP-1/2-mediated in-
hibitory signal transduction (Figure 3).82,83 In the context of 
cancer, this interaction elicits an inhibitory signal blocking 
tumor cell clearance by macrophages.

The CD24/Siglec-10 axis was first described as a myeloid 
immune checkpoint in ovarian and breast cancer, where 

CD24 is overexpressed by tumor cells while the inhibitory 
receptor Siglec-10 is highly upregulated in TAMs.84 Genetic 
ablation and antibody blockade of either CD24 or Siglec-10 
enhanced phagocytosis of human cancer cells in vivo and 
prolonged survival in murine models of breast cancer.84 
Silencing CD24 with a small interfering RNA (siRNA) in 
renal clear cell carcinoma cells increased their phagocytosis 
during co-culture with macrophages expressing Siglec-10.85 
Similarly, the loss of nucleophosmin, a regulator that binds 
to the CD24 promoter region to induce CD24 expression, 
led to decreased CD24 on the cell surface and indirectly pro-
moted macrophage-mediated phagocytosis, while restoring 
CD24 expression in these cells inhibited phagocytosis.86

Comparison With Other Tumor Types

High levels of expression of either CD24 or Siglec-10 are 
frequently associated with worse outcomes in patients 
across cancer lineages including brain tumors.85,87–95 
Siglec-10 is an independent prognostic marker in glioblas-
toma IDH WT patients, and its expression is a function of 
glioma grade.44,45
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Figure 3.  Downstream signaling pathways of myeloid cell surface receptors containing ITIM(s) in their cytoplasmic tails. ITIM has a conservative 
sequence of S/I/V/L-x-Y-x-x-L/V, where × stands for any amino acids. Ligand recognition leads to tyrosine phosphorylation of ITIM by the Src family 
kinases, which then leads to the recruitment of SHP-1/2 which mediates inhibitory signaling of myeloid immune functions. ITIM can negatively regu-
late phagocytosis by inhibiting non-muscle myosin IIA and Syk signaling. ITIM can negatively impact the survival and proliferation of immune cells as 
well as the production of oxidative species through the PI3K/AKT pathway. ITIM can inhibit immune response by negatively regulating the production 
of pro-inflammatory cytokines via STAT1, CREB, and NF-κB as well as positively regulating the production of anti-inflammatory cytokines via STAT3/6.
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Translational Aspects

Various treatment approaches targeting the immune inhib-
itory CD24/Siglec-10 axis have been tested in preclinical 
studies. The SWA-11 anti-CD24 mAb administered system-
ically increased CD24 lysosomal degradation and reduced 
tumor burden in human lung, ovarian, colorectal, and 
pancreatic xenograft models.96–98 Other anti-CD24 mAbs 
such as ALB9, ML-5, and Clone SN3 demonstrated similar 
antitumor effects but were less potent than SWA-11.84,99,100 
In combination regimens, the anti-CD24 mAb G7mAb sig-
nificantly enhanced the antitumor effects of cetuximab, 
an EGFR mAb, in mouse xenograft models of lung, colo-
rectal, and liver cancers by disrupting the STAT3 signaling 
pathway, which plays a critical role as the “breaks” on the 
immunostimulatory cGAS/STING pathway.101,102

Antibody-drug conjugate (ADC) strategies targeting CD24 
have included G7mAb-DOX, a conjugate of G7mAb with 
the chemotherapeutic agent doxorubicin (cytotoxic chemo-
therapy with cGAS/STING stimulating properties), and hG7-
BM3-VcMMAE, a conjugate of humanized G7mAb with the 
anti-mitotic agent monomethyl auristatin (MMAE). MMAE 
has been extensively studied in other ADCs for glioblas-
toma.103 Both have demonstrated tumor growth inhibition in 
hepatocellular carcinoma-bearing mice.104,105 Similarly, SWA-
11 has been conjugated with PE38, a Pseudomonas exotoxin 
derivative that has also been well-studied in glioblastoma.106 
The ADC (SWA11-ZZ-PE38) can induce apoptosis in CD24+ co-
lorectal cancer cells.107 Finally, a novel conjugate of anti-CD24 
mAb with nitric oxide (HN-01) prolonged the survival of 
hepatocellular-bearing nude mice, although the mechanism 
of action relied more on increased cellular oxidative stress 
rather than the activation of an immune response.108

Currently, there are no active clinical trials of anti-CD24 
mAb for solid cancers, possibly due to the differences be-
tween human and murine CD24 sequences and struc-
tures.109 A humanized CD24-Fc fusion protein efprezimod 
alfa (CD24Fc, MK-7110) has been investigated in the treat-
ment of acute graft-versus-host disease (NCT02663622, 
NCT04095858) and acquired immunodeficiency syndrome 
(NCT03960541) and has been well tolerated.110–112 Alternative 
strategies like siRNA and chimeric antigen receptor T cell 
therapy targeting CD24 have shown activity in preclinical 
mice models of cancer.98,113 In CNS tumors, CD24+ has been 
reported as a marker for glioma stem-like cells.114–116 Yet the 
role of CD24/Siglec-10 as an immune checkpoint in glio-
blastoma has not been explored, and no preclinical studies 
evaluating the effects of its disruption on the immune land-
scape with CNS tumor models have been published. Since 
glioblastoma is microglia- and macrophage-enriched, this 
may be a promising area for future investigation.

Collagen/LAIR-1 Axis

Molecular Mechanisms

Leukocyte-associated immunoglobulin-like receptor 1 
(LAIR-1; CD305) is a type I transmembrane protein with an 
Ig-like extracellular domain expressed on human periph-
eral blood mononuclear cells (Figure 2).117,118 Like other 

inhibitory receptors, its intracellular domain contains 2 
ITIMs that transmit signals through SHP-1/2, thereby nega-
tively regulating cellular responses.117,119 Another signaling 
molecule, C-terminal Src kinase, can also be recruited 
by LAIR-1 to mediate its negative modulation function 
(Figure  3).120 Some studies have pointed out that LAIR-1 
interacts with SHP-1 in humans while the mouse homolog 
interacts exclusively with SHP-2, suggesting a species-
specific variation in its immune inhibitory function.121–124

LAIR-1 binds to conserved glycine-proline-
hydroxyproline collagen repeats with high affinity, making 
its ligand pool far more extensive and providing it with a 
unique ability to interact with the extracellular matrix.125,126 
This may have implications for cell migration, cell-to-cell 
signaling over longer distances, and blood-brain barrier 
function. Recent studies identified other collagen domain-
containing proteins such as C1q, adiponectin, and surface 
protein D as functional ligands of LAIR-1 regulating the ac-
tivity of DCs and T cells.127–131 Palpable stiff tissue is char-
acteristic of many forms of solid tumors, which can be 
attributed to heightened collagen deposition and has been 
suggested as a risk factor for breast cancer.132–134 Due to 
this abundance of ligands, it becomes necessary to tightly 
regulate LAIR-1 activity at the protein expression level 
during development and activation across immune cell 
populations.135–138 In addition, secreted forms of LAIR-1 
(sLAIR-1) and LAIR-2 (CD306), a soluble homolog of LAIR-
1, are unique to humans and not present in the mouse ge-
nome. They serve as decoy receptors to antagonize LAIR-1 
activity, highlighting the importance of differentiating be-
tween the soluble and non-soluble forms in preclinical and 
clinical studies.124,139–141

LAIR-1 is upregulated on monocytes and DCs during 
the inflammatory phase to inhibit immune responses 
and returns to normal expression levels during the reso-
lution phase.142 LAIR-1 activation stimulates M2-polarized 
macrophages while being downregulated in M1-polarized 
pro-inflammatory states.142,143 In the human THP-1 mono-
cyte cell line, LAIR-1 activation reverses the effects of pro-
inflammatory IFN-γ treatment.144 Culturing macrophages 
on surfaces coated with human collagen III-derived ligand 
peptide (LAIR1-LP) inhibits the pro-inflammatory program 
and reduces the secretion of cytokines such as tumor ne-
crosis factor-alpha (TNF-α).145,146 Furthermore, macro-
phages in 3D-culture conditions with high-density collagen 
suppressed CD3+ T cell proliferation and decreased at-
traction of CD8+ T cells compared to those cultured with 
a low density of collagen.147 LAIR-1 can also interact with 
CD33 (Siglec-3) on monocytes, thereby restricting cell dif-
ferentiation and activation.148 When triggered by ligand 
binding, LAIR-1 on B cells and T cells also leads to immune 
suppression.135,149

Comparison With Other Tumor Types

Elevated levels of LAIR-1 expression have been reported 
in hematopoietic malignancies, gliomas, renal cell car-
cinoma, hepatocellular carcinoma, and invasive breast 
cancer.150–158 High LAIR-1 expression often correlates with 
poor prognosis and overall survival. In the case of chronic 
lymphocytic leukemia, loss of LAIR-1 on B cells directly 
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contributes to uncontrolled activation and malignant pro-
liferation.159 Knocking down LAIR-1 in acute myeloid leu-
kemia (AML) cell lines in vitro suppresses tumor growth 
and promotes cell apoptosis.160 Mice transplanted with 
LAIR-1−/− AML cell lines have significantly increased sur-
vival relative to those implanted with LAIR-1+/+ cell lines.160 
In human breast cancer cell lines, LAIR-1 deficiency re-
duced cell proliferation and impaired invasion ability.158

In gliomas, a recent study revealed the presence of 
cancer-associated fibroblasts, the major source of col-
lagen expression, are expanded in the TME of high-grade 
gliomas compared to that of normal brain and low-grade 
gliomas.155,161 Indeed, collagen deposition was minimal 
in the normal brain but increased within the vasculature 
wall of high-grade gliomas.155 Potentially, collagen deposi-
tion may function to alter the blood-brain barrier, prevent 
intratumoral trafficking of innate or adaptive immune cells, 
increase the risk of arterial thromboembolism and venous 
thromboembolism, and/or impact autoregulation of ce-
rebral blood flow. Moreover, LAIR-1 expression is local-
ized to the tumor and perivascular regions in high-grade 
gliomas and colocalized with M2 markers on myeloid cells, 
suggesting a potential mechanism of glioma-mediated im-
mune suppression.155 One may even speculate that this 
and the stiffening of the vessels could contribute to the lo-
calization of T cells in the perivascular niche. Conversely, 
in patients with systemic lupus erythematosus, LAIR‐1 
expression is reduced on B cells and IFN-producing DCs 
compared to healthy individuals, contributing to their 
heightened immunoglobulin production and IFN-α secre-
tion.162,163 The lack of structurally intact transmembrane 
LAIR-1 that is functionally inhibitory has also been found 
in patients with mixed connective tissue disease and rheu-
matoid arthritis.162,164,165

Translational Aspects

To manipulate LAIR-1, NC410, a fusion protein of dimeric 
LAIR-2 and an IgG1 Fc tail, was designed to target collagen-
rich areas and block LAIR-1 activity by serving as a decoy 
while activating T cells.166 In a humanized mouse model 
with HT-29 colorectal adenocarcinoma, NC410 promoted 
T-cell infiltration and reduced tumor size.166 In immunocom-
petent mice, NC410 monotherapy was ineffective, probably 
due to the low homology between mouse and human LAIR-
1.167 However, in a LAIR-1-dependent manner, combining 
NC410 with anti-PD-L1 effectively reduced tumor burden 
and prolonged survival.167 Blocking LAIR-1 with h219-LLG, 
a humanized antagonistic anti-LAIR-1 mAb, activated im-
mune response in syngeneic human LAIR-1 transgenic 
mice implanted with B16 melanoma cells, resulting in in-
creased CD4 memory T cells and pro-inflammatory macro-
phages with decreased anti-inflammatory macrophages 
and regulatory T cells.168 Currently, the most clinically ad-
vanced LAIR-1 antagonist mAb is NGM438 (NCT05311618), 
which elicited a strong immune response from both mye-
loid cells and allogeneic T cells.169 NC525, another human-
ized anti-LAIR-1 mAb structurally similar to NC410, is being 
investigated in advanced myeloid neoplasms in a phase 
1 clinical trial (NCT05787496).170 Reciprocally, LAIR-1 ago-
nistic agents have been used to ameliorate inflammation 

such as arthritis and asthma in mice.171,172 There have not 
been any published studies evaluating anti-LAIR-1 strat-
egies in glioblastoma. As collagens are widely expressed 
throughout the body, targeting the collagen/LAIR-1 axis 
may pose issues of safety, but this could be overcome for 
glioblastoma with direct intratumoral strategies. Given 
the low homology between human and murine LAIR-1 
sequences and the absence of murine LAIR-2, this determi-
nation will likely need to use murine models with human-
ized LAIR-1 receptors.118,124

CX3CL1/CX3CR1 Axis

Molecular Mechanisms

C-X3-C motif chemokine ligand 1 (CX3CL1; fractalkine; and 
neurotactin) has 2 molecular forms with distinct functions: 
adherence and migration (Figure 2). During synthesis, 
CX3CL1 is incorporated into the cell membrane (mCX3CL1) 
primarily to mediate integrin-independent cell-cell ad-
hesion.173,174 mCX3CL1 can be proteolytically cleaved at 
the mucin-like stalk by proteases such as a disintegrin 
and metalloproteinase domain containing 10 (ADAM10), 
ADAM17, and matrix metallopeptidase 2 (MMP-2).175–178 
The resultant soluble form (sCX3CL1) primarily functions 
as a chemokine.175 Its cognate receptor, C-X3-C motif che-
mokine receptor 1 (CX3CR1), is a G-protein coupled re-
ceptor, and binding of CX3CL1 triggers the activation 
of heterotrimeric G proteins.179,180 CX3CR1 expression 
is found in several immune cell populations and varies 
depending on the specific organ and tissue site.173,181–191

The CX3CL1/CX3CR1 axis has important functions in 
the brain. More specifically, CX3CL1 is constitutively ex-
pressed on neurons, while CX3CR1 is expressed on mi-
croglia.192–194 The communication between neurons and 
microglia enables the removal of damaged neurons, 
and sCX3CL1 helps to protect healthy neurons.195 The 
dysregulation of the CX3CL1/CX3CR1 axis has been im-
plicated in a variety of neurodegenerative disorders.196 In 
response to brain injury and inflammation, CX3CL1 acts 
as a regulator of microglia activation and has an anti-
inflammatory role such as inhibiting TNF-α and decreasing 
major histocompatibility complex class II (MHC-II).197,198 
CX3CR1−/− mice display heightened microglial activation 
following intraperitoneal LPS injections.195 In adoptive 
transfer studies, activated CX3CR1−/− microglia induce 
more neuronal cell loss than CX3CR1+/− microglia due to 
elevated IL-1β production.195 However, there are conflicting 
reports that suggest CX3CR1 has a pro-inflammatory role 
in a murine model of stroke.199 In a study of chronic cere-
bral ischemia, CX3CR1 RNAi mitigated hypoxic-induced 
microglial proliferation and secretion of TNF-α and IL-1β.200 
As such, the immunological role of the CX3CL1/CX3CR1 
axis is likely contextual. One could hypothesize that the re-
lationship is complex and dynamic with a need to remove 
injured neurons and protect the adjacent intact neurons.

The CX3CL1/CX3CR1 axis can promote immune sup-
pression in macrophages. An in vitro study showed 
that CX3CL1 induced M2 polarization of macrophages 
and increased expression of MMP-9 which degrades the 
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extracellular matrix and enhances cell motility.201 In lung 
cancer, upregulation of CX3CR1 increased M2-polarized 
macrophages and the migration of cancer cells.202 In vivo, 
CX3CR1 knockout promotes M1-polarization of macro-
phages and prolongs mouse survival.202 Breast cancer 
cells attract CX3CR1+ macrophages to enhance angio-
genesis.203,204 In pancreatic cancer, high expression of 
both CX3CL1 and CX3CR1 is associated with shortened 
patient overall survival and time to recurrence.205 Further 
studies have revealed that CX3CL1 promotes tumor cell 
motility and invasion, which can be inhibited with CX3CR1 
antagonists.206

Comparison With Other Tumor Types

The role of the CX3CL1/CX3CR1 axis in mediating immune 
responses has been studied extensively across many solid 
tumors. As a facilitator of antitumor responses, CX3CL1 
plays a role in recruiting cytotoxic T cells and NK cells into 
the TME. In non-CNS solid cancers, intratumoral CX3CL1 
is positively correlated with the density of tumor infiltra-
tion lymphocytes, which is generally considered a marker 
for better prognosis.207–209 Tumor cells and DCs engineered 
to overexpress CX3CL1 have been shown to reduce tumor 
growth and prolong mouse survival, accompanied by in-
creased infiltration of NK cells, CD8+, and CD4+ T cells.210–213 
Such antitumor effects are generally abolished in NK cell-
deficient or CD8−/− mice, indicating that CX3CL1 mediates 
antitumor effects by mobilizing both NK and T cells.210,212,213 
Similarly, transducing human primary T cells with the cog-
nate CX3CR1 receptor enhances lymphocyte migration 
and homing in tumor-bearing mice and suppresses tumor 
growth.214 This might not be the case for glioblastoma, 
given the paucity of T cells in glioblastoma TME. scRNA-
seq of GL261 glioma-bearing mice and glioma patients has 
revealed that CX3CL1 is expressed on tumor cells while 
CX3CR1 is mainly expressed on microglia in the context of 
glioblastoma.215,216 In patients, expression of CX3CL1 de-
creases as glioma grade increases, while that of CX3CR1 
remains unchanged.44,45 This may influence which glioma 
populations would be optimal for investigating potential 
efficacy. The expression of CX3CR1 is upregulated at the 
tumor leading edge and in infiltrating tumors, suggesting 
its unique role in tumor progression.46

Translational Aspects

In CD8+ T cells, CX3CR1 is expressed during differentia-
tion at the effector phase and is a biomarker for cytotoxic 
memory CD8+ T cells.217,218 CX3CR1int signifies peripheral 
memory, and CX3CR1high represents classical effector 
memory cells.217 In chronic viral infection, CX3CR1+ cells 
can express cytotoxic genes that reduce viral load.219 In the 
context of cancer, CX3CR1 expression is downregulated 
during the emergence of T cell exhaustion.219 In several 
preclinical cancer models, an increased frequency of 
CX3CR1+CD8+ T cells is associated with a response to im-
mune checkpoint blockade.220,221 A similar association has 
been seen in lung cancer patients treated with anti-PD-1 
antibodies.220 CX3CR1 expression could also be used to 

predict the response to chemotherapy and anti-PD-L1/
PD-1 combination therapy. In a preclinical melanoma mu-
rine model, this combination decreased tumor size, pro-
longed survival, and was associated with a high frequency 
of CX3CR1+CD8+ T cells.222 In CX3CR1 knockout mice, this 
treatment failed to suppress tumor growth but could be 
rescued with the adoptive transfer of CX3CR1+CD8+ T cells, 
indicating CX3CR1 is required for the observed tumor re-
jection.222 In the peripheral blood of melanoma patients, 
CX3CR1+CD8+ T cells are enriched in responders before 
and after anti-PD-1 therapy and especially after chemo-
therapy.222 As such, the upregulation of CX3CR1 could be 
potentially used as a marker to predict patient response 
to anti-PD-1 blockade, but this has not yet been explored 
in glioblastoma patients. To date, only one high-affinity 
small molecular inhibitor of CX3CR1 (AZD8797) and an 
anti-CX3CR1 nanobody (BI 655088) have been developed 
but have not yet been evaluated in preclinical glioma 
models.223,224

Should CX3CR1 be classified as a myeloid immune 
checkpoint molecule? Based on its role as a driver of im-
mune suppression, it could be considered within this 
category. However, CX3CR1 lacks an immune inhibitory 
molecular motif like an ITIM that is present in other im-
mune checkpoints. Future mechanistic studies focusing on 
the intracellular network downstream of CX3CR1 may be 
able to shed new light on its role in myeloid cells and clas-
sification. If its role is fully understood in the context of gli-
oblastoma, targeting CX3CR1 would offer target specificity 
against microglia activities in the CNS.

Conclusion and Outlook

Therapeutics targeting the PD-L1/PD-1 axis have an es-
tablished safety profile and a broad selection of avail-
able agents with regulatory approval in other cancers. 
However, most glioblastoma patients do not benefit from 
their use.10,11,30,60 Although several biomarkers have been 
proposed to identify glioblastoma patients that may re-
spond, the commonly used tumor mutation burden bi-
omarker is not predictive.25,225 Other markers such as 
activation of the MAPK pathway suggest potential ben-
efit, but this requires further validation.226–228 Some tumor 
neoantigens can trigger immunological responses, but 
most are not immunogenic.24,229,230 Since MGMT promoter 
hypermethylation epigenetically silences the DNA repair 
genes and potentially increases mutations, especially at 
recurrence following chemotherapy, theoretically recurrent 
glioblastoma patients may have a greater propensity to 
respond to immune checkpoint inhibitors.231–233 However, 
that has not been the case for most patients as reflected by 
the phase 3 clinical trial results.60 In routine clinical prac-
tice, the number of patients with a hypermutated tumor at 
recurrence is rare. Additionally, the therapeutic effect re-
quires the presence of both the target and functional im-
mune cells. In glioblastoma, the expression of both PD-1 
and PD-L1 is low.22–24 Effector T cells are largely absent 
from the glioblastoma TME, partly due to their seques-
tration in the bone marrow, and are refractory to being 
restored to antitumor immune effector functions.20,21 
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Furthermore, MHC expression is downregulated in normal 
brain parenchyma, leading to a lack of antigen presenta-
tion in the glioblastoma TME and limited co-stimulation of 
T cells locally.234 Moreover, peripheral immune cells rarely 
infiltrate the tumor, confining the immune response to the 
perivascular area.235 Beyond that, the TME becomes more 
immunosuppressive with disease progression secondary 
to increasing cytokines and immunosuppressive myeloid 
cells, leading to further therapeutic challenges.236

Given the abundance of myeloid cells in the TME of gli-
oblastoma and the emerging data that unique subsets 
may have direct antitumor cytotoxic effects, the question 
that arises is whether there is a role for myeloid-specific 
immune checkpoints and, if so, which ones and in what 
clinical scenarios. The ability to reprogram the TME from 
immunosuppressive to immune stimulatory/supportive 
exploiting the most frequent immune population is an at-
tractive endeavor. Mono therapeutics, however, will be 
insufficient in converting myeloid cells to full cytotoxic 
functions in glioblastoma. Careful and mechanistically 
rational pairing with other therapeutic approaches will 
likely be essential. These other approaches could cover 
a range of mechanisms, both non-targeted and targeted. 
Combination with cytotoxic chemotherapeutics could add 
an element of cytoreduction and would align with what 
has been observed in other malignancies.237 Use in con-
junction with radiation therapy may facilitate an abscopal 
effect.238–240 The addition of tumor-treating fields may help 
stimulate pro-inflammatory pathways and impede tumor 
cell motility for potential synergy with checkpoint inhibi-
tion.241,242 Finally, the combination of checkpoint inhibition 
with oncolytic viruses for both their cytotoxic and immune 
stimulatory effects could have value.243

To date, most efforts have been focused on the inhibi-
tion of the PD-L1/PD-1 axis but a strong argument can be 
made that specifically targeting myeloid-associated im-
mune checkpoints may serve as more fertile ground for 
success in glioblastoma. One such candidate is the CD24/
Siglec-10 axis. Several therapeutics are positioned to enter 
clinical trials once humanized. Furthermore, the CD24 fu-
sion protein has been evaluated in clinical trials without se-
vere adverse effects, indicating safety in manipulating the 
CD24/Siglec-10 axis in humans.110–112 Because CD24 pro-
teins are heavily modified depending on the cellular con-
text, further characterization of structural differences may 
refine these therapeutics to more specifically abrogate 
the immunosuppressive effects of CD24 within the TME 
while sparing other organs and cell types. Because CD24 
is also expressed in glioma stem-like cells that give rise to 
other malignant cells and mediate therapeutic resistance, 
therapeutically targeting this axis might delay tumor re-
currence.244–247 Future research efforts should be directed 
to ascertaining the function of the CD24/Siglec-10 axis in 
the immune landscape of glioblastoma and the effects of 
CD24/Siglec-10 inhibition in preclinical models including 
clarification of the mechanism of action.

In addition to directly blocking the inhibitory signaling 
in myeloid cells, targeting LAIR-1 can influence the recruit-
ment of other immune cells.248 Alternatively, disrupting 
the production of collagen by tumor cells or facilitating 
the degradation of extracellular collagen could be con-
sidered. Physically, collagen can form a barrier around 

tumors, making them less accessible to immune cells and 
drugs. Reducing such barriers could make tumor cells 
more vulnerable by exposing them to external perturba-
tions. A key consideration is that collagen subtypes have 
not been comprehensively characterized in glioblastoma. 
Preclinical studies on how dysregulated collagen homeo-
stasis impacts immune cell functions and how modulation 
of collagen/LAIR-1 interactions alters gliomagenesis need 
to be conducted before implementing clinical trials. As 
such, amongst the potential myeloid immune checkpoint 
blockade target candidates, combinations with anti-PD-1 
and additional due diligence on the CD24/Siglec-10 axis are 
more likely to be translationally relevant in the near term.

Several confounders for study design will need to be 
considered during myeloid cell modulation: IDH status, 
age, and sex. The presence of an IDH mutation is a posi-
tive prognosticator for survival in glioma patients.249,250 
As a key component of the tricarboxylic acid cycle, IDH 
mutations directly impact tumor cell metabolism, pro-
liferation, progression, invasion, and hypoxia adapta-
tion. IDH mutant gliomas produce the oncometabolite 
D-2-hydroxyglutarate, a product of mutant IDH1/2 enzy-
matic activity that is immune suppressive of T cell im-
munity.251–253 In IDH mutant gliomas, the differentiation 
of myeloid cells is blocked and is unable to support T cell 
responses, but this can be bypassed with pharmacolog-
ical inhibition of tryptophan.254 IDH1/2 mutation tumors 
are more prone to developing hypermutation following 
alkylating agent treatment due to elevated induced mis-
match repair deficiency, which in turn selects tumor cells 
resistant to chemotherapy.233,255 The presence of IDH mu-
tations also influences the composition of the glioma TME. 
In murine models, IDH mutant gliomas have fewer mi-
croglia, macrophages, and glioma-infiltrating T cells rela-
tive to wild-type.256 A more recent large-scale scRNA-seq 
of glioma patient samples revealed that the TME of IDH WT 
glioblastomas has a higher percentage of macrophages 
while the TME of IDH mutant gliomas is overwhelmingly 
dominated by microglia, closely resembling that of normal 
brain tissues.257 The microglia population decreases upon 
recurrence regardless of IDH mutational status. As immune 
cell populations differ based on IDH status and change dy-
namically through recurrence, distinct TMEs are created. 
Consequently, IDH mutant astrocytoma and IDH WT gli-
oblastoma patients, although both classified as grade 4, 
may respond differently to immune therapeutics. Thus, 
future studies are urgently needed to understand the lon-
gitudinal dynamics of the TME in relation to IDH status to 
devise more optimal strategies for each patient.

Compared to males, females have a reduced preva-
lence of glioblastoma and a higher overall survival rate.258 
Sexual dimorphism may influence immune reactivity 
in glioblastoma, including the biology of myeloid cells. 
Microglia from male and female mice differ in number, 
morphology, and function. Male microglia are more pre-
disposed to upregulating inflammatory signatures and 
MHC-II-associated genes.215,259,260 Additionally, different 
subsets of MDSCs are preferentially enriched in the gli-
oblastoma as a function of sex in mice.261 Estrogen has 
been shown to modulate regulatory T cells in a murine 
model of melanoma, but future studies are needed to as-
certain the role of sex hormones on myeloid cells in the 
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context of glioblastoma.262 Although immune checkpoint 
inhibitors have not been approved to treat glioblastoma, in 
cancers where they are used clinically, male patients typ-
ically benefit more than females, highlighting the neces-
sity of considering sex when studying immunotherapy.263 
Within glioblastoma, males have a higher frequency 
of progenitor-exhausted T cells that are responsive to 
anti-PD-1 treatment indicating that sex influences the fate 
of T cell function.264 Other tumor-cell-intrinsic factors, such 
as the level of MGMT promoter methylation, deactivation 
of tumor suppressor genes, and stem-like characteristics, 
also differ between males and females, potentially contrib-
uting to differential responses to immunotherapies.258,265

Aging is associated with an increased incidence and 
worse outcome in glioblastoma, likely in part due to a dys-
functional immune system and/or decreased immune sur-
veillance.266,267 As such, there is a greater propensity for 
glioblastoma cell initiation and progression and reduced 
response to immunotherapies.268,269 There are negligible dif-
ferences in tumor cell gene expression, DNA methylation, 
tumor mutation burden, and neoantigen burden between 
younger and older adult patients, indicating that the differ-
ential disease prevalence and therapy response is mainly 
due to factors in the glioblastoma TME.267 Indoleamine 2,3 
dioxygenase 1 (IDO1), an immunosuppressive metabolic 
enzyme that facilitates the recruitment of regulatory T cells, 
is elevated in older adult mice with brain tumors and under-
mines the efficacy of immunotherapy.269–271 IDO1 can pro-
mote MDSC characteristics but whether this induces an 
immune checkpoint refractory state is not known. Another 
contributor is the increased presence of senescent cells in 
aged brains. Although senescence, hallmarked by perma-
nent cell cycle arrest, is theoretically a defense mechanism 
against oncogenesis, these cells release pro-inflammatory 
factors, collectively referred to as the senescence-associated 
secretory phenotype, into the TME, thereby triggering 
chronic inflammation and subsequently inducing compen-
satory augmentation of immune suppression.272–274 Treating 
glioblastoma-bearing mice of advanced age with a combi-
nation of immunotherapy and senolytics decreased the ex-
pression of senescent cell markers and improved survival, 
shedding light on a promising avenue for elderly patients 
with glioblastoma.267 However, the cut points for stratifica-
tion in human subjects are not yet defined for clinical trial 
implementation.

A final consideration for myeloid-specific immune check-
points is their use as biomarkers of treatment resistance 
for immunotherapy. For example, the immunosuppres-
sive molecule Siglec-9 has been proposed as one such 
marker since Siglec-9+ monocyte-derived macrophages 
preferentially accumulate in anti-PD-1 non-responders 
and targeting Siglec-9 enhanced responses to anti-PD-L1/
PD-1.275,276 However, its predictive power was questioned 
by a more recent large-scale scRNA-seq profiling of glioma 
patient samples. Because of the complexity of immunolog-
ical clearance of cancer, a single biomarker for response 
is unlikely to rigorously capture therapeutic responders. 
Therapeutic companion biomarkers should be considered 
early in the preclinical development of immuno-oncology-
targeted strategies, and the heterogenous expression 
profiles for all of these targets suggest that this would be 
necessary to identify an appropriate patient population.
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