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A B S T R A C T   

Background and Purpose: Hippocampal-sparing (HS) is a method that can potentially reduce late cognitive 
complications for pediatric medulloblastoma (MB) patients treated with craniospinal proton therapy (PT). The 
aim of this study was to investigate robustness and dosimetric plan verification of pencil beam scanning HS PT. 
Materials and Methods: HS and non-HS PT plans for the whole brain part of craniospinal treatment were created 
for 15 pediatric MB patients. A robust evaluation of the plans was performed. Plans were recalculated in a water 
phantom and measured field-by-field using an ion chamber detector at depths corresponding to the central part 
of hippocampi. All HS and non-HS fields were measured with the standard resolution of the detector and in 
addition 16 HS fields were measured with high resolution. Measured and planned dose distributions were 
compared using gamma evaluation. 
Results: The median mean hippocampus dose was reduced from 22.9 Gy (RBE) to 8.9 Gy (RBE), while keeping 
CTV V95% above 95 % for all nominal HS plans. HS plans were relatively robust regarding hippocampus mean 
dose, however, less robust regarding target coverage and maximum dose compared to non-HS plans. For standard 
resolution measurements, median pass rates were 99.7 % for HS and 99.5 % for non-HS plans (p < 0.001). For 
high-resolution measurements, median pass rates were 100 % in the hippocampus region and 98.2 % in the 
surrounding region. 
Conclusions: A substantial reduction of dose in the hippocampus region appeared feasible. Dosimetric accuracy of 
HS plans was comparable to non-HS plans and agreed well with planned dose distribution in the hippocampus 
region.   

1. Introduction 

Medulloblastoma (MB) is the most common primary malignant brain 
tumor in children [1]. For patients above 3 years of age, MB are 
generally treated with a combination of surgery, chemotherapy and 

radiotherapy (RT) [1]. Because of a high risk of dissemination along the 
neural axis, MB is treated with postoperative craniospinal irradiation 
(CSI) together with a boost to the tumor bed. Treatment depends on 
various risk factors, such as residual tumor volume, M− stage, histology 
and molecular subgroup [2,3]. Survival has improved greatly over the 
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last decades [4] and currently the 5-year survival is above 80 % for 
standard-risk patients [5,6]. However, many survivors experience se-
vere late side-effects, e.g., cognitive impairment, loss of hearing/vision, 
hypothyroidism, loss of gonadal function and even fatal heart and lung 
complications [2,7]. Introducing proton therapy (PT) CSI, the dose to 
many organs-at-risk (OAR) is decreased compared to photon CSI, 
reducing the risk of late side-effects [7,8]. Thus, PT has shown superior 
cognitive outcomes compared to conventional photon treatment for 
pediatric MB patients, however, there is still an increased risk of late 
cognitive complications [9–11]. 

Several studies have shown an association between radiation dose to 
hippocampus and late cognitive complications in pediatric brain tumor 
patients [12–16]. Within the subgranular zone of the hippocampal 
dentate gyrus neurogenesis takes place, a process that occurs throughout 
life [17–19]. It has been hypothesized that alteration of hippocampal 
neurogenesis plays an essential role in radiation-induced late cognitive 
complications [17,18]. Reducing CSI dose for standard-risk MB patients 
from 23.4 to 18 Gy resulted in inferior event free survival rates in the 
dose reducing arm [5]. However, hippocampal-sparing (HS) whole brain 
(WB) RT with intensity modulated RT has been shown to better preserve 
cognitive function for adult patients with brain metastases [20]. 
Consequently, HS RT can bring great benefits to pediatric patients that 
are more susceptible to develop late cognitive complications 
[17,21–27]. However, no clinical trials of HS RT for pediatric patients 
have yet been performed or published to our knowledge. 

Simulation studies have shown that it is possible to reduce the hip-
pocampus dose while maintaining what is usually considered clinically 
acceptable coverage of the clinical target volume (CTV) for pediatric MB 
patients [22–27]. With lower doses to hippocampi we have previously 
estimated a decreased risk of late cognitive complications [24–26], with 
largest benefits for PT compared to various photon treatment techniques 
[22,24–27]. To achieve a homogeneous dose to the rest of the brain 
while sparing hippocampus, treatment plans with steep dose gradients 
are required. Such gradients could be achieved with protons due to their 
sharp dose fall-off at the end of the beam [25]. 

Safety, efficacy and toxicity of HS PT for pediatric MB patients 
should be evaluated in a prospective clinical trial. Before that, it remains 
to ensure that the planned dose distribution of this novel and very 
complex treatment technique can be accurately delivered to the patient. 
Gram et al., [25] have previously developed a treatment planning 
strategy for HS PT. The aim of this study was to explore robustness and 
dosimetric plan verification for this strategy. 

2. Material and methods 

2.1. Patient characteristics 

Fifteen pediatric MB patients were included in this retrospective 
study. The patients had previously been treated with either photon or 
proton CSI treatment at Skåne University Hospital or at the Skandion 
Clinic in Sweden during 2013–2022. Characteristics of the patient 
cohort are presented in supplementary table 1. The study was approved 
by the Swedish ethical review authority (Dnr 2023–04739-01). 

2.2. Imaging and contouring 

All patients were immobilized in supine position and computed to-
mography (CT)- and magnetic resonance (MR) scanned headfirst supine. 
MR-scans included T1 with contrast and FLAIR. The original elective WB 
clinical target volume (CTVWB) and OAR structures, delineated for 
clinical treatment based on CT and MR images, were used in this study. 
Spinal part of the target was disregarded as primary interest was dose to 
the hippocampus area. OARs considered were brainstem, chiasm, co-
chlea, hippocampus, lenses, optic nerves, and pituitary gland. No boost 
plans were accounted for in this study since we assumed that an HS 
approach would not affect QA measurement results of the boost plan. 

2.3. Treatment planning 

Assuming a constant relative biological effectiveness (RBE) of 1.1, all 
cases were prescribed 23.4 Gy (RBE) in 13 fractions, irrespective of their 
original dose prescription. Proton pencil beam scanning (PBS) plans 
were created in Eclipse™ treatment planning system (TPS, Varian 
medical systems, Palo Alto, CA, USA). One posterior and two lateral 
fields were used in each case (gantry angles 90, 180 and 270◦). Plans 
were created using multi-field optimization (MFO), field-specific targets 
margins of 3.5 % and 5 mm, and 3 mm spot spacing. Plans were robustly 
optimized using the Nonlinear Universal Proton Optimizer (NUPO, 
version 15.6.03) and the dose was calculated with the Proton Convo-
lution Superposition algorithm (PCS version 15.6.04). A range shifter 
(RS) corresponding to a water equivalent thickness of 3.5 cm was used if 
necessary to achieve adequate dose coverage superficially (no RS - eight 
patients; 180◦ field only - four patients; all fields - three patients). 

For each patient, one HS and one non-HS plan (Fig. 1) were gener-
ated, based on the treatment planning strategy developed by Gram et al., 
[25]. Non-HS plans had CTVWB coverage of 95–107 % of the prescribed 
dose. Dose to lenses was kept to a minimum, hotspots in the rest of the 
OARs were avoided, and maximum dose in the body structure was 
minimized. Non-HS plans were robustly optimized to CTVWB using 2%/ 
2mm perturbations based on the results of Gram et al., [25]. HS plans 
were optimized with an additional objective to lower the mean dose to 
hippocampus to 9 Gy (RBE). The choice of 9 Gy (RBE) is based on the 
results of Gram et al., [25], which showed that for a mean hippocampus 
dose of 9 Gy (RBE) and 2%/2mm perturbations all plans were deemed 
clinically acceptable regarding target coverage. Treatment plans were 
robustly optimized on hippocampi and a structure corresponding to 
CTVWB minus hippocampus with a 2 mm margin (CTVWB,HS) using 2%/ 
2mm perturbations. Additional structures were also created to help the 
optimizer to generate sharp dose gradients around hippocampus to 
cover as much of CTVWB,HS as possible with 95–107 % of the prescribed 
dose. Same objectives were used for all patients, only minor changes 
were made when needed to achieve adequate plan quality. Finally, both 
HS and non-HS plans were robustly evaluated in Eclipse using 2%/2mm 
perturbations. 

2.4. Dose volume histogram analysis 

For both nominal and perturbed (2%/2mm) dose distributions, the 
percentage of CTVWB receiving ≥ 95 % (V95%) and ≤ 107 % (V107%) of 
prescription dose, as well as the dose received by 0.03 cc (D0.03cc) of 
CTVWB were retrieved. Homogeneity was calculated as the relative 
volume of CTVWB that received 95–107 % of prescribed dose. Also, mean 
hippocampus dose was retrieved. The range of the robust evaluation 
(robust range) was calculated for each parameter as the range for all 
perturbed dose distributions (Fig. 2). 

2.5. Measurements 

Treatment plans were delivered at the Skandion Clinic, which uses a 
gantry-based Proteus Plus proton therapy system (IBA, Louvain-la- 
Neuve, Belgium), with dedicated scanning nozzles delivering beam en-
ergies from 60 to 226 MeV. Treatment fields reset to gantry angle 
0◦ were first recalculated in a cubic water phantom in the TPS and then 
measured field-by-field at the same gantry angle using the two- 
dimensional ion chamber array detector MatriXX PT (IBA, Schwarzen-
bruck, Germany) and solid water blocks as buildup material. Measure-
ments were performed with the ion chamber array positioned 
perpendicular to the beam direction. Measurements were performed at 
water equivalent depths (WED) corresponding to the central part of each 
hippocampus, approximately 5 and 11 cm for lateral fields and 10 cm for 
posterior fields. For all patients, both HS and non-HS plans were 
measured with standard resolution of the detector (7.6 mm). In total, 
150 standard resolution measurements were performed. Measured and 
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Fig. 1. Calculated summed dose distributions for the cranial fields of a hippocampal-sparing plan (a-c) for one of the patients. Field directions are shown by arrows in 
a. Planned field dose distributions (d, g) and corresponding measured 2D dose distributions in standard resolution (e, h) and high resolution (f, i), with regions of 
interest corresponding to hippocampus (1) and surrounding (2) regions. 

Fig. 2. Results of the robust evaluation (2%/2mm perturbations) for hippocampal-sparing (HS, green rings) and non-hippocampal-sparing (non-HS, blue squares) 
plans together with nominal values (filled black markers) for a) CTVWB V95% (%), b) CTVWB homogeneity (%), c) CTVWB D0.03cc (%) and d) hippocampus mean dose 
(Gy (RBE)). The dashed lines in (a) and (b) represent 95 % and in (c) 110 % of the prescribed dose (criteria for clinically acceptable plans). Patients are sorted in 
ascending order based on nominal value for the HS plan. Robust range is defined as the range of each parameter for all perturbed dose distributions (marked with an 
arrow in b). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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planned dose distributions were compared using 2D global gamma 
evaluation (3%/2mm, threshold 5 %) in the myQA software (IBA 
Dosimetry) and resulting pass rates were compared between HS and 
non-HS plans. To obtain more detailed dosimetric evaluation of the 
hippocampus region, 16 fields for five HS plans were also measured with 
high resolution (3.8 mm). This was achieved by shifting the detector, 
resulting in 4 times more measurements compared to standard resolu-
tion. To make the high-resolution measurements representative for the 
whole cohort, two of the HS plans with relatively low pass rate in the 
standard resolution measurements and three of the HS plans with rela-
tively high pass rate were randomly selected. For the high-resolution 
measurements, a 2D global gamma evaluation (3%/1mm, threshold 5 
%) was performed within regions of interest (ROIs) corresponding to 
hippocampus and surrounding regions (Fig. 1). 

2.6. Statistical analysis 

Analyses were performed in Matlab version 2021b (MathWorks Inc., 
Natick, MA, USA). Nominal treatment planning parameters, robust 
range and pass rates for standard resolution measurements were not 
normally distributed according to one-sample Kolmogorov-Smirnov 
tests. Two-sided paired Wilcoxon tests were therefore carried out to 
evaluate differences in these parameters between HS and non-HS 
treatment. Associations between pass rates for standard resolution 
measurements and patient age, CTVWB volume, hippocampus volume, 
use of RS and measurement WED for both HS and non-HS measurements 
were investigated using Spearman’s rank correlation. Values of p < 0.05 
were considered statistically significant. 

3. Results 

3.1. Dose volume histogram analysis 

Both nominal plan and robust evaluation parameters are presented 
in Fig. 2. For nominal plans, median (range) mean hippocampus dose 
was reduced from 22.9 Gy (RBE) (22.8–23.0 Gy (RBE)) for non-HS 
treatment to 8.9 Gy (RBE) (8.0–10.6 Gy (RBE)) for HS treatment (p <
0.001). Both median CTVWB V95% and homogeneity were 97.0 % 
(96.0–97.6 %) for HS treatment and 100 % (100–100 %) for non-HS 
treatment (p < 0.001). CTVWB D0.03cc was 107.3 % (103.1–108.6 %) 
for HS and 103.5 % (102.6–106.8 %) for non-HS treatment (p < 0.001). 

For HS and non-HS plans, median (range) robust range were 2.4 % 
(1.4–3.1 %) and 0.1 % (0.0–0.4 %) (p < 0.001) for CTVWB V95%, 2.2 % 
(1.2–3.1 %) and 0.1 % (0.0–0.4 %) (p < 0.001) for CTVWB homogeneity, 
and 7.4 % (5.2–15.4 %) and 1.6 % (1.0–5.4 %) (p < 0.001) for CTVWB 
D0.03cc (Fig. 2). Median (range) robust range for hippocampus mean 
dose were 1.2 Gy (RBE) (1.0–1.5 Gy (RBE)) for HS plans and 0.1 Gy 
(RBE) (0.1–0.2 Gy (RBE)) for non-HS plans (p < 0.001) (Fig. 2). In the 
perturbed dose distributions, both V95% and homogeneity dropped just 
below 95 % for 8/15 patients, and D0.003cc was above 110 % for 14/15 
patients with a maximum value of 121 % (Fig. 2). Hot spots were pri-
marily located around the HS volume. 

3.2. Measurements 

Example of 2D dose distributions for standard and high-resolution 
measurements are presented in Fig. 1. For standard resolution mea-
surements, median (range) pass rates were 99.7 % (90.4–100 %) for HS 
treatment and 99.5 % (79.7–100 %) non-HS treatment (p < 0.001) 
(Fig. 3). Results of the Spearman correlation are presented in Table 1. 
Pass rate for standard resolution measurements and measurement WED 
were strongly positively correlated (rs = 0.68, p < 0.001), and pass rate 
for standard resolution measurements and CTVWB volume were nega-
tively weakly correlated (rs = -0.26, p = 0.03). For high-resolution 
measurements, median (range) pass rates were 100 % (91.1–100 %) in 
the hippocampus region and 98.2 % (78.0–100 %) in the surrounding 

region. 

4. Discussion 

To our knowledge, this is the first comprehensive study evaluating 
the robustness and dosimetric plan verification of HS proton PBS 
treatment. Results showed that it was possible to reduce mean hippo-
campus dose from 23 to 9 Gy (RBE), while keeping CTVWB V95% and 
homogeneity above 95 % as well as D0.03cc below 110 % in the nominal 
plans. HS plans were relatively robust with respect to hippocampus 
mean dose, however, less robust regarding target coverage and 
maximum dose compared to non-HS plans. QA measurement results for 
HS plans were comparable to non-HS plans and measurements showed 
good agreement in the hippocampus region with dosimetric accuracy 
within 3 % of planning. 

Previous simulation studies have shown that it is possible to create 
HS PBS proton plans for CSI of pediatric MB patients [22,24–27], and 
that these plans are estimated to reduce the risk of late cognitive com-
plications [24–26]. Aljabab et al., [22] investigated hypothalamic- 
pituitary axis and hippocampus avoidance using PT for pediatric 
standard-risk MB patients. They showed that it was possible to lower 
hippocampus mean dose from 23.8 to 14.7 Gy (RBE) for the CSI (boost 
excluded) while keeping mean CTV D95% at 97.3 %. They performed 2D 
QA measurements for one of the plans using the Matrixx PT detector 
showing a Gamma pass rate > 90 % for 3%/3mm. Blomstrand et al., 
[24] showed that HS PBS PT for pediatric MB patients could reduce 
hippocampus mean dose (range) to 9.8 Gy (RBE) (6.1–11.8 Gy (RBE)) 
while keeping CTVWB V95% > 95 % (boost excluded). Using dos-
e–response models, this sparing was estimated to lower the risk of late 

Fig. 3. Gamma pass rates (3%/2mm, global) for standard resolution mea-
surements comparing hippocampal-sparing plans (HS, green rings) and non- 
hippocampal-sparing (non-HS, blue squares). (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Table 1 
Spearman correlation coefficients of the pass rate for standard resolution mea-
surements and various treatment characteristics. Statistically significant corre-
lation (p < 0.05) is marked in bold.   

Pass rate 

HS Non-HS 

rs p rs p 

Age (y)  − 0.01  0.95  0.05  0.68 
CTVWB volume (cm3)  ¡0.26  0.02  ¡0.25  0.03 
Hippocampus volume (cm3)  0.18  0.11  0.18  0.12 
Range shifter  0.00  0.98  − 0.17  0.14 
Measurement WED (cm)  0.55  <0.001  0.58  <0.001 

Abbreviations: rs = Spearman’s rank correlation coefficient, HS = hippocampal- 
sparing, WED = water equivalent distance. 
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cognitive complications compared to various photon treatment 
techniques. 

Gram et al., [25] created HS PBS proton plans with different hip-
pocampus mean doses and concluded that for a mean dose of 9 Gy 
(RBE), plans for all included patients were deemed clinically acceptable. 
Estimated tumor control probability was relatively consistent between 
HS and non-HS plans, while long-term probability for inferior late 
cognitive complications (task efficiency, organization and memory) was 
significantly lower for HS plans. Plans were robustly optimized, and 
uncertainty criteria of 2%/2mm for both hippocampi and CTV were 
recommended. They showed that with 2%/2mm perturbations, it was 
possible to reduce the hippocampus dose compared to the more clini-
cally used 3.5%/3mm while still maintaining clinically acceptable target 
coverage. Building on these results, we propose the advantages of 
reducing setup and range uncertainties to 2 mm and 2 %, respectively, in 
HS treatment. Recent publications have successfully demonstrated the 
clinical application of direct stopping power prediction using dual- 
energy CT, which would enable reduced range uncertainty from 3.5 % 
to 2 % [28,29]. Also, Gram et al., [30] demonstrated residual set-up 
errors in the order of 1 mm using daily image-guided RT (IGRT) for 
pediatric CSI. From that perspective, 2 mm setup uncertainty was likely 
rather conservative and unlikely to occur with a careful IGRT protocol in 
which the cranial position is prioritized to be correct. Hence, 2%/2mm 
represents a relevant, if not conservative, estimation of clinically 
attainable uncertainty for these treatments. 

The novelty of our study is the investigation of robustness and 
dosimetric plan verification of the treatment planning strategy devel-
oped by Gram et al., [25]. We showed that HS proton PBS plans are 
deliverable with high dosimetric accuracy and precision, demonstrating 
that proton HS treatment is dosimetrically feasible. Also, HS plans were 
relatively robust with respect to hippocampus mean dose (Fig. 2). 
However, although robustly optimized using 2%/2mm HS plans were 
less robust to these range and set-up uncertainties regarding target 
coverage and near maximum dose compared to non-HS plans. Obser-
vation of near-maximum doses of 120 % is limited to a few patients and 
specific uncertainty scenarios, considered worst-case situations. High- 
dose volumes are anticipated to smear out throughout the course of 
treatment due to random variations in patient setup. It is also worth 
noting that these high-dose volumes were small, and the prescribed dose 
is relatively low at 23.4 Gy (RBE). More realistic robust evaluations 
together with development of more robust treatment planning strategies 
are needed in the future. 

Estimated decrease in risk of late cognitive complications must be 
balanced against potential increased risk of disease recurrence in peri- 
hippocampal regions when reducing dose to hippocampi. In this study 
we attempted to reduce the dose to only a small volume of the brain, 
approximately 1 % of the volume. It has been demonstrated that peri- 
hippocampal failures are uncommon in patients with non-metastatic 
MB [21,27], which might suggest that HS PT could be a viable strat-
egy to explore in a prospective trial for a suitable risk-group of MB 
patients. 

A negative correlation was observed between pass rate and CTVWB 
volume for both HS and non-HS plans (Table 1), suggesting an inferior 
dosimetric accuracy for larger fields. Significantly better agreement (p 
< 0.001) between measured and planned dose distributions was 
observed for larger measurement depths (approximately 10 cm) 
compared to shallower depths (approximately 5 cm) (Table 1 and 
Fig. 3). Same correlation was observed for both HS and non-HS plans 
and thus did not depend on the HS technique. Further, measured dose 
was systematically approximately 3 % higher in the entire field 
compared to planned dose for some of the patients for the shallower 
measurement depths. Limitations of the pencil beam (PB) algorithm in 
the current TPS are well known and large differences between dose 
distributions calculated using the PB algorithm and patient-specific QA 
measurements using the Matrixx detector have previously been 
demonstrated [31]. It has also been shown that the agreement between 

measured and calculated dose distributions depend on measurement 
depth within the spread-out Bragg peak [31]. Hence, the deviation be-
tween measurements and calculations observed in this study is likely 
due to beam modelling limitations of the PB algorithm. This discrepancy 
is larger for depths around 5 cm compared to 10 cm. Sharp dose gra-
dients in the hippocampus region are delivered with a high precision as 
demonstrated in the high-resolution measurements. 

Measurements were performed in 2D planes at a limited number of 
depths in the hippocampus region in a homogeneous water phantom 
using a detector with 7.6/3.8 mm resolution. Performing measurements 
at a greater number of depths, particularly immediately before and after 
the hippocampus region, would have been of interest. A more time- 
efficient way would be to measure the whole treatment plan at once, 
preferably in the patient geometry using an anthropomorphic phantom 
and employing detectors with higher resolution such as film or gel 
dosimetry. However, this is challenging due to the linear energy transfer 
(LET) dependency of both film and gel dosimeters, which might 
compromise measurement accuracy [32,33]. Another limiting factor is 
that the plans were calculated using a PB algorithm. Monte Carlo would 
have resulted in a better dose calculation accuracy and hence probably 
better agreement between measured and calculated dose distributions. 
Also, all plans were calculated assuming a fixed RBE of 1.1. There is an 
increasing concern that the risk of normal tissue injuries may be 
underestimated using an RBE of 1.1 in dose calculation [34–37]. Since 
LET and hence RBE is higher at the end of the protons range [38,39], 
variable RBE-weighted dose to hippocampi and surrounding region 
could be higher compared to predictions using an RBE of 1.1 for HS 
plans and this should be further evaluated. 

In conclusion, it was possible to reduce the dose to hippocampus 
using hippocampal-sparing treatment plans with very steep dose gra-
dients. Measurement results were comparable to non-hippocampal- 
sparing plans and agreed well with the planned dose distribution in 
the hippocampus region despite steep dose gradients. Plans were rela-
tively robust with respect to hippocampus mean dose, however more 
robust treatment planning strategies regarding target coverage and 
maximum dose should be developed. 
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