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Abstract 

Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, with a universally lethal prognosis 
despite maximal standard therapies. Here, we present a consensus treatment protocol based on the metabolic 
requirements of GBM cells for the two major fermentable fuels: glucose and glutamine. Glucose is a source of carbon 
and ATP synthesis for tumor growth through glycolysis, while glutamine provides nitrogen, carbon, and ATP synthesis 
through glutaminolysis. As no tumor can grow without anabolic substrates or energy, the simultaneous targeting 
of glycolysis and glutaminolysis is expected to reduce the proliferation of most if not all GBM cells. Ketogenic meta‑
bolic therapy (KMT) leverages diet‑drug combinations that inhibit glycolysis, glutaminolysis, and growth signaling 
while shifting energy metabolism to therapeutic ketosis. The glucose‑ketone index (GKI) is a standardized biomarker 
for assessing biological compliance, ideally via real‑time monitoring. KMT aims to increase substrate competition 
and normalize the tumor microenvironment through GKI‑adjusted ketogenic diets, calorie restriction, and fasting, 
while also targeting glycolytic and glutaminolytic flux using specific metabolic inhibitors. Non‑fermentable fuels, 
such as ketone bodies, fatty acids, or lactate, are comparatively less efficient in supporting the long‑term bioenergetic 
and biosynthetic demands of cancer cell proliferation. The proposed strategy may be implemented as a synergistic 
metabolic priming baseline in GBM as well as other tumors driven by glycolysis and glutaminolysis, regardless of their 
residual mitochondrial function. Suggested best practices are provided to guide future KMT research in metabolic 
oncology, offering a shared, evidence‑driven framework for observational and interventional studies.
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Background
Standard of care for brain cancer management
Glioblastoma (GBM), the most common and aggressive 
primary brain tumor in adults, has one of the highest 
mortality rates of all cancers. Despite the advent of mul-
timodality in neuro-oncology and emergence of novel 
therapies, long-term survival remains poor for most 
high-grade brain tumors [1–4]. In fact, median overall 
survival (mOS) for GBM is only marginally better today 
than it was in 1926: 14–21 months versus 8–14 months, 
respectively [5, 6]. More importantly, incremental 
improvements in mOS or progression-free survival (PFS) 
should not be confused with long-term survival, which 
remains less than 0.8% at 10  years from diagnosis [7, 
8]. None of the current cytotoxic, molecularly targeted, 
or immune-based therapies have translated into robust 
improvements in long-term survival at the population 
level [9–11]. When deciding on palliative care, oncolo-
gists and patients may have a different understanding of 
therapeutic goals, and patients may not understand that 
the proposed treatments are “unlikely to be curative”, 
leading to inaccurate expectations [12, 13]. If therapeutic 
success is defined as long-term survival, it becomes clear 
that no major advancements have been made in GBM 
therapy despite a century of cancer research [14].

The current standard of care (SOC) involves maximal 
safe surgical resection, radiotherapy, and temozolomide 
chemotherapy, with an average mOS across clinical tri-
als of 15.6 months (compared to 10.1 with surgery alone 
in historical cohorts), reaching a 5-year relative survival 
rate of less than 10% [15, 16]. A small improvement in 
mOS is observed in younger patients and high-grade 
gliomas with specific isocitrate dehydrogenase (IDH) 
mutations [17, 18]. The degree of surgical debulking is 
considered one of the most important prognostic factors, 
which could explain the survival differences between 
SOC (which includes debulking) and biopsy alone (with-
out debulking) in best supportive care [19–21]. Elective 
treatments such as FDA-approved Tumor-Treating Fields 
(TTF) or novel immune-based therapies are occasionally 
offered after SOC for a modest increase in PFS and mOS 
[22, 23]. Unfortunately, despite providing desirable bene-
fits in the form of transient tumor control and short-term 
survival, SOC does not yield meaningful improvements 
in long-term survival in comparison with post-surgical 
“best supportive care,” defined as symptom management 
(edema, nausea, pain, and malnutrition) [24, 25]. For 
recurrent GBM, consensus guidelines such as the NCCN 
encourage participation in clinical trials due to dissat-
isfactory treatment outcomes [26, 27]; unfortunately, 
clinical trials with various therapies, alone or in combi-
nation, have not yet achieved a significant extension of 
survival [28]. Therefore, patients should be informed of 

the expected benefits and adverse effects of existing ther-
apeutic approaches to assist with informed consent and 
shared decision-making [9, 29]. Considering the dismal 
prognosis despite maximal SOC, novel clinical research 
frameworks are urgently needed to drive improvements 
in quality of life and long-term survival.

Cancer as a mitochondrial metabolic disease: an emerging 
therapeutic paradigm
To address these challenges, we propose research guide-
lines for the management of GBM based on the under-
standing of cancer as a mitochondrial metabolic disease 
[30, 31].

Two major biochemical processes exist to generate 
energy in eukaryotic animal cells: substrate-level phos-
phorylation (SLP), also known as fermentation, and 
mitochondrial oxidative phosphorylation (OXPHOS), 
via electron transport chain-induced chemiosmosis. 
Non-tumoral cells are metabolically flexible: in the pres-
ence of oxygen, OXPHOS is sufficient to supply most of 
the energy requirements in a highly efficient and regu-
lated system, relying on SLP only under certain physi-
ological conditions [32]. Conversely, SLP can produce 
energy in the cytosol (e.g., Embden-Meyerhof-Parnas 
glycolytic pathway) and in the mitochondria (e.g., succi-
nate-CoA ligase reaction in the TCA cycle), independ-
ent of OXPHOS [33, 34]. Cancer cells, including GBM, 
are largely dependent on increased SLP flux of glucose 
and glutamine through the glycolysis and glutaminoly-
sis pathways, regardless of the presence of oxygen [33, 
35–38]. In this protocol, we favor a functional definition 
of SLP dependency as the comparatively limited capac-
ity of malignant cells to sustain long-term proliferation 
when forced to use OXPHOS-exclusive metabolism (e.g., 
deprivation of glucose and glutamine, the two primary 
SLP fuels, at the substrate, transport, or utilization level). 
Insufficient or “dysfunctional” OXPHOS in cancer cells, 
as compared to normal cells, is hypothesized to arise 
from the well-documented and universal abnormalities 
in the number, structure, dynamics, and collective func-
tional efficiency of the mitochondrial population [39–45].

To our knowledge, there are no models of cancer that 
retain aggressive and limitless replicative capacity in the 
simultaneous absence of glycolysis and glutaminolysis, 
despite substitution with non-fermentable OXPHOS 
fuels (e.g., ketone bodies, fatty acids, pyruvate, lactate), as 
recapitulated by essential nutrient constraints in cell cul-
ture [46–48]. Similarly, neither basic nor clinical research 
to date supports the notion that tumors with certain 
mutations (e.g., BRAF V600E) can effectively metabolize 
fatty acids or ketone bodies to maintain constant growth 
after effective dual targeting of glucose and glutamine, 
even if they may do so over short experimental endpoints 
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as long as SLP flux is maintained [49–52]. While it is pos-
sible that insights from in  vitro mechanistic studies do 
not fully translate to the in  vivo condition [53–55], we 
hypothesize that the minimal bioenergetic requirements 
for cell viability (ATP sufficiency) may be applicable 
across model systems, even if heterogeneity in fuel utili-
zation may arise once energy constraints have been met. 
Therefore, historical controversies regarding the role of 
OXPHOS in cancer may have originated from imprecise 
definitions; as stated by Otto Warburg himself, “we have 
here a perfect example of a dispute about words” [56, 57].

To avoid these issues, we identify “respiratory insuf-
ficiency” or “insufficient OXPHOS” as the thera-
peutically exploitable fact that cancer cells, unlike 
normal cells, appear unable to proliferate exclusively 
via OXPHOS when SLP is absent, not by the relative 
degree of mitochondrial function they may still retain 
[58–60]. Residual OXPHOS is a quantifiable category 
but, from a purely utilitarian point of view, it may 
not be able to support long-term proliferation in the 
absence of sufficient SLP flux, representing a targeta-
ble difference between non-tumoral and tumoral cells 

[61]. The proposed metabolic dependencies are sum-
marized in Fig. 1. In this model, oxidative fuel utiliza-
tion becomes functionally constrained by baseline SLP 
requirements and absolute OXPHOS efficiency, not 
substrate uptake or labeling, accounting for the rela-
tive metabolic heterogeneity across tumors (for exam-
ple, in ketolytic activity) [62–65]. From a translational 
perspective, attaining a sufficient level of nutrient stress 
in  vivo will likely require whole-body physiological 
adaptations (recapitulating fasting metabolism) as well 
as pharmacological interventions (metabolic inhibi-
tors), reducing the effective ATP/biosynthetic output of 
the glycolytic and glutaminolytic pathways even if the 
input metabolites are still present in the tumor micro-
environment. In preclinical models, dietary interven-
tions that induce or “mimic” fasting have been tested 
to protect normal cells and potentiate the anti-tumoral 
effects of such metabolic inhibitors [66–69], but most 
clinical trials to date involved differential stress sensiti-
zation to conventional chemoradiotherapy rather than 
diet-drug combinations directed exclusively at cancer 
metabolism [70, 71].

Fig. 1 Simplified diagram of normal and cancer cell metabolism, with special emphasis on ATP synthesis (SLP and OXPHOS). All living cells 
must meet their ATP demands. Normal cells, including growth‑regulated proliferating cells, generate the majority of ATP through the multi‑step, 
ultrastructure‑dependent process of OXPHOS. Cancer cells exhibit abnormalities in mitochondrial structure, function and/or number, as well 
as increased biosynthetic and redox demands, leading to a comparatively reduced efficiency of OXPHOS and compensatory upregulation 
of cytosolic and mitochondrial SLP. Cytosolic SLP is driven by glycolytic flux but is not synonymous with the Warburg effect (aerobic lactic acid 
fermentation). Oxidative metabolites can feed into the TCA cycle through catabolic pathways (glycolysis, glutaminolysis, lactate oxidation, 
β‑oxidation, ketolysis), contributing to both SLP and OXPHOS; the total ATP yield is determined by nutrient availability and transport, as well 
as pathway flux, integrity, and efficiency. Cell division can be constrained by biosynthesis in the excess (assuming sufficient ATP), but energy 
is limiting for survival under nutrient depletion. The goal of KMT is to synergize with other therapies by targeting SLP flux in cancer cells 
and upregulating OXPHOS in normal cells, increasing metabolic stress and whole‑body ecological competition
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Regrettably, standard GBM therapeutics are not 
designed to take advantage of the metabolic vulnerabil-
ities of cancer cells; instead, they focus on DNA repair 
mechanisms. In fact, as an unintended consequence of 
non-specific cell damage, radiotherapy has been shown 
to induce detrimental metabolic changes and inflam-
mation in the tumor microenvironment, impacting 
the phenotype of recurrence, which should be weighed 
against the desirable short-term cytotoxic or immune-
potentiation effects [72–75]. In a similar fashion, temo-
zolomide may increase systemic inflammation and 
tumor-driver mutations [76, 77]. Both brain-directed 
radiotherapy and systemic antineoplastic therapy 
can result in neurological complications (including 
brain tissue necrosis, brain atrophy, and neurocogni-
tive impairment), which should be prevented if long-
term survival is expected [78]. Furthermore, as part of 
supportive therapy, patients with brain cancer often 
receive corticosteroids (e.g., dexamethasone) to reduce 
vasogenic edema [27, 79]. The injudicious use of corti-
costeroids has been questioned due to correlations with 
reduced survival via dysregulated glucose metabolism, 
increased insulin signaling and immune suppression 
[80–88]. Current recommendations specify that “the 
lowest dose of steroids should be used for the shortest 
time possible,” in contrast with the “traditional, often 
uncritical use of steroids” [80], but this advice has yet 
to be widely adopted [89–91]. Finally, bevacizumab, 
a second-line anti-angiogenic therapy, may harbor 
unwanted adverse effects by facilitating distal tumor 
invasion through the neural parenchyma and perivas-
cular network, without offering improvements to long-
term survival [92–94].

While conventional chemoradiotherapies in GBM are 
well-intentioned, not addressing the unique character-
istics of cancer metabolism may hinder their long-term 
effectiveness. Given the emphasis on patient autonomy 
in contemporary medical ethics, we advocate for well-
informed patients to actively participate in their dis-
ease management, fostering supportive follow-up care 
to explore suitable clinical trials and complementary 
therapies [95–98]. Therefore, to reach a broader patient 
population, novel evidence-based treatments must be 
developed, tested, and accepted into standard clinical 
guidelines. In pursuit of this goal, accumulating evidence 
suggests that targeting glycolysis and glutaminolysis 
while transitioning the patient’s whole-body physiology 
into therapeutic ketosis could be an effective and trans-
lationally viable antineoplastic strategy [35]. Winter and 
colleagues coined the term “Ketogenic Metabolic Ther-
apy” (KMT) to describe the systemic metabolic changes 
induced by very low carbohydrate (ketogenic) diets, calo-
rie restriction, and/or fasting [99].

In the current framework, KMT is redefined and 
expanded as an “umbrella” term that includes long-term 
dietary, physical activity, and lifestyle modifications 
(requiring objective, measurable biological outcomes), 
combined with pharmacological targeting of glycolysis, 
glutaminolysis, and the tumor microenvironment. KMT 
is increasingly recognized as an emerging therapeutic 
approach for a broad range of cancers, while also improv-
ing quality of life [99–114].

Very low-carbohydrate, moderate-protein, high-
fat ketogenic diets (KDs) induce a metabolic state of 
increased glycolytic substrate competition for cancer cells 
while also elevating non-fermentable ketone bodies to 
serve as an alternative energy source in normal cells [63, 
99, 115–117]. In this context, KDs, calorie restriction, 
and fasting are anti-angiogenic, anti-inflammatory, and 
anti-invasive and can facilitate cancer cell death through 
multiple mechanisms [118–126]. Additionally, ketone 
body metabolism will enhance the ΔG′ATP hydrolysis in 
normal cells, thus awarding normal cells a bioenergetic 
advantage over tumor cells [127, 128]. A reduction in the 
rate of SLP flux will also lower the acidity in the tumor 
microenvironment, subsequently reducing inflammation 
and potentially limiting distant metastases [129]. Activi-
ties associated with cancer cell proliferation, such as bio-
mass synthesis, are also inhibited by restricting the rate 
of glucose and glutamine fermentation [130, 131].

Dietary KMT has been found to interact synergistically 
with other drugs, procedures, and specific molecular 
tumor characteristics such as the IDH1-R132H mutation 
[132–134]. Gain-of-function IDH mutations can induce 
the production of 2-hydroxyglutarate (2-HG), an “onco-
metabolite” with aberrant epigenetic and immunosup-
pressive effects [135]. At the same time, accumulation 
of 2-HG may inhibit SLP flux, limiting the biomass and 
energy synthesis required for tumor growth [136–139]. 
From a metabolic perspective, in the specific case of 
high-grade glioma, IDH1-R132H could be viewed as a 
“therapeutic” mutation. In light of the inconsistent clini-
cal outcomes with IDH inhibitors in high-grade glio-
mas so far [140, 141], we and others have proposed that 
“instead of shutting down mutant IDH enzymes, exploit-
ing the selective vulnerabilities caused by them might be 
another attractive and promising strategy” [142].

It is important to mention, however, that dietary 
changes alone are unlikely to control tumor progression 
in most patients. While rigorous calorically restricted 
KDs and fasting may be effective in targeting glycolysis, 
insulin, and growth signaling, they do not adequately 
inhibit glutaminolysis [143–147]. Consequently, it will 
be essential to design and test KMT protocols with 
drugs that also inhibit glutaminolysis at the substrate, 
enzyme, and/or transport level. Current perspectives on 
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leveraging cancer metabolism are mixed and often con-
tradictory, although most agree on the need for combi-
natorial approaches [70, 148]. We propose that the best 
possibility of effective metabolic therapies will involve the 
simultaneous targeting of glucose and glutamine (spe-
cifically, SLP flux) after whole-body adaptation to thera-
peutic ketosis, leading to a normalization of the tumor 
microenvironment and enhancement of OXPHOS func-
tion and adaptive capacity in normal cells [129, 132, 143].

It should be noted that most early clinical trials 
explored additivity with SOC of either dietary modifi-
cation alone (e.g., KDs, caloric restriction, amino acid 
depletion, fasting-mimicking protocols) [149], or single 
pathway metabolic inhibition (e.g., systemic glucose or 
insulin regulation via metformin or SGLT2 inhibitors; 
glycolysis inhibitors such as 2-Deoxy-D-glucose; glu-
taminolysis inhibitors such as CB-839 or DON prodrugs) 
[70].

In preclinical models, KDs in monotherapy induce pre-
dominantly favorable survival-prolonging effects across 
syngeneic and xenogeneic models, with variability in out-
comes attributable to methodological differences (timing 
of intervention, tumor localization, diet composition, and 
degree of caloric restriction) [150]. Experimental factors 
such as failure to consistently reduce glycemia/insulin 
(despite increases in ketonemia), diet initiation (before or 
after tumor implantation), composition (ketogenic ratio), 
and palatability, as well as ad  libitum or restricted feed-
ing, could account for diverging results even when using 
identical tumor models [151, 152].

For high-grade glioma therapy, a cumulative total of 
187 patients have been treated in more than 13 clinical 
studies thus far [153], demonstrating feasibility, safety, 
and tolerability, as well as improvements in quality of 
life and self-management [154, 155]. Additionally, more 
than 60 ongoing clinical trials are testing KDs in combi-
nation with standard, immune-based, and other targeted 
approaches (such as PI3K inhibitors), in GBM and other 
solid malignancies [156]. Unfortunately, there are no 
established “therapeutic targets” for clinical implementa-
tion beyond achieving a minimal state of ketosis (usually 
at a very modest ≥ 0.3 mM capillary βHB) and, if possible, 
sporadic but not sustained improvements in glycemia or 
insulin signaling; these have not been considered primary 
endpoints in any published study so far. If we concep-
tualize the KD as a bona-fide systemic “drug” interven-
tion to reduce glycolytic flux, we lack data describing the 
area under the curve (AUC) of different ranges of glyce-
mia and the anti-tumor effects across time. We suggest 
that future clinical trials should be designed to reach 
surrogate biomarkers of biological efficacy (such as real-
time monitoring and stratification based on glycemia 
and ketonemia ranges, or chronic insulin suppression), 

rather than relying on self-reported dietary adherence. 
Conversely, there has been extensive preclinical develop-
ment of pharmacological inhibitors aimed at nearly all 
metabolic pathways identified as upregulated or aberrant 
in cancer, subsequently added to various SOC regimens 
upon reaching clinical testing (without dietary interven-
tion) [157]. Canonical pathways include glycolysis and 
glutaminolysis, but also other amino acids (methionine, 
arginine, tyrosine), the electron transport chain, fatty 
acid oxidation, lactate transport, mutant IDH enzymes, 
the kynurenine pathway, and even ketolysis. We have lim-
ited our proposal to mechanisms related to ATP synthe-
sis, with the intention of establishing a clear therapeutic 
prioritization (SLP > OXPHOS). The goal of this frame-
work is to formalize and build upon previous studies by 
constructing rational combinatory diet-drug approaches.

We acknowledge that the pleiotropic effects of dietary 
KMT may be equally mediated through decreases in 
growth signaling (insulin/IGF-1, AMPK, PI3K/AKT/
mTOR axis), immune responses, post-translational epi-
genetic modification, gut microbiome, and/or regulation 
of the systemic hormonal milieu, rather than direct sup-
pression of ATP-generating pathways [158, 159]. It is also 
possible that cancer cells exhibit increased sensitivity to 
SLP targeting due to biosynthetic or redox requirements 
 (NAD+/NADH,  NADP+/NADPH) [130, 160]. However, 
we argue that bioenergetics are interconnected with all 
the above, with major relevance for cell viability under 
metabolic stress, while intra/extracellular growth factors 
and biosynthesis may be determining of maximal prolif-
eration (assuming baseline viability, and thus ATP suffi-
ciency). Accordingly, it can be expected that healthy cell 
populations will display unique vulnerability thresholds 
to combined diet-drug metabolic pressure, carrying a risk 
of toxicity (e.g., rapidly proliferating immune and epithe-
lial cells are more sensitive to pharmacological inhibition 
of glutamine) [161]. While we hypothesize that neoplas-
tic cells are comparatively more susceptible to metabolic 
stress due to SLP dependency, mutational burden, and 
dysregulated growth itself, we aim to minimize off-target 
effects by following the press-pulse therapeutic princi-
ple, where drugs with a narrow therapeutic index (such 
as cytotoxic agents or metabolic inhibitors) are carefully 
dose-escalated and applied intermittently on a “meta-
bolic priming” dietary KMT baseline [132].

Purpose and rationale
Building upon this knowledge, we offer a framework for 
future research on KMT with additional pharmacologi-
cal targeting of glycolysis and glutaminolysis as a mini-
mally toxic therapeutic strategy for GBM management. 
The resulting shift to fat-derived ketone body metabo-
lism allows for the relative reduction of glucose and 
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glutamine-driven SLP flux while maintaining normal 
cell function by upregulating oxidative metabolism and 
increasing competitive evolutionary pressure [105, 145, 
162]. The proposed drugs and strategies are intended to 
further restrict biosynthetic and bioenergetic pathways 
in tumor tissues. We have constructed this proposal 
by synthetizing the expert opinion of researchers and 
clinicians involved in previous preclinical and transla-
tional KMT research. Importantly, while this approach 
was developed primarily for GBM, the mechanistic 
basis should be applicable to all malignant cancers 
exhibiting SLP dependency on glucose and glutamine, 
as defined above [35, 115]. In this case, GBM was 
selected due to poor SOC outcomes and ethical consid-
erations, as well as the potential benefit of therapeutic 
ketosis to seizure management and intracranial edema, 
rather than intrinsic bioenergetic characteristics [163].

It is important to acknowledge that forthcoming clin-
ical research on cancer metabolism will likely involve 
combined testing with standard chemoradiotherapeu-
tics as well as novel targeted and immune-based treat-
ments, as the natural consequence of the incremental 
“one drug-one target” model [164, 165]. Under this 
research paradigm, current SOC serves as the gold 
standard, while KMT is tested as a secondary, adjuvant 
therapy. In this scenario, the utility of KMT is being 
demonstrated to enhance the anti-tumor effects of 
radiotherapy, chemotherapy, and targeted approaches 
(e.g., VEGF and immune checkpoint inhibitors) across 
different cancer models, via reductions in tumor nutri-
ent utilization, hypoxia, inflammation, invasion, and 
angiogenesis, as well as regulation of pathways mediat-
ing tumor growth such as mTOR, insulin-PI3K, AMPK-
PGC-1α, autophagy, epigenetic signaling, immune 
recognition, and multiple other pleiotropic mecha-
nisms [68, 126, 158, 166–171]. In this way, changes in 
metabolism are being shown to mimic or potentiate the 
action of pharmaceutical agents, often without addi-
tional toxicity.

In the proposed framework, KMT is positioned as an 
evolutionarily advantageous prerequisite “metabolic 
priming” baseline upon which other cytotoxic therapies 
are introduced to assess potential synergy, additivity, or 
antagonism, rationalizing research priorities. It is an 
implicit assumption that clinical studies exploring preci-
sion nutrition or single metabolic inhibitors as adjuncts 
with SOC will be carried out in parallel, particularly for 
tumors where SOC offers a well-established track record 
of survival benefit; in cases where SOC may be deemed 
insufficient (as determined by the patient), a conceptual 
reframing of KMT at the foundational level may provide 
an ethical opportunity to explore the effectiveness of 
standalone diet-drug metabolic targeting.

A growing body of evidence suggests that well-formu-
lated KDs can slow tumor progression, but most pub-
lished reports to date have lacked a robust, modifiable 
protocol for clinical implementation and data collection. 
There is a lack of consensus for optimal KD therapy 
in cancer, leading to a heterogeneity of methodologi-
cal approaches and lapses in effective monitoring [153]. 
Poor standardization has led to difficulties with inter-
study comparability, as not all protocols described as 
“ketogenic” will offer therapeutic benefits in cancer-spe-
cific settings [172, 173]. A general, isocaloric/eucaloric, 
ad libitum KD is not synonymous with dietary KMT. The 
application of KDs in cancer should be nuanced and must 
fulfill a set of measurable biological criteria, with each 
patient exhibiting an individualized response over time. It 
is therefore essential to record data systematically (ideally, 
in real time), correlating cumulative physiological changes 
with anti-tumor effects. As such, the glucose-ketone 
index (GKI) was developed as a unifying biomarker for 
assessing “biological” compliance and outcomes in brain 
cancer [174]. Rather than relying on self-reported dietary 
compliance, any evaluation of clinical efficacy should be 
correlated with measurements of blood glucose and blood 
ketones (which can then be used to derive the GKI), as 
well other objective biological measurements (e.g., insu-
lin, metabolic imaging, metabolomics), allowing for inter-
study comparisons and external validity under different 
methodologies [102, 134, 145, 175].

It should be noted that a single dietary intervention is 
unlikely to affect all patients equally despite standardi-
zation efforts, with population-level genetic variability 
across endocrine and metabolic phenotypes [176, 177]. 
We recognize that real-world, large-scale clinical imple-
mentation of KMT will carry inherent heterogeneity that 
cannot (and perhaps should not) be avoided, granting 
patients and clinicians the freedom to adapt to specific 
and changing needs. However, it is necessary to develop 
initial best practices for KMT to serve as an evidence-
based reference point without sacrificing therapeutic 
efficacy, addressing challenges raised in previous reports 
and being mindful of resource constraints for clinical 
research in smaller, financially constrained institutions.

Ketone body metabolism in cancer: why therapeutic 
ketosis?
Russell Wilder at the Mayo Clinic formally developed 
the KD as a treatment for pediatric epilepsy in the 1920s, 
although various forms of very low carbohydrate diets 
and fasting have been used empirically for seizure con-
trol, diabetes, obesity, and other diseases since antiquity 
[178]. Prescription of KDs for epilepsy declined with the 
advent of new anticonvulsants but continues to be a cor-
nerstone in the treatment of drug-resistant epilepsy as 
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well as inborn errors of carbohydrate metabolism [179–
181]. Recently, KDs experienced a major resurgence in 
clinical applications, particularly for insulin resistance, 
obesity, and neuroprogressive disorders [158, 182, 183], 
while ketogenically compensated glucose modulation as 
a cancer therapy has been described more than 80 years 
ago in a case series by Brünings [184].

Achieving stable therapeutic ketosis requires adjust-
ments to the macronutrient composition of the diet. The 
KD is defined as a dietary pattern that is very low in car-
bohydrates (typically less than 20  g/day, which depletes 
liver glycogen and initiates ketogenesis), adequate in 
high-quality protein (sufficient for muscle maintenance, 
without excessive contribution to endogenous glucose 
production), and variable in fat, depending on whether 
it is intended to be hypocaloric (loss of adipose tissue), 
eucaloric (weight maintenance), or hypercaloric (recov-
ery of adipose tissue). Restricted consumption of car-
bohydrates elicits a physiological metabolic adaptation 
favoring fat-derived fuels over glucose, resulting in the 
endogenous production of water-soluble metabolites 
collectively known as ketone bodies: acetoacetate, beta-
hydroxybutyrate (βHB), and acetone [128, 185].

Acetoacetate and βHB are synthesized predominantly 
in the liver and exported into the bloodstream, serving as 
a “glucose substitute” for energy and biosynthesis in mito-
chondrially healthy cells [186]. Acetone is a breakdown 
product of acetoacetate that is released in breath and 
urine [187]. Acetoacetate and βHB are readily oxidized by 
all major organs, except for the liver, which relies on fatty 
acid oxidation and gluconeogenic substrates under gly-
cogen depletion [188, 189]. After ketogenic adaptation, 
ketone bodies can supply more than 50% of the energy 
requirements of the human body, and over 70% of the 
brain’s energy needs [190–192]. From an endocrine per-
spective, dietary carbohydrate restriction reduces plasma 
glucose excursions, bolus insulin spikes, and basal insu-
lin levels, removing insulin’s suppression of key enzymes 
controlling ketogenesis [193, 194]. Moreover, glucagon 
secretion decreases over time, further reducing basal 
hepatic glucose output (glycogenolysis and gluconeogen-
esis), glucose availability, and basal insulin [195]. A more 
in-depth discussion regarding physiological require-
ments for exogenous carbohydrates and endogenous glu-
cose production, as well as metabolic acidosis, is offered 
in Additional File 1: Appendix 1.

Standardizing KDs for biological efficacy
Different versions of the KD have been described in both 
scientific and lay texts, often including conflicting advice, 
especially for cancer management. This has led to wide-
spread confusion in the public sphere and obstacles for 
clinical implementation. In the following sections, we 

summarize ketogenic procedures that have been tested 
for GBM. These practical definitions may help in choos-
ing the intervention that best suits a particular need, with 
most seeking as much flexibility as possible without com-
promising therapeutic efficacy. It is important to remem-
ber that efforts to improve diet adherence, which are vital 
for patient accrual, are still bound by the GKI or other 
objective metrics of metabolic and tumor responses.

The GKI is the ratio of glucose to βHB, the two metab-
olites of interest in dietary KMT [174]. Glucose and 
ketones are assessed by capillary blood sampling using 
specialized handheld glucometers or extrapolated from 
interstitial fluid measurements using real-time wearable 
monitors. Steady-state GKI levels are used to estimate the 
degree of therapeutic ketosis and other biological pro-
cesses, such as insulin signaling, growth-promoting path-
ways, and systemic inflammation, which are not readily 
accessible for repeated or real-time sampling, and are 
generally correlated with persistent decreases in glyce-
mia and increases in ketonemia (resulting in a decreased 
GKI) [102]. In future clinical trials, it will be essential to 
capture the AUC and variability of glycemia and ketone-
mia over extended study intervals to establish statisti-
cal correlations with therapeutic efficacy, as short-term 
metabolic changes are not expected to induce sufficient 
competitive metabolic pressure. To facilitate longitudinal 
tracking, an updated version of the GKI tracking tool is 
provided in Additional File 2: GKI tracking spreadsheet.

The baseline dietary strategy is to follow a macronutri-
ent distribution that facilitates ketogenic adaptation, pre-
serves lean body mass (LBM), and maintains an adequate 
micronutrient balance, while keeping sustained daily GKI 
values below 2.0, ideally near 1.0 or below (Fig.  2). In 
clinical studies, averaged weekly, monthly, and yearly val-
ues should be collected for a data-driven appraisal of effi-
cacy [134]. Continuous, uninterrupted maintenance of 
therapeutic GKI ranges may be preferable to occasional, 
short-term, or cyclical strategies [145]. It is important to 
note that dietary KMT is defined by a gradual, sustained, 
whole-body metabolic and endocrine adaptation in fuel 
partitioning. Absolute blood glucose levels should be 
consistently below 90 mg/dl or 5 mM; this is an arbitrary, 
statistically derived cut-off that has been associated with 
improved survival but does not define a known biologi-
cal constraint [85, 102, 196, 197]. Preclinical and clinical 
evidence suggests that patients should aim for the low-
est, physiologically safe and sustainable glucose and insu-
lin levels [198–202], where the proxy indicating effective 
insulin suppression is via elevated blood ketone levels 
throughout the day, especially during the evening pre-
prandial time [203, 204]. Patients with cancer can present 
with normal to low glycemia (and consequently low fast-
ing insulin) due to tumor hypermetabolism, concealing 
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metabolic dysregulation; it is therefore valuable to meas-
ure glycemia, ketonemia, and insulin secretion dur-
ing the feeding period (e.g., before dinner). A morning 
fasted reading can be misleading, as healthy populations 
(and even type 2 diabetics) can present with low levels of 
nutritional ketosis after the overnight fast [205, 206].

Classic KD: ketogenic ratios, macronutrients, diet 
adherence
The classic KD developed by Wilder is still prescribed in 
the epilepsy field. In adults, the patient’s energy needs are 
initially calculated using standard formulas in a 3:1 to 4:1 
ratio of fat grams to combined carbohydrate-plus-protein 
grams. The main benefit of this approach is that both car-
bohydrate and protein are kept very low (together, < 10% 
of total calories), making it easier to reach higher levels of 
ketosis. There is consensus on how to maintain this diet, 
several medical foods are available, contraindications are 
clearly defined, and potential side effects can be proac-
tively monitored and addressed [207–209]. The classic 
KD may be too rigid for broad clinical application and 
adherence across heterogeneous cancer populations, but 
it serves as a well-documented reference template from 
which to extrapolate introductory practical guidance 

(e.g., ketogenic recipes and cookbooks), long-term 
patient monitoring and diet troubleshooting [208].

Recently, macronutrient distributions have been 
adapted for classic KDs, as they are more intuitive than 
diet ratios. The macronutrient distribution (% energy) of 
the classic KD is commonly defined as 88–90% fat, 6–8% 
protein, and 4% carbohydrate. It should be noted that the 
daily energy intake will determine the absolute quantity 
of macronutrients (grams), making flexible distributions 
less suitable for higher caloric expenditures. For example, 
a KD consisting of 10% carbohydrate for a total caloric 
intake of 2500 kcal/day equals to approximately 60 g/day, 
which may be incompatible with therapeutic ketosis for 
most patients. At the physiological level, reaching suffi-
cient liver ketogenesis typically involves a carbohydrate 
intake below 20–50  g/day, depending on the metabolic 
fitness of the individual [210]. Consequently, the maxi-
mum threshold of carbohydrate intake that still allows 
for the desired degree of ketosis and glycemic control 
will need to be individually titrated, followed by protein 
for muscle maintenance, and fat for the desired caloric 
density. An automated calculator based on the Mifflin-St 
Jeor equation is provided in Additional File 2: GKI track-
ing spreadsheet; it is important to note that predictive 

Fig. 2 Illustrative diagram of blood glucose, βHB, and GKI during different phases of dietary KMT. Note that the suggested glucose and ketone 
levels are representative of inter‑individual and intra‑individual variability, not prescriptive. In this example, after initiating a GKI‑adjusted KD, 
glycemia is maintained below 5 mM and ketonemia above 1–2 mM. The proposed therapeutic zone has been achieved once glucose levels are 
less than two‑fold ketone levels (e.g., 5 mM glucose, 2.5 mM βHB, GKI ≤ 2), and optimal when glucose levels are equal or lower than ketone levels 
(e.g., 4 mM glucose, 4 mM βHB, GKI ≤ 1). Absolute glucose levels should be at their physiological minimum. Dietary, stress, or therapy‑induced 
excursions (e.g., corticosteroids) should be minimized. Exercise‑induced gluconeogenesis is expected and offset via skeletal muscle demand. As 
a long‑term therapeutic strategy, dietary KMT may continue as long as there is evidence of persistent disease or risk of recurrence. Real‑time GKI 
tracking is recommended in research settings to avoid ambiguity regarding biological outcomes
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equations can underestimate the energy requirements of 
patients with cancer, which are ultimately dictated by the 
desired weight evolution over time [211, 212].

Diet adherence to classic high-ratio KDs can be per-
ceived as challenging in free-living adults [213]. However, 
highly motivated patients with an adequate understand-
ing of the scientific rationale have been able to maintain 
strict compliance over prolonged periods [214, 215]. 
Patients with cancer may require more protein to pre-
serve LBM, especially if the diet is calorically restricted 
[216, 217]. In this regard, KDs with adequate protein and 
micronutrient content (such as paleolithic KDs), which 
induce a lower than baseline, stable GKI, could improve 
feasibility and long-term compliance [134, 203, 218, 219].

Calorically restricted KD (KD‑R): reaching GKI targets 
while preserving muscle mass
The classic KD was originally intended to be eucaloric 
or unrestricted (“ad libitum”) to allow for the appropri-
ate maturation of pediatric patients with epilepsy, and 
while therapeutic benefits have been reported in pre-
clinical cancer models in both unrestricted and calori-
cally restricted amounts [150, 220], most clinical studies 
focused on eucaloric feeding to promote weight main-
tenance [114, 155, 221]. A failure to reduce proliferation 
could be a consequence of persistently elevated glucose 
availability, endocrine, or growth-promoting signaling 
due to energy surplus, despite shifting to a ketogenic 
state [222, 223].

In contrast, KDs consumed in calorically restricted 
amounts, resulting in a gradual, deliberate reduction of 
fat mass (with preserved muscle mass), could produce 
better cumulative, steady-state GKI values, in tandem 
with the underlying metabolic and signaling effects, 
such as insulin suppression [102, 134, 224, 225]. Calorie 
restriction (independent of macronutrient composition) 
increases metabolic pressure on tumor cells by modu-
lating nutrient-sensing pathways [226–228]. Similarly, 
reduced energy intake makes it easier to adapt to the 
higher overall fat intake despite enhanced satiety [229].

The KD-R protocol should be personalized in dura-
tion, periodicity, and degree, while being monitored to 
ensure mild calorie restriction does not increase the risk 
of malnutrition. After setting a carbohydrate limit to 
induce ketogenesis and calculating protein needs to pre-
serve muscle mass, the energy density of the diet will be 
adjusted by total fat intake. It may be necessary to exclude 
calorie restriction in malnourished or underweight 
patients (as a rule, BMI < 18). In practice, patients with 
lower body fat percentages can follow KD-R in a cyclical 
fashion, introducing a return to previous isocaloric con-
ditions or a slight caloric surplus when weight recovery 
is required; these intervals should still be GKI-adjusted, 

that is, adhering to ketogenic ratios and aiming for the 
lowest possible GKI.

In all cases, excessive LBM loss should be avoided. 
A classic KD-R with a high ketogenic ratio is typi-
cally too low in protein for long-term muscle main-
tenance in adults. Emerging evidence suggests that a 
well-formulated, protein sufficient KD may exert global 
anti-cachexic effects by decreasing pro-inflammatory 
cytokines and metabolites (inducing a protein-sparing 
metabolic shift) [230–234], with further anti-catabolic 
effects mediated by ketone bodies [235–238]. There-
fore, protein intake should be modified for sufficiency, 
monitoring the impact on GKI, glucose variability, and 
ketogenesis. Adequate protein intake has either neutral 
or minor effects on ketogenesis and insulin signaling, as 
well as hepatic/renal gluconeogenesis [239–241]. Total 
protein intake can be started at the minimum recom-
mended daily intake of 0.8  g/kg of body weight (for a 
sedentary individual in isocaloric conditions), and then 
increased progressively based on factors related to pro-
tein needs, such as age, physical activity, or health status 
[242–244].

It is important to emphasize that dietary amino acids 
cannot be restricted for clinically relevant glutamine 
depletion, as glutamine levels remain relatively stable 
through de novo synthesis regardless of diet composi-
tion [245, 246]. Physical activity coupled with a low-car-
bohydrate diet as well as prolonged fasting are potential 
non-pharmacological strategies to achieve transient or 
chronic reduction in plasma glutamine, respectively 
[247–250].

Supplementation of medium‑chain triglycerides (MCTs) 
and exogenous ketone bodies
MCTs (particularly C8 caprylic acid) are a type of dietary 
fat that can be supplemented to potentiate liver ketogen-
esis [251]. MCTs bypass normal fat digestion and diffuse 
across the intestinal membrane into the hepatic capil-
lary bed, where they are readily converted into ketones. 
Mild gastrointestinal side effects may arise during the 
initial weeks of supplementation, with tolerance improv-
ing through gradual dose escalation [252–254]. KDs 
with supplemental MCTs typically pre-specify a set daily 
intake (e.g., 2–8 tbsp, or 10–30% of total daily calories in 
the form of MCTs), which is intended to improve ketone-
mia but also to lower other sources of fat, simplifying 
trial design and improving adherence [222, 255–257]. A 
possible drawback of a diet enriched in purified MCTs, as 
opposed to naturally occurring high-fat foods, is that they 
are comparatively devoid of micronutrients, particularly 
liposoluble vitamins. For this reason, overall food choices 
should emphasize micronutrient density [258–261], 
especially if the baseline KD is composed exclusively of 
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medical foods that may be missing essential nutrients, 
or if significant amounts of dietary supplements such as 
MCTs are needed to achieve specific biological outcomes 
(e.g., GKI stability or cachexia prevention).

Analogously, exogenous ketone bodies (e.g., ketone 
esters or ketone salts) are a novel dietary formulation that 
can be taken orally to temporarily enhance circulating 
βHB levels [262]. Beyond their bioenergetic role, ketone 
bodies act as pleiotropic signaling molecules with poten-
tial antineoplastic benefits on their own [100, 263–268]. 
It is unclear, however, whether short-term decreases 
in the GKI value via supplemental MCTs or exogenous 
ketones, without a global metabolic transition to thera-
peutic ketosis by chronic KDs and/or fasting (increased 
oxidative efficiency of fat-derived metabolites), would 
retain protective effects against SLP inhibition in normal 
cells [269]. Elevated blood glucose and ketone levels are 
typically not found during the natural physiology of calo-
rie restriction or fasting [270]. In the context of dietary 
KMT, exogenous ketones can also have a measurable 
impact on glycemic regulation [271–275]. Therefore, sup-
plementation of ketone bodies could be considered to 
further enhance the therapeutic efficacy of KD/KD-R, 
particularly under circumstances of reduced compliance, 
or to reach the higher levels hypothesized to mitigate 
cancer cachexia [230, 235, 236].

In conclusion, supplementation of MCTs and exog-
enous ketones can be viewed as a valuable tool to 
empower patients to modulate their ketonemia, ketogen-
esis, and gluconeogenesis, without being an absolute 
requirement. Boosting ketone levels while following a 
GKI-adjusted KD may be especially useful during the 
initial adaptation to fasting, lower limits of euglycemia, 
radiotherapy, hyperbaric medicine, and conventional and 
adjuvant drug therapies [103, 276–280].

Flexible protocols and quantifiable criteria of compliance
Beyond the classic KD, several dietary regimens to 
achieve various degrees of ketosis have been described 
in clinical studies, including the modified Atkins diet 
(MAD) (60–65% fat, 25–35% protein, 5–10% carbohy-
drate) [281]; high-protein KDs (60% fat, 35% protein, 
5% carbohydrates) [282]; paleolithic KDs (based on ani-
mal fat, meat, and offal with a 2:1 fat:protein ratio) [218, 
283]; Mediterranean KDs (< 15% carbohydrates, based on 
green vegetables, olive oil, fish, and meat) [284, 285]; gen-
eral, non-otherwise specified KDs (70–80% fat, 10–20% 
protein, < 10% carbohydrate) [286]; plant-based, low car-
bohydrate diets (generally not sufficiently ketogenic) 
[287]; as well as other targeted and cyclical variations, 
with or without calorie restriction [288]. Intermittent 
or prolonged water-only fasting can be included regard-
less of diet composition [145, 289, 290]. The primary 

differences are in the maximum limit of carbohydrate 
and protein, the timing of feeding, and intermittent 
calorie restriction, as well as the underlying food selec-
tion to accommodate personal dietary preferences. 
Nevertheless, diet flexibility should be contingent upon 
the patient’s individual physiological response. Biologi-
cal, measurable, and quantifiable effects (not subjective 
biases or beliefs) will ultimately determine the suitabil-
ity of the chosen foods. If glycemia/ketonemia, and, by 
extension, the sustained GKI values are not in the pre-
specified target zone, the selected diet may not be appro-
priate for the patient.

Given the flexibility in implementation and interper-
sonal variability, any prospective KD protocol for cancer 
therapy should favor unbiased compliance biomarkers 
(e.g., longitudinal, steady-state GKI), as well as periodic 
blood markers and surrogate endpoints (e.g., compre-
hensive metabolic panel, tumor biomarkers, anatomic-
metabolic imaging, metabolomics). Critical benchmarks, 
laboratory tests, and troubleshooting for dietary KMT 
are presented in Table 1. Any KD protocol, whatever the 
practical food selection may be, should fulfill the follow-
ing criteria:

Allow for a sustained GKI of 2.0 or below, ideally 1.0 or 
below. This involves the lowest physiologically achievable 
absolute glucose levels (ideally less than 5 mM or 90 mg/
dl), minimal glycemic variability (difference between 
the highest and lowest glucose level), as well as reduced 
insulin signaling and the related growth-promoting and 
energy-sensing pathways (e.g., PI3K, mTOR). Glucose 
and βHB are expected to fluctuate depending on carbo-
hydrate and calorie restriction, as well as fasting dura-
tion, protein intake, drug therapies, hormonal balance, 
emotional stress, circadian rhythms, and nutritional 
status (vitamin and mineral sufficiency). Reaching the 
proposed GKI targets implicitly translates into lowering 
carbohydrate to < 20–50  g/day, regardless of ketogenic 
ratios or macronutrient percentages, unless concurring 
with a high level of physical activity [302]. Technolo-
gies such as continuous glucose monitoring (CGM) and 
continuous ketone monitoring (CKM) should be lever-
aged during the learning phase as the patient explores the 
impact of different foods on GKI variability [303–305]; 
it should be noted that CKM sensors are currently avail-
able as non-medical devices [306], while clinical testing 
of dual glucose-ketone monitoring systems is underway 
[306–308].

(1) Allow for a sustained GKI of 2.0 or below, ideally 
1.0 or below. This involves the lowest physiologi-
cally achievable absolute glucose levels (ideally less 
than 5 mM or 90 mg/dl), minimal glycemic variabil-
ity (difference between the highest and lowest glu-
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cose level), as well as reduced insulin signaling and 
the related growth-promoting and energy-sensing 
pathways (e.g., PI3K, mTOR). Glucose and βHB are 

expected to fluctuate depending on carbohydrate 
and calorie restriction, as well as fasting duration, 
protein intake, drug therapies, hormonal balance, 

Table 1 Key criteria for GKI‑adjusted KD/KD‑R implementation and troubleshooting

Implementation criteria Troubleshooting

GKI ≤ 2.0, ideally ≤ 1.0, with absolute glucose levels < 90 mg/dl (5 mM) A knowledgeable dietitian should be available to assist patients in optimiz‑
ing biological changes (e.g., maintaining deep ketosis), beyond ensuring 
diet compliance. Reduce total carbohydrate intake to less than 5% of total 
calories, replace carbohydrate with fat sources. Review food tracking to detect 
hidden carbohydrate sources or ingredients that may impact glycemia even 
if present in small amounts that only minimally change the food nutri‑
tion label. Pay attention to hidden carbohydrates in dietary supplements 
and excipients, as well as cephalic insulin secretagogues due to sweet taste 
stimulus, such as “keto‑friendly” zero‑calorie sweeteners (e.g., xylitol, erythritol, 
allulose, stevia). If necessary and feasible, reduce total caloric intake (KD‑R), 
e.g., reduce calories by 5% increments each week until GKI goals are met. 
Implement intermittent fasting (e.g., 16:8 or 20:4), alternate‑day fasting (ADF), 
fasting‑mimicking diet (FMD) or prolonged water‑only fasting. High fiber 
KDs can hinder therapeutic GKI targets. An excess of dietary fiber can reduce 
stomach acidity, thereby decreasing cholecystokinin stimulated bile synthesis 
and excretion into the small intestine, which could lead to reduced essential 
fatty acid and fat‑soluble vitamin uptake [291]. Real‑time monitoring via CGM/
CKM coupled with event logging can detect sources of variability, such as cor‑
tisol, sleep disturbances or pharmacological interference (e.g., corticosteroids). 
Medium chain triglycerides (MCTs) are more ketogenic than long‑chain fatty 
acids and can be incorporated into meals to increase ketosis. Ketone supple‑
ments can provide a temporary boost in ketonemia but are not a substitute 
for nutritional ketosis. Consider the impact of physical activity, stress manage‑
ment and circadian rhythms. To facilitate GKI targets, evaluate the suitability 
of gluconeogenesis and glycolysis‑targeting drugs (Additional File 5: Table S2)

Preserve LBM, recover fat stores if gradually depleted. Weight (fat) loss 
during KMT should be controlled and therapeutic, improving general 
and metabolic health

Optimize protein quality and quantity, especially during chronic calorie restric‑
tion or higher levels of physical activity. Protein intake in patients with cancer 
and normal kidney function is typically set above 1 g/kg/day and, if possible, 
over 1.5 g/kg/day [216]. Impact on GKI of higher protein targets should be 
monitored. It is important to account for the protein content in natural food 
sources; for instance, fattier cuts of meat tend to have slightly lower protein 
compared to lean cuts. Total fat intake will be variable to meet satiety and/
or protocol (e.g., caloric restriction). Cyclical caloric surplus (from fat and pro‑
tein, not carbohydrate), while maintaining ketosis, can mitigate unintentional 
weight loss. Advanced disease driving tumor‑host pro‑catabolic effects 
and intensive treatment can aggravate pathological weight loss (muscle wast‑
ing) that must be differentiated from dietary KMT

Adequate micronutrient intake, avoid initial symptoms of keto‑adap‑
tation (“keto flu”) and potential long‑term side effects. Baseline assess‑
ment, blood panel analysis, and monitoring of health status

Metabolic adaptation can be facilitated by a gradual decrease in carbohy‑
drate intake (e.g., change meal composition and frequency in stages until all 
meals conform to ketogenic ratios) [292, 293]. Assess micronutrient status 
if food choices are not sufficient to reach the recommended levels of essential 
nutrients: supplement as needed. Assess electrolyte balance: supplement 
as needed. Ensure adequate hydration. Consider supplementation to prevent 
both common and rare side effects, such as constipation (fiber and non‑
digestible carbohydrates, when necessary), hypocarnitinemia (L‑carnitine) 
or nephrolithiasis (e.g., potassium citrate) [294–296]. Ensure adequate protein 
intake, as long‑term side effects can develop due to excessive protein 
restriction. Monitoring should be adjusted to the demands of SOC and KMT 
interventions. Suggested laboratory testing (not prescriptive nor exhaustive): 
hepatic/renal function (including cystatin C), hemogram, glucose and insulin 
homeostasis (e.g., HbA1c, fructosamine, HOMA‑IR, IGF‑1 and binding proteins, 
c‑peptide), hormone testing (e.g., vitamin D, thyroid, glucagon, osteocalcin), 
inflammation markers and lipid panel, including triglycerides, LDL particle size, 
apoB100/apoA‑I ratio and lipoprotein (a) (traditional cholesterol surrogate 
markers might not be applicable for patients following KDs) [297–300]. Oral 
glucose tolerance tests (OGTT) with glucose, insulin and c‑peptide sampling 
can be informative to define the insulin‑response phenotype in healthy 
individuals but may not be advisable in the context of sustained dietary KMT 
and active cancer [195, 301]
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emotional stress, circadian rhythms, and nutritional 
status (vitamin and mineral sufficiency). Reaching 
the proposed GKI targets implicitly translates into 
lowering carbohydrate to < 20–50  g/day, regard-
less of ketogenic ratios or macronutrient percent-
ages, unless concurring with a high level of physi-
cal activity [302]. Technologies such as continuous 
glucose monitoring (CGM) and continuous ketone 
monitoring (CKM) should be leveraged during the 
learning phase as the patient explores the impact 
of different foods on GKI variability [303–305]; it 
should be noted that CKM sensors are currently 
available as non-medical devices [306], while clini-
cal testing of dual glucose-ketone monitoring sys-
tems is underway [306–308].

(2) Patients are often faced with uncertainty regard-
ing “optimal” GKI targets that would be safe and 
physiologically attainable, depending on their 
evolving disease status and concomitant therapies. 
Two empirical GKI baselines can be determined to 
serve as idiosyncratic biological reference points. 
Once completing the initial ketogenic adaptation 
via dietary modification, a fasting GKI baseline can 
be measured after at least 72 h of water-only fast-
ing (e.g., days 4 to 7 of a 5–7-day water-only fast), 
which produces GKI values unaffected by dietary 
inputs [145]. A zero carbohydrate, paleolithic KD 
with intermittent fasting (e.g., one meal per day) 
can provide a second baseline that is representative 
of the lowest GKI variability during minimal dietary 
inputs (fat and protein only, in a compressed feed-
ing window) [134, 218, 283, 309]. The influence of 
preexisting conditions, such as insulin resistance, 
can be captured with a repeated measures design. 
All subsequent diet adjustments can be compared 
to these two benchmarks. During study planning 
and subsequent data analysis, diet flexibility should 
not compromise GKI targets: “biological” compli-
ance outweighs self-reported or perceived “dietary” 
compliance.

(3) Adequate protein intake to maintain LBM without 
disrupting GKI, starting at 0.8 g/kg of body weight 
and typically settling between 1.2 and 1.5  g/kg for 
most individuals [310]. Higher initial targets are 
justified in certain patient demographics (e.g., older 
age), preexisting comorbidities or anticipated nega-
tive impacts of the cancer diagnosis (e.g., loss of 
appetite during active cancer treatment, or limited 
physical activity due to cancer fatigue) [311]. Pro-
tein quality should be a focus to ensure adequate 
amino acid ratios without forcing protein overcon-
sumption [312].

(4) Changes in LBM should be monitored on a regu-
lar basis. Patients at borderline low weight or with 
insufficient LBM may alternate between KD-R 
and GKI-adjusted eucaloric/surplus intervals to 
preserve and rebuild muscle tissue. Although the 
systemic metabolic alterations induced by tumor-
derived factors secreted directly by GBM cells are 
still under study, functional impairment leading to 
undernutrition and side effects of treatment may 
contribute to progressive loss of skeletal muscle 
[313–316]. Importantly, irreversible or acceler-
ated cachexia has not been reported in clinical tri-
als examining KDs across several cancer subtypes 
(despite variable reductions in fat mass), but under-
weight patients were often excluded a priori, and 
most studies were designed to prevent weight loss 
by minimizing calorie restriction [221, 231, 232, 
317]. It will be important to examine the impact of 
well-formulated KDs on cancer-related cachexia in 
the clinic, ensuring adequate nutrition and protein 
sufficiency while managing its multifactorial ori-
gins, such as systemic inflammation and endocrine 
dysregulation, which may be difficult to capture in 
preclinical models [236, 318–321]. Off-label and 
research-phase anti-catabolic agents, anti-inflam-
matory drugs, and appetite regulators can synergize 
with exercise and nutrition therapy to prevent mus-
cle wasting [322, 323].

(5) Adequate micronutrient and vitamin intake. It 
is preferable to obtain all dietary elements from 
nutrient-dense foods (e.g., eggs, beef, oily fish, offal) 
[324]. If the included foods cannot maintain ade-
quate levels of certain essential nutrients or miner-
als, specific multivitamin and mineral supplemen-
tation is warranted [325]. Monitor for secondary 
hypocarnitinemia and supplement if needed [326]. 
Macronutrient and micronutrient tracking can be 
simplified using diet-tracking software [327, 328].

Lessons learned from clinical research evaluating 
KDs for GBM
Large-scale clinical integration of precision nutrition 
for cancer management still poses a challenge, with no 
consensus on best practices [290, 329]. Consequently, 
patients tend to freely choose their dietary plan [330, 
331]. KMT is a potential biomarker-driven metabolic 
therapy to lower glycolytic SLP, insulin, and oncogenic 
signaling below baseline, while also stabilizing the tumor 
microenvironment, contingent upon biological compli-
ance and impacts from other therapies [332, 333]. Addi-
tional File 3: Table  S1 provides relevant examples of 
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realistically achievable glucose and βHB values that have 
been reported in studies examining KDs in high-grade 
brain tumors; additional cancer subtypes have been dis-
cussed in [290, 334–336].

Concerns have been raised about the feasibility of 
reaching and sustaining the hypothetical therapeutic 
window of KMT, suggesting that “dietary-induced hypo-
glycemia as a treatment for brain tumors may be simplis-
tic” [222]. While a high degree of personal motivation, 
specific domain knowledge, and (typically) the assistance 
of a KD-trained professional is indeed critical for strict 
diet adherence, more research is needed to establish 
causal links between quantifiable metabolic changes and 
therapeutic outcomes, as well as synergistic pharmaco-
logical interventions to enhance efficacy [337]. Unfor-
tunately, most GBM studies investigating KDs have not 
consistently tracked glycemia/ketonemia or other bio-
chemical parameters across time (e.g., serial metabolic 
imaging or metabolomic profiling), thus patient strati-
fication based on total cumulative exposure to different 
ranges cannot be performed [153]. A minority of studies 
documented daily glucose and ketone readings at differ-
ent non-standardized endpoints but did not report raw 
data. To embody the goals of precision nutrition, future 
clinical studies will have to measure, report, and analyze 
biological responses separately for each patient, regard-
less of outcome, avoiding group averages [338, 339].

Common pitfalls in clinical research methodology
Clinical studies evaluating KMT may fail due to early 
oversights in experimental design that can be mitigated 
with the right knowledge and preparation. Table 2 sum-
marizes recommended and alternative methods for die-
tary KMT implementation.

• Trials often lack ongoing communication and sup-
port to retain participants and reduce non-com-
pliance. Recent technologies such as smartphone 
monitoring applications, telemedicine, and real-time 
biofeedback (e.g., CGM/CKM or multi-metabolite 
sensors) may alleviate this issue. Frequent communi-
cation with a dietitian/nutritionist trained in KMT as 
well as a “research kitchen” may improve adherence 
(e.g., NCT03451799 and NCT03535701). Tracking 
and optimization of the desired biological mark-
ers should be emphasized over self-reported dietary 
compliance during nutritional counseling [340].

• It is exceptionally difficult to gain Institutional 
Review Board (IRB) approval for KMT trials with-
out concurrent chemoradiotherapeutics, even if their 
contribution to the long-term management of GBM 
remains limited [7]. Considering the inadvertent con-

sequences on tumor metabolism, it will be important 
to design GBM trials with at least one KMT interven-
tion arm in which, after surgical debulking, carefully 
selected components of SOC (e.g., conventional frac-
tionated radiotherapy) will be tentatively delayed for 
a clinically acceptable period until an interim evalu-
ation of response. Based on predefined outcomes 
(partial remission or stable disease), SOC would be 
delayed again until a subsequent evaluation or dis-
ease progression. In this paradigm, KMT refers to 
both dietary and pharmacological targeting of tumor 
metabolism, as defined in the protocol below, not a 
generic KD as monotherapy.

• Results from several GBM trials indicate that chemo-
radiotherapy can be safely delayed for up to 6 weeks 
after surgery; in some trials, delaying chemora-
diotherapy has been paradoxically associated with 
improved outcomes [341–345]. It is not inconceiv-
able, however, that delaying chemoradiotherapy may 
have a negative impact on PFS or mOS, despite dubi-
ous influence on long-term survival [346–348]. Con-
sequently, well-informed GBM patients should be 
given the choice to enroll into any prospective group 
after evaluating the abovementioned survival data 
(e.g., dietary and pharmacological KMT, or in com-
bination with dose-adjusted temozolomide and/or 
radiotherapy). Alternatively, patients that are unable 
or unwilling to undergo some or all aspects of SOC 
could be offered enrollment in diet-drug KMT trials. 
In a similar way, the active monitoring period in low-
grade gliomas confers an ethical opportunity for the 
evaluation of non-toxic therapeutic strategies such 
as dietary KMT, following the recent example of dual 
inhibitors of mutant IDH1/2 enzymes, which have 
been tested specifically to “delay the potential long-
term toxic effects” of adjuvant chemoradiotherapy 
[349]. If relative disease stability is achieved despite 
tumor persistence, repeated surgical debulking could 
be considered to reduce tumor load [134, 350].

• IRB approval for KMT as monotherapy or KMT with 
only partial SOC will likely demand frequent meta-
bolic and/or anatomic imaging to ensure safety and 
ongoing tumor evaluation, with a modifiable treat-
ment plan. Accordingly, in a fixed trial design, no 
GBM patient would be deprived of the potential ben-
efit of chemoradiotherapy, which would be offered to 
all patients who request it (see Additional File 4: Fig-
ure S1). Clinical evaluation of KMT is ideally suited 
for adaptive trial designs, such as platform trials with 
response-adaptive randomization, given that it com-
bines a metabolic priming baseline with additional, 
elective, synergistic press-pulse therapies that require 
a flexible implementation, compared to a common 
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control group [351, 352]. A core set of interventions 
in the form of biomarker-driven dietary and pharma-
cological KMT could be included in the shared mas-
ter protocol, but subsequent trial arms would need 
to be adjusted with experimental or salvage therapies 
based on pre-defined outcomes during each interim 
analysis.

• Eligibility and exclusion criteria should consider the 
functional demands of the interventions to maximize 
sample size without compromising efficacy. Eligibility 
considerations include disease status, side effects or 

sequalae from prior therapies, comorbidities, perfor-
mance status, organ function, and contraception and 
pregnancy testing; conversely, exclusion criteria must 
include the absolute contraindications of KDs, such 
as rare inborn errors of metabolism [353].

• While well-controlled dietary studies where prepared 
food is provided to all participants are ideal in terms 
of diet adherence [209], offering patients to self-select 
their experimental group and foster self-efficacy may 
be advantageous in studies where therapeutic out-
comes are linked to active participation [354, 355]. 

Table 2 Recommended and alternative methods for GKI‑adjusted KD/KD‑R implementation

Recommended methods Alternative methods

Instruct patients to measure blood glucose and βHB at least twice daily: 
after the overnight fast (morning), and 1–2 h prior to the last meal (even‑
ing). Real‑time CGM/CKM is the preferred method for data collection. In 
future clinical research, it will be essential to track glucose/ketones con‑
tinuously in order to stratify patients according to time spent in discrete 
GKI ranges. CGM/CKM can be validated via finger‑prick sampling, reduc‑
ing testing burden. If only CGM is available, it can be coupled with capil‑
lary ketone monitoring due to lower general variability in ketonemia. 
Pre‑specified GKI targets should be considered primary trial endpoints

Measure GKI just once daily (ideally in the pre‑prandial evening period, 
after the overnight fast, or prior to the first meal if practicing intermittent 
fasting, maintaining consistency across measurements). Urinary ketones 
are not accurate for GKI calculation but can inform sufficient carbohy‑
drate restriction during diet initiation (first 2 weeks) [332]. Testing burden 
can be reduced after attaining diet stability (i.e., food selection remains 
unchanged), unless in a clinical trial. For long‑term diet maintenance, 
glucose levels can be inversely correlated with ketosis: if carbohydrates are 
sufficiently restricted, maintaining a stable lower range of euglycemia (e.g., 
≈ 60 mg/dl) is likely accompanied by higher ketonemia

KD/KD‑R should be assigned depending on initial weight and estimated 
fat mass. Patients can incorporate fasting in a cyclical manner, as dictated 
by their adipose tissue reserves. For example, patients with sufficient fat 
mass can implement a 3–7‑day water‑only fast or fasting mimicking diets 
(FMDs) every 1–2 months [368]. Obese/overweight patients can extend 
fasting beyond 7 days under medical supervision. An average, temporary 
weight loss of ≈ 3 kg can be expected after a 3‑day fast, increasing to ≈ 
8 kg after 20 days [369]. A significant fraction of this weight comprises 
glycogen‑associated water storage and intestinal contents, which are 
quickly recovered [370, 371]. Under proper implementation, LBM reduc‑
tion is minimal, and most fat mass is subsequently regained [371, 372]. 
Gradual adipose tissue recovery is feasible if the caloric density of a low 
carbohydrate diet is sufficient [373, 374]. Fasting should not be limited 
or discouraged unless there is a risk of cancer cachexia, but each fasting 
period should be planned and supervised. Inexpensive and non‑invasive 
methods such as bio‑electrical impedance can be used to track approxi‑
mate changes in fat and LBM over time within the same individual

Underweight patients should not practice prolonged fasting without alter‑
nating cycles of weight recovery. Loss of LBM should be avoided. A trained 
dietitian should advise patients on implementing a small caloric surplus 
with resistance/strength training to recover muscle and fat mass after fast‑
ing or KD‑R intervals, while still adhering to GKI targets. If body fat stores are 
too low, it may be preferable to avoid fasting and focus on GKI while main‑
taining an isocaloric diet. Ongoing changes in average weight (over several 
weeks) will dictate whether the diet is effectively calorically restricted, euca‑
loric or hypercaloric, regardless of self‑reported or estimated caloric intake. 
Safety and contraindications of water‑only fasting are discussed in [375]; 
special attention should be given to electrolyte balance and refeeding. If 
the patient presents with low fat mass (but normal weight/BMI), a FMD may 
be considered to avoid protein breakdown while potentiating therapeutic 
GKI ranges [376]

In treatment‑naïve GBM patients, dietary KMT can be initiated as a neo‑
adjuvant strategy with the aim of reducing tumor growth rates. In 
the absence of life‑threatening symptoms, after surgery, select elements 
of SOC that may be antagonistic could be preemptively scheduled 
but delayed until completing a standalone KMT period (including 
both dietary and pharmacological targeting, as defined in the treat‑
ment timeline), for a conservative maximum of 6 weeks. If sufficient 
radiologic responses or disease stability can be confirmed, radiotherapy 
and/or chemotherapy can be delayed again while intensifying KMT, 
for no more than 6 weeks, and reevaluated periodically as long as regres‑
sion or stability are maintained. During SOC delay, it may be essential 
to perform sequential imaging to corroborate metabolic responses (see 
Additional File 4: Figure S1)

This “if/then” experimental design would be applicable to histologically 
and molecularly confirmed GBM (before or after debulking surgery), 
given that delaying chemoradiotherapy for up to 6 weeks has shown 
little to no impact on PFS and mOS (when no other treatment was given, 
representing a window of opportunity to institute KMT) [341–346]. Outside 
clinical trials, patients are encouraged to discuss survival data regard‑
ing SOC initiation with their treating physician [377]. It should be noted 
that the long‑term survival of GBM with current SOC is less than 10% 
at 5 years, independent of timing or dosing schedule. Follow‑up with imag‑
ing and bloodwork should be provided to all patients regardless of their 
desired treatment, preventing patient abandonment [378, 379]

Patients will be asked for informed consent after they receive edu‑
cation as to how dietary KMT will be administered as a therapy, 
including how non‑compliance could have a detrimental impact 
on the expected benefits. Follow‑up should be frequent enough 
to detect early trends in tumor progression. Researchers should have 
flexibility in trial design to react to this eventuality, intensifying SOC, 
metabolic inhibition, or microenvironment targeting

Even though strict adherence to the diet, biomarkers and treatment pro‑
tocol is necessary, some flexibility should be offered in the timeline of diet‑
drug implementation. Patients that require second‑line salvage therapies 
not previously defined in the trial design could be reported as individual 
cases in more heterogeneous cohorts
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Similarly, in a recent KD trial originally planned with 
two diet arms, patients reported explicit disinter-
est to participate in the control diet arm (i.e., low-fat 
treatment) [114]. Therefore, elucidating biological 
mechanisms and maximal theoretical efficacy of any 
prospective diet-drug combination may benefit from 
pilot studies designed in non-randomized, “ideal” 
scenarios (e.g., self-selected patients with high func-
tional status), proceeding to randomization in the 
general population after the most promising inter-
ventions and biomarker thresholds have been identi-
fied.

• Most feasibility and tolerability trials have not aimed 
for the lowest sustained GKI, instead focusing on diet 
flexibility to ensure better adherence. Compliance is 
a major challenge, and the diet needs to be as easy to 
follow and palatable as possible (e.g., prepared meals, 
medical foods, enteral feeding), but simplicity should 
not outweigh biological efficacy even at the concep-
tual phase. Motivated, well-informed patients should 
understand that objective biomarkers of compliance 
(such as cumulative time in specific GKI ranges) 
may influence therapeutic outcomes [102]. Informed 
consent should be obtained not due to expected side 
effects, which are preventable or manageable, but to 
make patients consciously aware of the importance 
of active participation. Therefore, patients should be 
instructed to pursue the lowest possible GKI, beyond 
the trial’s basic requirements. Moreover, correlations 
with outcomes should be stratified according to bio-
logical readouts rather than dietary compliance.

• Patients are seldom encouraged to reinforce GKI 
targets after the intervention period, which is gen-
erally no longer than 1–3  months due to budgetary 
constraints. Studies that are limited in time may fail 
to produce robust results given that achieving stable 
therapeutic ketosis often encompasses several weeks, 
and it is unknown whether long-term maintenance 
impacts the risk of recurrence. If a trend towards 
improved PFS or mOS is detected, it will be impor-
tant to weigh the influence of KMT and SOC, which 
also requires extended follow-up. Ultimately, GKI-
adjusted KD/KD-R should be considered a long-term 
strategy rather than a limited intervention.

• Randomized trials assign patients to the KD inter-
vention while maintaining “usual” (preferred) diet in 
the control group; a higher demand is consequently 
placed on the intervention group, especially given 
the overwhelming physical, emotional, and financial 
burdens that accompany a cancer diagnosis [356, 
357]. Sufficient guidance and understanding of the 
scientific rationale are therefore essential for patient 
accrual, compliance, and optimization of therapeu-

tic outcomes. As dietary KMT has been associated 
with improvements in quality of life and self-efficacy 
across a broad range of cancers [197, 221, 358–361], 
it will become important to develop insurance mod-
els and healthcare policies that facilitate access and 
minimize out-of-pocket costs [362].

• KMT is often tested in smaller, single-center, inves-
tigator-initiated trials. Given that researchers pro-
posing such trials may feel it would be unethical to 
exclude any potential participants, patients unable to 
keep GKI or predefined surrogate markers in specific 
ranges could be used as internal controls. Contempo-
raneous external controls (from the post-Stupp era) 
are also a consistent source of comparative survival 
data [23, 363, 364]. Understandably, dietary KMT 
studies of sufficient length cannot be easily double-
blinded or placebo-controlled.

• Individual case reports are highly heterogeneous 
and lack statistical power, even though they may be 
a more appropriate methodology for personalized 
medicine [365]. Case reports should be written fol-
lowing systematic reporting guidelines, such as the 
CARE guidelines [366, 367]. In contrast, larger clini-
cal trials will require a multi-disciplinary team capa-
ble of tracking and supporting each patient individu-
ally. GKI allows for quantitative comparisons across 
different cohorts and types of cancer, but the dietary 
and/or pharmacological interventions to achieve GKI 
targets should be personalized.

Patient education and data collection
After enrollment, each participant should be provided 
with the following:

• Description and informed consent for the proposed 
therapies. Dietary and pharmacological KMT could 
include a combination of GKI-adjusted KDs (with 
or without caloric restriction), fasting, and drug/
adjuvant therapies (e.g., metabolic inhibitors, drug 
repurposing, investigational compounds, hyper-
baric medicine, hyperthermia, photo/sonodynamic 
approaches), with elective and protractible 6-week 
delay of chemotherapy and/or radiotherapy prior to 
image-based reevaluation. Dietary KMT implemen-
tation requires some level of scientific literacy and 
active participation. Well-informed patients will be 
ultimately responsible for dietary compliance, and 
for requesting support if they are unable to meet bio-
marker targets. Patient education is key to fostering 
motivation and biological efficacy. Working with a 
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dietitian/nutritionist knowledgeable in the initiation 
and maintenance of KMT is extremely helpful.

• Tools to monitor blood glucose and ketones. Patients 
should be counseled on how to use finger-prick glu-
cose/ketone meters, initially measuring at least twice 
a day to capture data variability. GKI tracking allows 
patients to actively engage in the treatment process, 
which could improve compliance. Researchers can 
expand this testing schedule; for example, 1–2  h 
post-meal when new foods or changes in portion 
size are introduced. Patients should also have lee-
way to reduce the testing burden after the end of the 
trial, eventually measuring only a few days per week 
if food selection remains unchanged. Depending on 
the trial budget, real-time CGM ± CKM is preferred, 
delivering more robust data collection and biofeed-
back [304, 305]. Longitudinal tracking should be 
emphasized to allow for correlations with long-term 
outcomes. Urine acetone strips (urinary ketones) 
and breath acetone analyzers are often poorly corre-
lated with blood ketone levels and thus discouraged 
in research settings; however, they can be useful for 
outpatient self-tracking, when verified by gold-stand-
ard testing methods [204, 380, 381].

• Preapproved food lists, meal templates, sample meal 
plans, and recipes to streamline macronutrient track-
ing. Patients and caregivers will be expected to keep 
food records, adhere to templates, or use diet track-
ing software, especially during the diet transition 
phase [327]. A photographic diary may help with 
logging and data sharing, with the added benefit of 
time-stamping the feeding schedule. In the future, 
image-based food recognition algorithms could 
reduce logging efforts [382, 383]. There may be cir-
cumstances, however, where short-term adherence 
to simplified lists of “allowed/excluded” foods could 
suffice, if GKI and biomarker targets are reached.

• The healthcare staff should be prepared to answer 
general questions and help with diet implementa-
tion. Routine follow-up and troubleshooting sessions 
are recommended, particularly during the adapta-
tion period (e.g., first appointment within 2  weeks 
to ensure biological endpoints are met). Compliance 
and motivation can be significantly improved when 
patients are held accountable via external monitor-
ing, coaching, and remote care [384, 385]. In con-
trast, compliance may be compromised if disagree-
ments exist between family members or external 
healthcare providers regarding the suitability of the 
treatment plan. Reaching consensus is encouraged, 
with examination of the scientific literature to resolve 
any questions regarding the rationale and expected 
outcomes of all proposed therapies, including SOC. 

General and disease-specific educational resources 
to implement long-term KD plans are available for 
both patients and clinicians [208, 311, 334, 386–390]. 
Given the wide access to low-carbohydrate recipe 
books for general audiences, it is important to reiter-
ate that the suitability of the chosen plan should be 
determined by monitoring the lasting induction of 
the desired biological outcomes (e.g., sustained GKI 
or biomarker targets, such as insulin suppression), 
rather than any particular set of food recommenda-
tions, irrespective of the goal or medical condition 
they were originally designed for (e.g., weight loss, 
epilepsy, diabetes mellitus).

• Appropriate psychological and emotional support, 
with individual or group counseling [391].

Key steps in the treatment timeline
All prospective participants should undergo a baseline 
evaluation before they are considered for KMT, including 
medical history, nutritional and anthropometric assess-
ment, bloodwork, and anatomical/metabolic imaging; 
this is particularly relevant before pharmacological or 
systemic interventions, which may not be adequate for all 
patients. Psychological and neurocognitive health often 
suffers greatly after a GBM diagnosis, which can impact 
the ability of patients to follow treatments which require 
active participation [392]. Therefore, it is also important 
to assess if a proactive approach based on health owner-
ship reduces morbidity and improves quality of life [393].

A chronological timeline is crucial for record-keeping 
and establishing associations between procedures and 
therapeutic outcomes or side effects. Figure  3 provides 
an overview of KMT for high-grade glioma and Table 3 
summarizes key steps in the suggested clinical imple-
mentation of dietary and pharmacological KMT. The 
steps in this timeline are based on the “press-pulse” 
therapeutic strategy [132]. GKI-adjusted KD/KD-R and 
fasting are implemented as a metabolic “press” to restrict 
fermentable fuels, reduce inflammation, and normalize 
the tumor microenvironment, while drugs that simulta-
neously target glycolysis, glutaminolysis, and other can-
cer-associated pathways are defined as either “press” or 
“pulse” interventions, depending on pharmacodynamics 
and safety. Representative diet-drug combinations have 
been presented in case reports and pilot clinical trials, 
although most studies thus far emphasized feasibility 
and additivity with SOC, rather than integrating dietary 
and pharmacological KMT as a prerequisite, continuous, 
biomarker-driven “metabolic priming” baseline [103, 107, 
109, 134, 279, 394–397].

The suggested KMT framework is constructed in a 
modular fashion, with intrinsic flexibility during both 
routine clinical application and research design. It is not 
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expected that all steps of the timeline, such as the testing 
of diverse diet-drug combinations, will be implemented 
by a single research institution. Understandably, the 
potential costs and resources will vary greatly depending 
on the number and complexity of the proposed interven-
tions (e.g., from patient education and monitoring by a 
single dietitian, up to a multi-arm, multi-site platform 
clinical trial). As described in Fig.  4, the basic require-
ments of KMT can be adjusted to fit various clinical 
contexts. Even though adjustments to nutrition and over-
the-counter supplementation are within the patient’s 
purview, the use of prescription medication involves the 
cooperation of a physician trained in metabolic oncol-
ogy. Lack of familiarity, inertia of prescribing habits and 
fear of legal vulnerability can be reasons for not pursu-
ing off-label use within standard practice [398–400]. 
Recently, educational resources and training programs 
have emerged to address these barriers [386, 401]. In 
research settings, any therapy beyond SOC must be pre-
sented in concordance with local deontological guide-
lines, with IRB-approval and informed consent. Outside 
research, dietary KMT (KD/KD-R and fasting) can be 
implemented freely by the patient, but active drug repur-
posing or compassionate use (as allowed by local regu-
lations) requires a clear rationale and informed consent 
[402–404]. In the latter case, the primary goals should 

be safety, quality of life, and improved therapeutic out-
comes, with emphasis on reporting the collected data to 
applicable regulating bodies (under certain compassion-
ate use programs) as well as the broader scientific com-
munity [403, 405–407].

Tumor diagnosis and shared decision‑making
It is preferable, if possible, to make the initial tenta-
tive diagnosis using non-invasive neuroimaging tech-
niques (CT, MRI, PET) to avoid the risk of exacerbating 
tumor growth or iatrogenic cell dissemination through 
inflammatory oncotaxis [408–411]. Liquid biopsy can 
be informative for diagnosis and disease monitoring in 
extra-neural cancers but has not been sufficiently vali-
dated in GBM [412]. Initial tissue biopsy prior to surgery 
would be more applicable to cases where it can provide 
actionable information (that is, when histological, molec-
ular, or metabolic characterization dictates subsequent 
therapies, beyond simple staging). In tumors suitable for 
maximal safe resection, histopathological and molecu-
lar analysis after maximal debulking would be preferred 
to fine-needle biopsy, serving as the gold-standard for 
differential diagnosis [413, 414]. Patients should be 
informed about the risk/benefit of contrast agents such 
as gadolinium and iodinated contrast media [415].

Fig. 3 Overview of KMT implementation in high‑grade glioma research, including both dietary KMT (GKI‑adjusted KD/KD‑R and fasting, aimed 
at increasing chronic metabolic pressure on cancer cells while favoring OXPHOS metabolism in normal tissues), as well as pharmacological 
KMT (targeting of glycolysis and glutaminolysis in a press‑pulse design, in addition to cancer‑associated pathways to normalize the tumor 
microenvironment)
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Table 3 Recommended timeline for dietary and pharmacological KMT research in GBM

Key steps in the clinical implementation of KMT Overview

1. Tumor diagnosis and shared decision‑making Brain tumor pathology is the gold standard for differential diagnosis. The preliminary diagnosis 
can be made via non‑invasive techniques, as applicable (CT, MRI, PET; liquid biopsy can be 
informative in extra‑neural tumors but has not been validated for GBM). If maximal surgi‑
cal resection is feasible, histopathologic and molecular characterization can be performed 
after surgical debulking. Initial tissue biopsy in tumors suitable for later subtotal or complete 
resection is more valuable when it provides actionable therapeutic guidance; otherwise, final 
histopathological analysis can be obtained from surgical samples. Patients are encouraged 
to request detailed, written documentation regarding expected SOC outcomes (long‑term 
survival and quality of life) to facilitate informed consent

2. Blood panel analysis Evaluation of basal health status will determine the best therapeutic approaches, as well 
as feasibility of KMT and chemoradiotherapy. It is advisable to formulate a well‑defined schedule 
for tumor evaluation. In GBM, radiologic imaging is necessary due to lack of reliable blood‑based 
biomarkers

3. Metabolic stratification Previously established bioenergetic phenotypes can be used as estimates to guide metabolic 
therapy. Glucose and glutamine are universally recognized as necessary for tumor growth, 
regardless of utilization pathway. In a research context, metabolite flux and substrate depend‑
ency of tumor samples can be assessed using in vitro/ex vivo bench top and in vivo meta‑
bolic imaging techniques. In the case of chemo/radiotherapy delay, clinical trials may require 
baseline and serial anatomic/metabolic imaging (e.g., every 3–6 weeks) to corroborate favorable 
responses

4. Surgical debulking The extent of surgical resection is one of the strongest prognostic factors in GBM. If present‑
ing with life‑threatening symptoms, surgery should be performed as soon as possible, ideally 
with intraoperative fluorescence mapping (e.g., 5‑ALA or novel research‑phase metabolic 
markers). In the absence of such symptoms, a short watchful waiting period with dietary KMT 
initiation (GKI‑adjusted KD/fasting) could be considered prior to debulking, potentially facilitat‑
ing better surgical delineation

5. Initiate dietary KMT KMT can be initiated before or after surgery. Self‑reported dietary compliance and/or food 
records are not reliable sources of data in research settings. Instead, cumulative GKI ranges, 
or similar unbiased biological compliance markers, should be predefined as primary or surrogate 
study endpoints. Patients with good general health (as per clinical history, bloodwork, and strati‑
fication of disease) and sufficient body fat mass may initiate KMT with prolonged water‑only 
fasting (≥ 3–5 days), which generally achieves GKI ≤ 2.0 during the fasting interval. Alternatively, 
it is possible to gradually transition to a GKI‑adjusted KD/KD‑R, which should be maintained 
as long as the tumor persists. Patients with sufficient body fat reserves may consider longer 
fasting periods (> 1–3 weeks), which are safe under medical supervision and will provide longer 
cumulative exposure to reduced GKI as well as autophagic effects

6. Radiation therapy For the clinical testing of combined dietary and pharmacological KMT, given the conflicting 
metabolic consequences of brain‑directed radiation, a request to modify the timing of radio‑
therapy may be proposed by the investigators: late‑stage adverse effects should be weighed 
against short‑term anti‑tumoral or synergistic benefits [11, 73, 75]. For IRB approval, radiotherapy 
could be conditionally delayed or used at low‑dose regimens until signs of disease progression. 
During informed consent, patients should inquire about the absolute survival increase provided 
by radiotherapy along with the possible short‑ and long‑term side effects. If the patient chooses 
a multimodal approach, dietary KMT may provide radiosensitizing potentiation, although some 
benefits may be blunted by radiation‑induced destabilization of the tumor microenvironment 
and concomitant steroid administration. Untargeted radiation techniques should be avoided 
in all cases

7. Drug treatments Ideally, all drug treatments (especially metabolic inhibitors and chemotherapy) should be 
administered in a GKI ≤ 2.0 range. Corticosteroids should be used only when unavoidable, 
at the minimum effective dose, and frequently reassessed with the goal of de‑escalation as soon 
as clinically feasible. After achieving a therapeutic GKI‑adjusted baseline, glycolysis and glutami‑
nolysis should be targeted simultaneously; various diet‑drug combinations can be evaluated 
to this effect (e.g., targeting insulin signaling via repurposed drugs such as metformin or SGLT2 
inhibitors, or direct metabolic inhibition using research‑phase glucose and glutamine antago‑
nists). Further stabilization of the tumor microenvironment or targeting of cancer‑associated 
pathways, including immune‑based therapies, can be initiated after the effective restriction 
of SLP metabolism while increasing whole‑body adaptation to nutritional ketosis

8. Physical activity An individualized dose of physical activity that promotes long‑term muscle maintenance 
and aerobic fitness is recommended. The type of exercise should be based on the patient’s 
training experience and current exercise capacity. Resistance training preserves muscle mass, 
increasing a major physiological glucose sink, further enhancing ketogenesis through decreased 
insulin secretion
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There has been increased emphasis on early cancer 
detection, including direct-to-consumer liquid biopsy 
and diagnostic imaging, but lacking consensus regarding 
dubious findings [416–418]. When facing benign or slow-
growing tumors with conservative management [419, 
420], patients may decide to request information about 
dietary KMT during active surveillance. It is important to 
mention that, despite mechanistic rationale and potential 
normalization of risk factors such as inflammation and 
metabolic syndrome [421–423], we are not aware of any 
longitudinal clinical trial exploring whether KDs and/
or cyclical fasting could reduce the risk of high-grade 

transformation. Primary and tertiary cancer prevention 
have been longstanding targets for dietary modification 
[424, 425]. However, we recognize that proposing such 
interventional trials may be challenging due to lengthy 
follow-up periods, and thus encourage retrospective 
studies on patients that have chosen to follow long-term 
ketogenic lifestyles on their own [203].

After the most probable diagnosis has been deter-
mined, patients should be offered a follow-up consulta-
tion to explore treatment options and analyze expected 
outcomes. This step is applicable to all types of cancer. 
In ideal circumstances, an empathetic conversation 

Table 3 (continued)

Key steps in the clinical implementation of KMT Overview

9. Stress management Given that active participation and motivation is required for successful KMT implementation, 
patients should receive adequate psychological and emotional support to enhance quality 
of life, reduce non‑compliance, and avoid stress‑related therapy excursions

10. Evaluation of outcomes and therapy adjustments Radiologic imaging should be performed within 2–8 weeks of KMT initiation. Current guidelines 
recommend brain imaging every 2–4 months during the first 3 years from diagnosis [26]. More 
frequent reevaluation may be necessary in clinical trials of combined diet‑drug KMT, especially 
if proposing changes to the SOC schedule. Treatment can be adjusted in the event of tumor 
progression. Repeated surgical debulking can be planned for slow growing tumors

Fig. 4 Prerequisites and potential experimental complexity of KMT. Any interested patient can initiate dietary KMT, ideally under the supervision 
of a trained dietitian. The resources and staff required for pharmacological KMT are dependent on the number of interventions and clinical settings 
(for example, a GKI‑adjusted KD in addition to SOC, or research therapies such as glutaminolysis inhibition)
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should take place to fully inform the patient, as part of 
the shared decision-making process. Unfortunately, 
despite recent progress in patient-centered care, cancer 
treatments are still frequently delivered in a paternalistic 
framework, with poor communication about expected 
outcomes and reasonable alternative treatments [330, 
426, 427]. To aid with informed consent, patients are 
encouraged to request written documentation about the 
estimated efficacy of conventional therapies, given that 
their high degree of protocolization allows for a relatively 
accurate calibration of expectations [428]. Ambiguous 
or ill-defined verbal descriptions of expected SOC out-
comes are unacceptable. In our view, informed consent is 
only possible when the necessary time has been devoted 
to defining the long-term survival rates (not PFS or mOS) 
from applicable contemporary clinical trials that serve as 
the basis for SOC guidelines. This poses ethical consid-
erations about the duty to inform and the “right not to 
know,” but also facilitates reaching consensus and allows 
the patient to judge the need for emerging/research ther-
apies, off-label, or compassionate use, at different levels 
of the evidence-based pyramid [403, 404, 429, 430].

Blood panel analysis
It is important to analyze all relevant blood elements to 
establish a comparative baseline before KMT and sur-
gery. As described in Table 1, suggested laboratory tests 
and monitoring frequency should be adjusted to the 
demands of the proposed interventions (e.g., diet-drug 
combinations). Biomarkers of general health, includ-
ing hemogram, electrolytes, hepatic and renal function, 
inflammation, and vitamin status, should be within or 
near the normal range before initiating therapeutic meas-
ures that carry a risk of adverse effects. Key dietary nutri-
ents to monitor on a carbohydrate-restricted diet include 
carnitine, thiamine, folate, pantothenic acid, calcium, 
phosphorus, iron, vitamin D, and trace minerals [431]. 
KDs, partial (“fasting-mimicking”), and/or water-only 
fasting can improve preexisting lifestyle-related blood 
panel abnormalities, particularly hyperinsulinemia, insu-
lin resistance, and chronic inflammation [221, 368, 432].

GBM is generally not amenable for estimation of 
tumor burden using blood-based biomarkers due to the 
blood–brain barrier, which is only partially disrupted in 
most cases [433]. A small number of circulating proteins, 
extracellular vesicles, tumor cells, and DNA/RNA frag-
ments in blood and CSF have been proposed for diagno-
sis and follow-up [412, 434–436]. However, until these 
methods are fully validated, imaging techniques remain 
the gold-standard for response and recurrence evaluation 
[437, 438]. In extra-neural cancers, a combination of tra-
ditional protein-based tumor markers, circulating tumor 
cells, DNA/RNA fragments, and imaging modalities 

(including ultrasound and infrared thermography) can be 
leveraged to track disease progression [439–441].

A transient elevation of circulating tumor markers dur-
ing systemic therapy (a phenomenon known as “spiking”) 
could be misinterpreted as progressive disease [442–
447]. It is therefore essential to correlate tumor markers 
with other clinical and radiological parameters, especially 
if the patient opts for active monitoring with standalone 
dietary and/or pharmacological KMT. Recently, liquid 
biopsy services have come to market (e.g., circulating 
tumor cells, including glial cells), which are sometimes 
requested independently without informing the treat-
ing physician; however, due to their novelty, therapeutic 
decisions should be made in conjunction with radiologic 
responses, clinical criteria, and additional laboratory 
testing [448, 449].

Metabolic stratification
During routine clinical practice, metabolic targeting 
can be informed by previous molecular and mechanis-
tic characterizations of the tumor subtype: high uptake 
of glucose and glutamine is considered a common fea-
ture of high-grade gliomas, correlating with cell density 
and aggressiveness, especially in grade 3 and 4 tumors 
[450–452].

We recommend standardized metabolic imaging of 
glucose uptake (18F-FDG PET coupled with anatomic 
imaging) for all GBM patients, which may offer improved 
staging and delineation of surgical margins [453]. A 
fasting period (≥ 12  h) is advisable prior to the scan to 
facilitate 18-FDG transport into the tumor and lower 
insulin-mediated glucose uptake in the surrounding tis-
sue [454, 455]. It is important to consider glycemia and 
ketonemia for standardized uptake value (SUV) nor-
malization in patients that have already initiated a KD, 
as both can influence 18F-FDG uptake in normal brain 
[456, 457]. IRB approval of clinical trials proposing radio-
therapy delay may necessitate a combination of anatomic 
and/or metabolic imaging at baseline and then sequen-
tially every 3–6 weeks to corroborate pre-specified out-
comes (e.g., stable disease). Other non-metabolizable 
glucose analogs and imaging modalities are being devel-
oped to circumvent the limitations of repeated PET radi-
ation exposure [458].

The specific metabolic analysis of each patient’s tumor 
tissue is more relevant to research settings. Given the 
ongoing debate regarding the absolute degree of intra-
tumoral metabolic heterogeneity, diagnostic tools have 
been developed to gain a more accurate picture of pri-
mary metabolic dependencies [58, 459, 460]. These 
include bench-top assays for the mapping of glycolytic, 
glutaminolytic and oxidative pathways, oxygen consump-
tion and extracellular acidification rates (OCR/ECAR), 
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mtDNA sequencing, ultrastructural characterization, 
novel PET tracers (e.g., glutamine, ketone bodies, oxygen 
sensors, amino acid metabolism, lipid synthesis, apop-
tosis), MRS/MRI imaging (e.g., glucose, glutamine, ATP 
synthesis, TCA cycle, ketone bodies), and NMR and LC/
GC–MS metabolomics [61, 461, 462]. Metabolic assays 
can be performed non-invasively or in fresh tumor prep-
arations and patient-derived organoids [463]. The transla-
tional value of metabolic stratification and the associated 
phenotypes has been further discussed in Additional File 
1: Appendix 2.

The fundamental bioenergetic hierarchy of normal 
cells (OXPHOS > SLP) and cancer cells (OXPHOS < SLP) 
should not be forgotten when developing mitochon-
dria-targeting drugs, such as electron transport chain 
inhibitors [63, 464–468]. Recent clinical efforts to target 
OXPHOS have been halted due to severe and arguably 
predictable toxicity, suggesting a very narrow therapeutic 
index [469]. In our view, low-dose mitochondrial target-
ing would be mechanistically sound only after the effec-
tive inhibition of SLP flux, as cancer cells have already 
adapted to fermentation as a compensatory and/or bio-
synthetic mechanism. From this perspective, cancer cells 
lacking SLP dependency may no longer display the pri-
mary hallmark of cancer (i.e., dysregulated cell growth). 
Better mechanistic insights into how restoring OXPHOS 
sufficiency regulates cell division could be gained from 
nuclear-cytoplasm transfer experiments and mitochon-
drial transplantation, rather than OXPHOS inhibition 
[470–472].

Surgical debulking
Surgical debulking should be performed promptly after 
diagnosis, while still prioritizing careful surgical planning 
to ensure maximal resection. In asymptomatic or slow-
growing tumors, active surveillance provides an oppor-
tunity to implement dietary KMT as a neuroprotective 
intervention prior to surgery, which could reduce angio-
genesis, inflammation, and edema [126, 221, 473], and 
thus potentially facilitate better surgical delineation when 
coupled with metabolic imaging and intraoperative mark-
ers [456, 474, 475]. A short active surveillance interval to 
allow for KMT initiation in suitable non-critical cases has 
not been explored in earlier GBM trials (Additional File 
3: Table S1), likely due to IRB approval policies [112, 476]. 
The extent of surgical resection is one of the most impor-
tant predictive factors for GBM survival [477]. To ensure 
complete resection of all contrast-enhancing areas, intra-
operative fluorescence markers such as 5-aminolevulinic 
acid (5-ALA) or novel pH-sensitive agents can be con-
sidered for eligible patients [478–480]. Most recurrences 
are experienced locally or in proximity to the resection 
cavity of the first surgery [481, 482]. Patients initiating 

KMT after recurrence should evaluate the possibility of 
repeated surgical debulking, unless presenting with dif-
fuse, multifocal, or deep infiltrative tumors; cytoreduc-
tive surgery for well-defined recurrent lesions extends 
survival and may facilitate salvage therapies [350, 483, 
484].

Initiate dietary KMT
GKI-adjusted KD/KD-R and fasting can be administered 
in a neoadjuvant phase (in the peri-diagnostic period), 
uninterrupted, or resumed within 24–72  h of surgical 
debulking, depending on the patient’s condition [485, 
486]. Mechanistically, these strategies have been stud-
ied to improve wound healing and reduce inflammatory 
markers [158, 487–492], alleviate pain [493, 494], and 
stimulate anti-tumor immunity [170, 495], thus induc-
ing a favorable physiological environment for post-sur-
gical recovery. Long-term adherence should be stratified 
according to cumulative biomarker ranges, such as real-
time tracking of GKI, which can be predefined as primary 
or surrogate endpoints.

If KMT has been initiated prior to surgery dur-
ing a watchful waiting period, patients with adequate 
body weight and good functional status may acceler-
ate ketogenic adaptation through water-only fasting or 
fasting-mimicking diets (FMDs) [145, 368]. However, 
adjusting to an isocaloric KD or KD-R for 1 to 3 weeks 
before undergoing zero-calorie or partial fasting enables 
a more gradual metabolic transition. A well-formulated 
KD should proactively avoid common side effects, such 
as electrolyte imbalances or undesired LBM loss, to mini-
mize negative impacts on quality of life. Initial weight loss 
during the transition to nutritional ketosis and fasting is 
mostly due to increased diuresis (water loss) and fat loss, 
not LBM [102, 496]. Adequate hydration and electrolyte 
supplementation (e.g., sodium, chloride, magnesium, and 
potassium) is recommended for both KDs and fasting 
[497, 498]. In clinical trials, successful implementation 
of KDs is often accompanied by a reduction or discon-
tinuation of medication, particularly for chronic diseases 
associated with insulin resistance, such as type 2 diabe-
tes, dyslipidemia, NAFLD, and hypertension [384, 499].

Based on changes in the metabolome, water-only fast-
ing for periods over 72 h is likely required to fully tran-
sition into the fasted state in humans [371, 500, 501], 
although more research is needed to determine the 
appropriate timing for antineoplastic effects [502, 503]. 
Medically supervised water-only fasting for over 60 days 
has been shown safe and effective in obesity management 
[375], and fasting-mimicking protocols for up to 21 days 
have been implemented in large cohorts with normal 
baseline weight [369]. While sufficient body fat stores 
could allow for therapeutic fasting beyond 1–3  weeks 
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in select patients, feasibility studies focused mostly on 
5–7 days in GBM [145], as well as short-term and fasting-
mimicking protocols in other malignancies [368, 504]. 
After the fast, the attending dietitian should instruct a 
slow and methodical refeeding (while still adhering to 
GKI targets) to prevent overfeeding, electrolyte imbal-
ance, or reactive hyperglycemia [145, 311, 505].

If fasting is contraindicated due to risk of cachexia or 
preexisting health conditions, an isocaloric GKI-adjusted 
KD can be initiated instead [375, 506]. It is important 
to review sodium restriction, as low sodium diets have 
been shown to deplete magnesium and increase insu-
lin resistance, thus promoting hyperglycemia [507, 508]. 
Similar to water-only fasting, a strict KD is expected to 
induce mild diuretic effects and improve glycemic con-
trol; accordingly, it is recommended to reevaluate exist-
ing prescriptions (e.g., antihypertensives, antidiabetics) 
and replenish electrolyte levels, especially prior to acute 
dietary changes. Asymptomatic hyperuricemia may also 
develop in a small subset of patients and should be moni-
tored, resolving spontaneously in most cases [509–511].

The initial weight loss from adipose tissue is expected 
to continue slowly and controllably during KD-R. It is 
important to remember that gradual fat utilization asso-
ciated with KD-R and fasting is therapeutic, whereas 
LBM loss associated with cachexia is pathogenic [236, 
512]. Isocaloric feeding to maintain muscle mass should 
be favored over chronic calorie restriction in individuals 
at borderline low weight (e.g., BMI < 18, or as determined 
by the dietitian) [513]. Participants that cannot comply 
with the diet (e.g., impaired swallowing function) could 
receive nutrients in optimal balance via enteral feeding 
(as demonstrated in pediatric and adult patients with epi-
lepsy), or, if enteral feeds are not possible, via parenteral 
ketogenic nutrition [256, 514–516].

Radiation therapy
In addition to neurosurgery, radiotherapy of growing 
sophistication has remained the cornerstone of GBM 
therapy [6, 517, 518]. The current SOC recommends 
postoperative radiation with target volume delinea-
tion, for a total dose of 60 Gy in 30 fractions [26]; temo-
zolomide alone is typically only considered in elderly 
patients, especially if the tumor is MGMT-methylated 
[519, 520]. Given the conflicting effects on cancer 
metabolism described below, in the specific context of 
future research evaluating diet-drug KMT as the primary 
treatment modality, a proposal to modify the timing of 
radiotherapy could be requested by the investigators 
if biologically justified. Despite short-term cytotoxic-
ity to cancer cells, ionizing radiation induces metabolic 
reprogramming in the tumor niche, negatively influences 
the phenotype of recurrence, and triggers secondary 

inflammatory responses in the peritumoral tissue [521–
526], while also damaging normal brain parenchyma and 
blood vessels [527–529]. Even targeted modalities can 
cause delayed adverse effects that are seldom factored in 
the risk/benefit analysis given the poor overall progno-
sis [78, 530, 531]. Concerns have been raised about the 
potential off-target brain toxicity caused by conventional 
radiation protocols [532–536]. Consequently, it will be 
important to design clinical trials comparing the poten-
tial synergistic benefit of radiation-induced cytotoxic-
ity, chemosensitization, and immune modulation, with 
the residual adverse effects on surviving tumor cells and 
their microenvironment [196, 537, 538]. To meet IRB 
requirements, radiotherapy could be conditionally and 
sequentially delayed for a clinically acceptable period 
based on interim response analysis or applied at low-
dose regimens as a synergistic potentiation strategy (e.g., 
NCT01466686) [537–540].

In other types of cancer, KDs and fasting have been 
proposed as feasible and potentially effective radiother-
apy adjuncts, acting as radiosensitizers while mitigating 
adverse effects [541–543]. It is worth reiterating that, 
in contemporary medical ethics, therapeutic decision-
making is ultimately driven by the informed patient 
[330, 544–546]. Accordingly, brain-sparing modalities 
of radiation may be offered as auxiliary or salvage thera-
pies if other approaches have failed or if they are actively 
requested by the participant [532, 533, 547].

Drug treatments
It is our view that any drug therapy will be most effective 
once the patient reaches a stable therapeutic GKI zone 
(for example, 2.0 or below, ideally 1.0 or below, with spe-
cial attention to absolute glucose levels and insulin sign-
aling, which should be at their physiological minimum). 
A combination of nutritionally balanced KDs, calorie 
restriction, and fasting will promote therapeutic ketosis, 
after which drug therapies can be initiated.

As corticosteroids decrease immune function and 
increase glycemia, independently associated with poor 
GBM survival, they should be used only when unavoid-
able, at the lowest dosage, for the shortest possible time 
[80, 81, 548]. Alternatives allowing for dose reduction 
include combinatory regimens of non-steroidal medi-
cations such as COX-2 inhibitors, fingolimod, aceta-
zolamide, angiotensin II receptor antagonists, ACE 
inhibitors, or glyburide (which impacts insulin signaling) 
[549–552]; nutraceuticals such as boswellic acids [553]; 
as well as novel agents such as corticorelin acetate, vap-
tans and vascular endothelial growth factor (VEGF), or 
vascular endothelial protein tyrosine phosphatase (VE-
PTP) antagonists [554]. The rationale for dexamethasone 
should be reevaluated upon edema reduction, rather than 
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prescribed as an indefinite treatment [555]. Patients and 
caregivers are encouraged to inquire periodically about 
the clinical justification of the ongoing corticosteroid 
posology.

It is important to recognize that intensive SOC therapy 
(particularly, high-dose corticosteroids, and radiation) 
could lead to erratic glycemia or low ketonemia despite 
strict diet adherence [556, 557]. Based on previous 
reports, more intensive dietary changes, such as cyclical 
water-only fasting (≥ 3–5  days) and paleolithic KDs (≈ 
0  g carbohydrates/day) with a narrow feeding window 
(e.g., intermittent fasting with one meal per day), may 
be required to reach a stable GKI during concomitant 
steroid and radiation therapy [108, 145, 196, 218, 558]. 
Such personalized dietary adjustments are compatible 
with trial planning and can be implemented at the discre-
tion of the attending physician or dietitian (specific bio-
marker targets can be pursued as primary endpoints, but 
it may be impractical to predefine all possible methods to 
achieve them).

Metabolic imaging and previous characterizations of 
the tumor subtype can suggest a preliminary description 
of the primary metabolic dependencies [451, 559, 560]. 

After transitioning to a sustained GKI-adjusted KD/
KD-R, pharmacological targeting of glycolysis and glu-
taminolysis should be implemented gradually, ensuring 
any off-target SLP inhibition in normal cells is buffered 
via ketone body metabolism. Baseline ketogenic adapta-
tion is a “sine qua non” condition for the safe targeting of 
SLP fuels. This is not required for modulating other can-
cer-associated pathways, such as redox balance, immune 
response, or autophagy, but is recommended for its syn-
ergistic anti-proliferative, anti-inflammatory, and anti-
angiogenic effects [68, 126, 166–170, 561].

Additional File 5: Table  S2 and Additional File 6: 
Table  S3 summarize repurposed drugs and novel 
research-phase chemicals for the targeting of SLP and 
tumor-associated pathways. While we provide general 
recommendations based on the press-pulse therapeutic 
principle, a multitude of clinically approved drugs have 
been proposed as candidates for GBM therapy [539, 562, 
563]. Combinatory approaches, rather than single-path-
way targeting, may be necessary for optimal results [394]. 
However, in efforts to isolate confounding variables and 
mitigate financial risk, only a small number of clinical 
trials have tested multi-drug additions to SOC, seldom 

Fig. 5 Overview of potential drug treatments as part of KMT research. Strategies are divided into glucose targeting (red), glutamine targeting 
(green), and tumor microenvironment stabilization (blue). Safe administration of metabolic inhibitors will require physiological adaptation 
to a GKI‑adjusted KD/KD‑R, which can be accelerated by water‑only fasting. Then, glycolysis targeting can be considered to further improve 
GKI and slow tumor progression (e.g., antidiabetic agents such as metformin or SGLT2 inhibitors, as well as research‑phase glycolytic inhibitors). 
Glutaminolysis should be targeted at the same time (e.g., sodium phenylbutyrate, DON, or novel glutamine inhibitors). Finally, normalization 
of the tumor microenvironment can be explored in a modular fashion; for example, cell proliferation (mebendazole), inflammation (NSAIDs), 
hypoxia (HBOT), redox balance (DCA, intravenous vitamin C), immunotherapy, or combinatory approaches (e.g., CUSP9)
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with dietary metabolic priming [564–566]. The intellec-
tual property landscape and lack of financial incentives 
to explore non-patentable combinatorial approaches is a 
significant challenge for the validation of promising pre-
clinical observations [567, 568]. Improving drug bioavail-
ability, blood–brain barrier transport and local delivery 
(e.g., intracranial drug reservoirs) are also critical fac-
tors [539, 569]. Understandably, even though off-label 
prescription is permissible in most countries on a case-
by-case basis, the general use of any non-standard ther-
apy will need be validated and incorporated into SOC 
through extensive clinical testing [567, 570]. Regardless 
of the clinical context, monitoring of adverse events and 
dose modification schedules must be in place for any 
tested pharmacological agent.

The timeline of drug administration is outlined in Fig. 5 
and can be structured as follows:

(a) Dietary KMT (GKI-adjusted KD/KD-R and fasting) 
reduces the glycolytic dependency of normal tissues 
and stimulates compensatory ketone body metabo-
lism.

(b) If the tumor is shown to be glycolytic (i.e., high 
18F-FDG uptake), consider additional systemic 
targeting of substrate, such as renal glucose reab-
sorption or gluconeogenesis inhibitors (e.g., SGLT2 
inhibitors, metformin). Direct inhibition of glycoly-
sis should be administered only after reaching sus-
tained therapeutic ketosis to improve safety and tol-
erability (“keto-adaptation”). Therapeutic targets in 
early clinical trials include hexokinase (2-Deoxy-D-
glucose, lonidamine, 3-bromopyruvate), phospho-
fructokinase (3PO, ACT-PFK-158), and pyruvate 
kinase (gossypol/AT-101, TLN-232) [571, 572].

(c) We propose that concurrent targeting of glutami-
nolysis is essential to avoid therapy resistance. At 
this time, one of the anti-glutaminolytic drugs con-
sidered to work best as part of KMT in preclinical 
models is the pan-glutaminase inhibitor 6-diazo-
5-oxo-L-norleucine (DON) [143]. Any prospec-
tive compound that can safely and effectively target 
glutamine availability and/or utilization may elicit 
comparable effects, such as DON prodrugs or novel 
glutaminase inhibitors [573, 574]. Additionally, 
tumor-specific delivery of DON is being investi-
gated as an enhancer of anti-tumor immunity [575].

(d) After cancer cells have been rendered vulnerable by 
press-pulse metabolic pressure, cancer-associated 
pathways and the tumor microenvironment can be 
targeted via synergistic drug combinations.

Pharmacological targeting of glycolysis
Dietary KMT shifts whole-body physiology to an evolu-
tionarily conserved metabolic state of nutrient scarcity 
that is inhospitable to tumor growth, but facing advanced 
disease will require multimodal and combinatorial strate-
gies [103, 105, 162, 576, 577]. Further improvements to 
GKI (substrate availability) and direct targeting of glyco-
lysis can be implemented after ketogenic adaptation via 
drug repurposing or investigational compounds, depend-
ing on the clinical context (Additional File 5: Table S2).

Metformin at standard antidiabetic dosing improves 
glycemic control via mild liver gluconeogenesis inhibition 
and increased insulin sensitivity [578]. At realistically 
achievable in vivo concentrations, direct cytotoxicity via 
complex I inhibition is unlikely, but positive regulation 
of the tumor immune microenvironment has been noted 
[579]. Cancer therapy with metformin is being evaluated 
in an expanding number of clinical trials due to its good 
safety profile, mostly as a synergistic addition to SOC 
[580, 581]. Berberine, an over-the-counter alternative, 
exhibits similar effects on glycemic control [582]. Other 
biguanides may be more efficacious in lowering gluco-
neogenesis but also carry a higher risk of lactic acidosis, 
which restricts their use to research [583, 584]. At this 
time, we do not recommend OXPHOS inhibitors with 
higher potency, such as IACS-010759, due to unaccepta-
ble off-target toxicity [585, 586].

SGLT2 inhibitors (e.g., dapagliflozin, empagliflozin, 
canagliflozin) can be considered to further decrease 
GKI and insulin signaling [587–589]; dose adjustments 
and monitoring of ketoacidosis is required during KDs 
and fasting, especially in patients with a history of type 
2 diabetes or prone to ketoacidosis [590–593]. SGLT2 
inhibitors experienced a recent resurgence as attractive 
combinations with PI3K inhibitors via suppression of 
the insulin feedback loop; however, greater synergy was 
observed with the KD in certain preclinical models, even 
if future clinical adoption would be more demanding [68, 
594]. Therefore, a dual combination of low-dose SGLT2 
inhibitors and KDs warrants further research. In fact, the 
KD is now being rebranded as “insulin suppressing” and 
trials with PI3K inhibitors are underway [595]. Renewed 
interest in the often-overlooked intersection between 
diet and cancer may lead to a more universal appreciation 
of “how common clinical practices such as intravenous 
glucose administration, glucocorticoid use, or providing 
patients with glucose-laden nutritional supplements may 
impact therapeutic responses” [68].

Other antidiabetic drugs that do not act through 
endogenous insulin production, such as thiazolidinedi-
ones (“glitazones”), dipeptidyl peptidase-4 (DPP-4) inhib-
itors (“gliptins”), glucagon-like peptide 1 (GLP-1) agonists 
or bromocriptine, could be tools to achieve and sustain 
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specific GKI ranges. Exogenous insulin causes surges in 
growth signaling that may accelerate tumor progression 
and chemoresistance despite transient glucose disposal, 
with a controversial role in cancer therapy [596]. The 
consequences of drug-induced insulin secretion (e.g., sul-
fonylureas or meglitinides) in the context of therapeutic 
ketosis, where insulin should be physiologically low, are 
not fully elucidated. MCTs and exogenous ketones can 
rapidly boost ketone levels and prevent hypoglycemic 
events during drug therapies, KDs or fasting, as well as 
mitigating central nervous system (CNS) oxygen toxicity 
in adjuvant hyperbaric medicine [277, 597].

Beyond systemic glucose availability, several research-
phase chemicals that target the glycolytic pathway at the 
substrate, transport, or enzyme level have been explored 
in clinical trials, such as the classical competitive inhibi-
tor 2-Deoxy-D-glucose [598]. However, it is important 
to note that systemic inhibition of glycolysis without 
preemptive priming to alternative energy pathways could 
lead to dose-limiting toxicities [66]. In our view, effec-
tive and sustained ketogenic adaptation at the biological 
level should be a prerequisite for the clinical testing of 
glycolytic inhibitors. Thus far, direct targeting of glycoly-
sis has been relatively limited due to safety concerns [70], 
which could be partially offset by adjuvant dietary KMT 
and dose optimization, given that therapeutic ketosis also 
reduces glycolytic flux and increases tissue competition. 
Therapy resistance or prior metabolic stratification could 
provide a rationale for intensifying glycolysis targeting 
beyond substrate availability, as suggested by the princi-
ples of precision medicine [599].

Pharmacological targeting of glutaminolysis
In the context of monotherapy inhibition of glycolysis, 
cancer cell viability could be rescued by the other pri-
mary fermentable fuel, glutamine [33]. Even though 
intra-tumoral heterogeneity and clonal selection creates 
a potentially unlimited mutational and epigenetic land-
scape [600, 601], the number of metabolic substrates able 
to sustain proliferation is unlikely to be unlimited in light 
of the universal mitochondrial defects and bioenergetic/
anabolic dependencies found in GBM [40, 43, 45, 115]. 
Currently, novel glutamine antagonists and other meta-
bolic inhibitors such as DON prodrugs or CB-839 are 
being tested as monotherapy additions to SOC (Addi-
tional File 5: Table  S2). Single-pathway inhibition may 
not be optimal due to functional redundancy: unless 
proven otherwise through metabolic stratification, we 
propose concurrent initial targeting of glucose and glu-
tamine-driven SLP after ketogenic adaptation, given that 
they are the most robustly consumed for energy, biomass, 
and redox homeostasis [31].

DON is the prototypical drug for broad-acting glutami-
nolysis inhibition, targeting multiple isoforms of glutami-
nases and glutamine-utilizing enzymes [602]. DON is 
currently not FDA-approved, but has an extensive history 
of clinical testing, a relatively good safety profile at mod-
erate doses, and could be revisited as a research therapy 
in its original or prodrug forms [603–605]. Continuous 
daily parenteral administration produced dose-limiting 
side effects in previous clinical trials (most notably, oral 
mucositis, nausea, vomiting, and myelosuppression; pre-
medication with antiemetics can be implemented pro-
phylactically) [606–608]. Instead, congruent with the 
short half-life (1.2 h), low-dose intermittent administra-
tion would be preferable, as suggested by initial dose-
escalation studies. Thus, future research may consider 
parenteral or oral administration in the 0.2 to 1.1  mg/
kg/day range, adjusted to individual tolerance [609, 610]. 
Dosing frequency (continuous or intermittent) will be 
contingent upon route of administration, anti-tumor 
response, and safety. In more recent phase IIa studies, 
DON has been administered at 140 mg/m2 (twice weekly) 
in 15-min infusions, combined with plasma glutamine 
depletion [611].

While DON prodrugs with improved oral bioavail-
ability are being developed, the original compound dem-
onstrated biological activity at oral doses up to 1.1  mg/
kg/day for a duration of two or more weeks [603, 612]. 
DON has been administered orally as a single daily dose 
(without resting periods), continuous split doses every 
4–6  h (with a higher incidence of side effects, such as 
oral mucositis), or as single or split doses given intermit-
tently every 2–4  days (lowest incidence of side effects) 
[609]. Preclinical evidence from our group suggests that 
the KD-R may increase DON concentrations across the 
blood–brain barrier and reduce dosing requirements 
when administered on a per-need basis [143]. Based on 
previous clinical testing, the recommended starting point 
would be a lower daily dose taken with a fatty meal vehi-
cle in a single (e.g., 0.4 mg/kg q24h) or split schedule (e.g., 
0.1 mg/kg q6h), with a 1–3-day resting period upon side 
effects, increasing to 1.1 mg/kg (or higher) based on tol-
erance and pharmacokinetics. Single 1.2–2.5 mg/kg oral 
doses were necessary to reach serum peak concentrations 
comparable to 0.6–1.2 mg/kg intravenous infusion; con-
sequently, rather than oral administration, subcutaneous 
delivery starting in the 0.2 to 0.4 mg/kg range (twice or 
thrice weekly) may be preferable for improved bioavail-
ability and convenience in outpatient care [609, 613]. Ide-
ally, DON would be administered after confirming stable 
therapeutic ketosis as a synergistic potentiation strategy. 
It has been suggested that supplementing DON with 
adenine (400  mg/day) or 4-amino-5-imidazole carboxa-
mide (800  mg/day), gastric pH-buffering (due to DON 
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acid-labile properties), and hypoxanthine and increased 
fiber intake, may reduce off-target damage to the oral 
and intestinal mucosa; nevertheless, the mechanisms 
underlying these protective effects and their relevance on 
therapeutic efficacy will need to be confirmed in future 
studies [609, 614]. The immunomodulatory effects of 
DON should also be considered in the context of check-
point inhibition, neoantigen vaccines, and adoptive cell 
therapy [615, 616].

Sodium phenylbutyrate is a clinically approved orphan 
drug for urea cycle disorders and neurodegenerative dis-
eases, with potential anti-tumor effects as a single agent 
or coadjuvant with glutamine antagonism [617, 618]. 
Phenylbutyrate rapidly metabolizes to phenylacetate, 
conjugated with phenylacetyl-CoA and glutamine, acting 
as an ammonia scavenger and inducing durable plasma 
glutamine depletion [619]. It is also being investigated 
as a histone deacetylase (HDAC) inhibitor [620]. Clinical 
trials in solid tumors noted a sustained dose-dependent 
reduction in plasma glutamine with oral doses between 
180 and 360 mg/kg/day, up to a maximally tolerated dose 
of 27  g/day [617, 621–623]. Phenylbutyrate decreases 
systemic availability of glutamine, resulting in substrate 
competition; thus, similar to PEG-glutaminase, phenylb-
utyrate-induced glutamine depletion may be explored to 
reduce dosing requirements of DON or other enzyme-
level inhibitors of glutaminolysis [624]. Interestingly, the 
administration of phenylacetate was feasible after pro-
longed fasting, accompanied by counterregulatory hor-
monal responses to maintain fuel homeostasis [625].

L-asparaginase, a first-line treatment for a variety of 
lymphoproliferative disorders, induces acute extracel-
lular glutamine depletion through conversion to glu-
tamate, a mechanism hypothesized to play a significant 
role in its antineoplastic benefits [626, 627]. L-asparagi-
nase requires parenteral administration and is currently 
available in three formulations (including generic drugs) 
[628]. Clinical trials in solid malignancies have focused 
primarily on single addition to chemotherapy in pan-
creatic cancer, yielding only marginal improvements in 
survival [629]. Consequently, it has been proposed that 
combinations with specific glutaminolysis inhibitors 
such as DON may further improve therapeutic efficacy 
[630–632].

Other research-phase glutamine inhibitors include 
the aforementioned DON prodrugs (e.g., JHU-083 and 
DRP-104, which contain the same active compound but 
aim to improve bioavailability and pharmacodynam-
ics; Azo-DON, which is selectively reduced to DON 
by azo-reductases in hypoxic environments; as well as 
azotomycin, a tripeptide diazo analog) [605, 613, 617, 
633], CB-839 (telaglenastat), IPN60090, BPTES, and 
compound 968 (glutaminase inhibitors) [574, 634–636], 

V-9302 (glutamine transport inhibitor) [637], azaser-
ine and acivicin (glutamine mimics) [638], and cauda-
tan A [639], physapubescin K [640], and aspulvinone O 
[641]. Blood–brain barrier permeability as well as iso-
form specificity are limiting factors, given that targeting 
all glutaminases (rather than specific isoforms) may be 
preferable to avoid therapy resistance. Telaglenastat is an 
investigational, first-in-clinic, small molecule oral selec-
tive inhibitor of GLS1, which has reached up to phase II 
clinical trials in advanced solid and hematological malig-
nancies, including IDH-mutant astrocytoma [157, 634, 
642, 643]. Most active trials are now focusing on com-
binations with targeted therapies and immunothera-
pies, but we hypothesize that glycolytic compensation 
may also play a role in the mixed efficacy reported so far 
[644, 645]. Likewise, the orphan drug CPI-613 is a lipoic 
acid analog that targets alpha-ketoglutarate dehydroge-
nase (α-KGDH), inhibiting both mitochondrial SLP and 
TCA cycle flux, with a relatively good safety profile but 
disappointing performance in metastatic pancreatic can-
cer [646–648]. Despite failure as a single agent, we have 
observed a promising synergistic interaction when CPI-
613 was combined with the KD-R in a pediatric glioma 
model [649].

Repurposed drugs with potential inhibitory effects on 
the glutaminolytic pathway include aminooxyacetate, 
apomorphine, tamoxifen/raloxifene, sulfasalazine, and 
ceftriaxone [36, 650–652]. Over-the-counter nutraceuti-
cals with direct or indirect effects include EGCG [653], 
xanthohumol and hesperidin [654], ursolic acid [655, 
656], caffeic acid [657], curcumin [658], apigenin [659], 
berberine [660], and other compounds with only pre-
liminary mechanistic evidence [661]. Achieving effective 
inhibition of glutamine metabolism through supplemen-
tation may be difficult, unless standardized for equiva-
lent biological activity. Patients are therefore encouraged 
to inquire about ongoing clinical trials or compassion-
ate use of glutaminolysis inhibitors (such as DON, novel 
DON prodrugs, or CB-839). When enrolling into clinical 
trials, participants should be offered flexibility to imple-
ment dietary KMT with additional glycolysis targeting, 
given that monotherapy inhibition has only produced 
modest clinical benefits thus far [71].

Pharmacological targeting of the tumor microenvironment 
and cancer‑associated pathways
The tumor microenvironment has a profound impact 
on therapeutic outcomes and is influenced by factors 
such as hypoxia [662], redox balance [663], immune 
function [664], inflammation [665], angiogenesis [666], 
autophagy [667], epigenetic signaling [668], radiation-
induced senescence [669], the gut-brain signaling axis 
[670], tumor-synaptic networks [671], and concomitant 
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infections (e.g., GBM exhibits a high detection rate of 
cytomegalovirus, which can contribute to increased 
oncogenic signaling, and has been clinically targeted 
using antivirals such as valganciclovir or adoptive cell 
therapy) [672–674]. The patient’s internal “macroen-
vironment,” that is, whole-body physiology and its 
exposome, also plays an undeniable but often forgot-
ten role, especially if envisioning cancer as a compet-
ing “ecological” process between normal and malignant 
cells [675–677]. For example, insulin resistance and the 
accompanying hyperinsulinemia have been correlated 
with poor prognosis and can substantially reduce the effi-
cacy of certain therapeutic approaches, such as inhibition 
of the insulin/PI3K axis [678–680]. GKI-adjusted KDs 
and fasting promote a wide-ranging normalization of the 
patient’s physiological macroenvironment, as well as the 
local tumor microenvironment, at all the levels described 
above [129].

Beyond metabolism, several targeted therapies based 
on mutational heterogeneity have been evaluated in 
clinical trials with arguably underwhelming results; 
these include growth and signaling pathways with known 
alterations in GBM, as well as multi-kinase inhibitors 
and immunotherapies [9, 681]. A lack of multi-targeted 
approaches has been highlighted as one of the possi-
ble reasons for this failure [682]. We hypothesize that 
classical antineoplastics and targeted efforts would be 
enhanced if applied on a baseline of dietary KMT with 
effective SLP targeting [102, 170, 221, 683]. For exam-
ple, tumor neoantigen heterogeneity could be reduced 
by clonal selection through metabolic pressure, poten-
tially improving immune recognition [684]. Early trials 
of checkpoint inhibitors in GBM failed to show efficacy 
due to the relatively immunoprivileged nature of the 
CNS [685, 686]. Treatment strategies aiming to over-
come this site-specific limitation are underway, such as 
neoantigen-derived peptide and dendritic cell vaccines 
with coadjuvant immunostimulation [23, 687, 688]. The 
immunomodulatory effects of dietary and pharmacologi-
cal KMT could promote and maintain a tumor-suppres-
sive phenotype [495, 604, 689–691]. It should be noted 
that targeted therapies and KMT are generally compat-
ible, with further studies needed to uncover synergistic 
opportunities [169, 170, 683, 692–694]. However, since 
most targeted therapies are only available in research set-
tings, it is also worth exploring off-label indications with 
putative anti-cancer effects that are more easily accessi-
ble during routine clinical practice.

Additional File 6: Table  S3 summarizes clinically 
approved drugs and strategies that have been proposed 
to modulate the GBM microenvironment. We refer to 
additional reviews discussing novel compounds and off-
label indications with preclinical evidence that may hold 

promise but require further clinical testing [695–697]. It 
is important to note that this list is based on preexisting 
clinical use (“drug repurposing”) and may not involve the 
most potent or selective compounds in their respective 
category; rather, the intent is to address health dispari-
ties and lower the financial burden of cancer treatments, 
promoting a democratization of cancer care and off-pat-
ent drug development through publicly funded research 
[406, 698]. Additional File 1: Appendix 3 provides further 
detail on an illustrative selection of repurposed drugs 
that have initiated pilot safety and feasibility studies in 
GBM.

From an experimental perspective, combining multiple 
therapies will make it difficult to assign causality. It is also 
possible that certain interventions will increase the risk 
of toxicity or adverse interactions without a meaningful 
therapeutic benefit. Successful examples of the feasibil-
ity of multi-drug protocols can be found in the CUSP9 
[394], CLOVA [699], MEMMAT [700], COMBAT [701], 
gMDACT [702], renin-angiotensin modulators [703], 
and COAST (NCT05036226) clinical trials. Cancer 
metabolism was not the primary target in the aforemen-
tioned proof-of-concept studies, and they did not include 
a “metabolic priming” dietary baseline. During informed 
consent, the risk/benefit analysis of combining individu-
ally safe but collectively undefined off-label drugs should 
be weighed against the expected efficacy of SOC and the 
biological rationale, including preclinical evidence. The 
key highlighted concept in this regard is the targeting 
of glycolysis and glutaminolysis while under therapeutic 
ketosis (metabolic press), in synergy with cancer-asso-
ciated pathways (microenvironment pulse), rather than 
endorsing any specific drug combination as the most 
desirable for this purpose. Metabolic and molecular anal-
ysis during this process is important to reveal if evolu-
tionary pressure selects for therapy-resistant cells. Future 
clinical research will be required to establish the opti-
mal dosing, timing, and scheduling of the most effective 
press-pulse KMT combinations.

A major current limitation of drug repositioning is the 
lack of molecularly driven stratification and robust bio-
markers to guide personalized therapy. Drug selection 
is often based on rational combinations that have dem-
onstrated synergistic cytotoxicity in preclinical models, 
rather than specific tumor characteristics [704]. Safety 
concerns may understandably arise in multi-drug pro-
tocols at both the pharmacokinetic and pharmacody-
namic level. To isolate the strength of each variable, most 
clinical trials involve single drug additions to SOC. In 
combinatory trials, assessing the benefit of each inter-
vention becomes increasingly difficult, even in cross-
over and multi-arm designs. Furthermore, patients with 
cancer are often polymedicated for prior comorbidities, 



Page 28 of 49Duraj et al. BMC Medicine          (2024) 22:578 

with overlapping antineoplastic treatments making 
them a particularly vulnerable population. It is therefore 
important to carefully evaluate participants according 
to baseline health status and available molecular mark-
ers, starting with the safest interventions that demon-
strate the highest scientific rationale. If combinatory 
approaches are proposed, drug-to-drug interactions 
must be screened preemptively (e.g., CYP system), fol-
lowed by a slow dose buildup to foster tolerability, as 
elegantly illustrated in the CUSP9 trial [394]. Despite 
these challenges, we believe that press-pulse targeting 
of tumor-associated pathways in synergy with KMT will 
be developed as an affordable and translationally viable 
therapeutic strategy.

Over‑the‑counter dietary supplementation
It is beyond the scope of these guidelines to detail all pos-
sible dietary supplements that may be of interest dur-
ing multimodal cancer therapy. As a general concept, 
lifestyle interventions and supplementation are intended to 
improve the adaptive capacity of the non-tumoral cell mass 
(the prevailing portion of the patient’s ecology), which will 
compete with the tumor for bioenergetic and biosynthetic 
resources [705]. This also improves the likelihood that tar-
geting of glycolysis, glutaminolysis, and the tumor micro-
environment will be better tolerated by normal cells, or that 
synergistic opportunities may arise [706, 707].

Additional File 7: Table S4 includes common over-the-
counter nutraceuticals with emerging preclinical and 
clinical evidence for complementary cancer use, mostly 
through supporting healthy tissue function. Given that 
this list is not intended to be exhaustive, many excellent 
reviews on this topic can be found elsewhere [708–711].

It is exceedingly unlikely that large randomized clini-
cal trials will be performed for non-patentable natural 
products: consequently, we encourage documenting and 
sharing individual clinical experiences via systematic case 
reporting in peer-reviewed, reputable scientific journals 
[366, 367]. Supplementation should be disclosed to the 
attending medical team and reported independently for 
each patient. It is indispensable to review contraindica-
tions, adverse reactions, and potential drug interactions, 
which can be screened using online databases [712]. It 
is also advisable to establish a clear timeline of intake to 
avoid putatively antagonistic combinations (e.g., anti-
oxidant effects during pro-oxidant therapies) [713, 714]. 
It must be clearly stated that supplementation is not 
intended to resolve advanced cancer, and owing to its 
namesake, it should be viewed as “supplementary”. How-
ever, when implemented judiciously, it is also unlikely to 
interfere with most conventional antineoplastic drugs or 
KMT, thus becoming a personal choice of the informed 
patient [715].

Physical activity
Moderate daily physical exercise is encouraged and 
should be tailored to the age and fitness of the patient, 
including both resistance/strength training for muscle 
maintenance as well as aerobic/high-intensity train-
ing for cardiometabolic health [716, 717]. As a core pil-
lar of KMT, physical activity is anti-cachexic, increases 
insulin sensitivity, and facilitates physiological glucose 
and glutamine clearance [249, 718, 719]. Furthermore, 
low-intensity endurance exercises such as regularly 
spread-out walking (smaller doses but higher frequency) 
modulates osteocalcin and glucagon signaling, conse-
quently lowering glucose availability and insulin secre-
tion [720].

Recording of metabolic parameters (such as GKI) 
should be contextualized, as fuel utilization and tran-
sient stress responses may influence measurements in 
the post-exercise window. In light of the beneficial effects 
of exercise on reducing cancer mortality and recurrence 
[721–723], as well as the inverse association between 
muscle mass and strength with all-cause mortality [724], 
patients should strive for a daily dose of physical activ-
ity that is sufficient to stimulate muscle protein synthesis, 
adjusted to their training experience and comorbidities; 
for example, as per current cancer guidelines, aim for at 
least 150 min per week of aerobic exercise, two or more 
days a week of resistance training, or ≥ 10 metabolic 
equivalent of task (MET)-hours per week of overall phys-
ical activity [725–727].

Stress management
Facing a serious cancer diagnosis can be traumatic and 
emotionally distressful, impacting patients’ mental 
health and psychosocial wellbeing [728]. It is pivotal that 
patients receive appropriate mental health support that 
suits their preferences and beliefs, including multidis-
ciplinary psycho-oncological care with clinical psycho-
therapy, sleep hygiene, breathing exercises, limbic system 
retraining, meditation or prayer, not least because a high 
level of personal motivation is required for KMT imple-
mentation [729, 730]. On a physiological level, stress 
management is important to stabilize the hypothalamus–
pituitary–adrenal axis and sympathetic nervous system, 
maintaining adequate cortisol levels, immune function, 
and circadian rhythms [731–733].

Evaluation of outcomes and therapy adjustments
To assess the effectiveness of KMT, we recommend mon-
itoring tumor response using non-invasive anatomical or 
combined metabolic imaging within the first 1–2 months 
(e.g., MRI with elective 18F-FDG PET at 8  weeks), and 
then every 2–4  months during active treatment, in line 
with standard guidelines [26, 734]. If changes to SOC 
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timing are proposed in a diet-drug KMT trial (such as 
radiotherapy delay), neuroimaging may need to be more 
frequent to detect early trends in tumor progression. If 
the tumor is stable or shows signs of partial response, fol-
low-up can be scheduled every 2 to 4 months for the next 
2 to 3 years, and less frequently thereafter. It is important 
to create a schedule that would enable timely adjust-
ments to the therapeutic plan. In extra-neural cancers, 
previously positive tumor markers as well as validated 
liquid biopsies may assist in estimating tumor burden 
[735–737]. Repeated surgical debulking can prevent bulk 
effect, especially in slow growing tumors [738]. Active 
monitoring and GKI-adjusted KD/KD-R should be main-
tained as long as there is evidence of persistent disease or 
risk of recurrence.

Conclusions
Ethical considerations and future directions
One of the greatest challenges in GBM therapy is the 
inability of the current SOC to eliminate all microscopic 
tumor infiltration and cancer stem cells [739, 740]. After 
the inevitable recurrence, patients are often confronted 
with salvage therapies of limited clinical utility [741]. 
These grim prospects make it difficult for physicians to 
communicate prognosis and for patients to make realistic 
and informed decisions about their preferred treatment 
plan [742–744]. It is not uncommon to avoid emerging 
therapies due to safety concerns (primum non nocere), 
fear of straying too far from the established guidelines 
(defensive medicine), or lack of familiarity. This may be 
entirely within lex artis for early-stage cancers, despite 
the perceived drawbacks of certain antineoplastics, which 
could be regarded as justifiable if durable remission is 
achieved [95, 745]. For terminal, incurable cancers, it is 
a matter of interpretation of medical ethics as to whom 
should be the arbiter of therapeutic decisions, especially 
for interventions where the risk/benefit ratio is not fully 
established [746–749].

This is an ethical consideration, not a scientific one, to 
be decided collectively at the societal and policy level. 
Nevertheless, from a patient advocacy perspective, 
advancing education about novel therapies at all the lev-
els of the evidence-based pyramid is essential to facili-
tate shared decision-making. Going forward, a larger 
collection of clinical trials will be needed to standardize 
the implementation of GKI-adjusted dietary KMT with 
concurrent SLP targeting. This is the context where we 
aim to provide a comprehensive, minimally toxic, and 
cost-effective GBM treatment plan, with a solid theoreti-
cal background, pilot clinical studies, and ample research 
potential, as it is gradually developed to become part of 
the standard oncology toolkit. We wish to inspire patients 
to take a proactive and informed role in the management 

of their disease, physicians to make evidence-based deci-
sions while still exercising clinical freedom, and research-
ers to join the quest for discovery of the many promising 
therapeutic avenues that are yet to come by targeting the 
fundamental bioenergetic dependencies of cancer cells.

A flexible and modular protocol has been presented 
to guide translational GBM research, based on the evi-
dence that most of the defining hallmarks of cancer can 
be explained from a mitochondrial metabolic perspec-
tive [30, 35]. As predicted by evolutionary biology, cancer 
cells suffer from a distinctive lack of adaptive versatility 
due to both mitochondrial and genomic damage, as well 
as persistent anabolic demands. GBM cells, like most 
other cancers, are comparatively more dependent on SLP 
flux for energy and biosynthesis due to universal defects 
in mitochondrial number, structure, and function, 
despite ample downstream mutational heterogeneity, 
metabolic reprogramming, and single-cell heterogeneity 
[35, 152, 750].

KMT is conceptualized as a press-pulse therapeutic 
strategy. This framework can be adjusted for any can-
cer subtype that is unable to proliferate under the rela-
tive restriction of both glycolysis and glutaminolysis (SLP 
dependency), even when supplied with compensatory 
oxidative fuels (OXPHOS insufficiency). Given the bio-
chemical underpinnings, it will be important to search 
for cancer models that retain uncontrolled cell prolif-
eration using primarily OXPHOS after the simultaneous 
targeting of glycolytic and glutaminolytic SLP flux, as 
this would pose an exception to the mechanistic ration-
ale. Future research, stemming from collections of case 
reports and clinical trials, will offer unique insights into 
the optimal dosing, timing, and scheduling for maximally 
safe and effective SLP targeting after physiological adap-
tation to therapeutic ketosis.
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