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Abstract. Glioma is the most common primary tumor of the central nervous system (CNS). Glioblastoma (GBM) is incurable
with current treatment strategies. Additionally, the treatment of recurrent GBM (rGBM) is often referred to as terminal treatment,
necessitating hospice-level care and management. The presence of the blood-brain barrier (BBB) gives GBM a more challenging
or “cold” tumor microenvironment (TME) than that of other cancers and gloma stem cells (GSCs) play an important role in the
TME remodeling, occurrence, development and recurrence of giloma. In this review, our primary focus will be on discussing
the following topics: niche-associated GSCs and macrophages, new theories regarding GSC and TME involving pyroptosis and
ferroptosis in GBM, metabolic adaptations of GSCs, the influence of the cold environment in GBM on immunotherapy, potential
strategies to transform the cold GBM TME into a hot one, and the advancement of GBM immunotherapy and GBM models.
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1. Introduction 1

Glioblastoma multiforme (GBM) is the most com- 2

mon intracranial malignant tumor, and its prognosis has 3

not made significant progress, despite the advances in 4

treatments. In the 2021 edition of the WHO classifi- 5

cation, gliomas lacking IDH mutations that have con- 6

comitant +7/−10 chromosome copy number changes, 7

EGFR gene amplification, or TERT promoter mutations 8
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Fig. 1. All tumors lacking IDH mutations with concomitant gain of
chromosome 7 and loss of chromosome 10, EGFR amplification, or
TERT promoter mutations are referred to as glioblastomas.

are called glioblastoma and are given a WHO grade9

of 4 [1] (Fig. 1). Glioma stem cells (GSCs) in GBM10

are a small group of cells with low proliferative activ-11

ity and drug resistance that are associated with tumor12

recurrence and are at the root of GBM refractoriness13

and recurrence. In most instances, these GSCs may be14

already progenitor cells for differentiation when they15

remodel the host tissues, and we refer to them as glioma16

stem/progenitor cells (GSPCs) [2]. The incidence of17

most cancers, including GBM, rose between 2018 and18

2020 [3], outstripping increases in survival rates, and19

with only few cancers, such as melanoma, showing im-20

provement due to immunotherapy [4,5]. In contrast to21

the “hot” melanoma tumor microenvironment (TME),22

the “cold” GBM TME and the presence of the blood-23

brain barrier (BBB) which limits drug passage [6,7],24

and, complicate treatment advances. Recent studies25

show that neuroinflammation creates an immunomod-26

ulatory niche in the meningeal lymphatic vessel sys-27

tem close to the cribriform plate in which cerebrospinal28

fluid drainage kinetics are reduced with aging [8,9,10]29

and the immune cells contained in the lymphatic fluid30

are currently the focus of attention. Current research31

is focused on enhancing pyroptosis and ferroptosis in32

GBM cells as a strategy to convert the cold GBM tumor33

microenvironment into a hot one. Then with the help of34

single-cell sequencing to screen regulatory molecules,35

study prognosis and develop targeted therapies to im-36

prove the efficacy of GBM immunotherapy [11,12,13,37

14,15]. Although immunotherapy shows some advan-38

tages to improve the quality of life and survival prog-39

nosis of GBM patients, much work is necessary to opti- 40

mize immunotherapy for GBM patients. While we have 41

briefly outlined these issues, we will now delve into a 42

more detailed description of the molecular support and 43

regulatory mechanisms involved in the immunotolerant 44

microenvironment remodeled by GSCs in GBM. 45

2. Glioma stem cells and immune-related niches 46

2.1. TME and glioma stem cells 47

A tumor is a complex system comprising both tu- 48

mor cells and various non-tumor cells, and the TME 49

is a direct representation of this intricate system. The 50

TME consists of cancer cells surrounded by diverse 51

non-malignant cell types, such as cancer-associated fi- 52

broblasts, endothelial cells, pericytes, and other cell 53

types that can differ based on the tissue, like adipocytes 54

and neurons. Throughout various stages of tumor de- 55

velopment, including initiation, progression, invasion, 56

intravasation, metastatic dissemination, and outgrowth, 57

the TME and its cells play a crucial role. Immune toler- 58

ance in the tumor microenvironment leads to immune 59

escape from therapy, which is mainly due to the ability 60

of tumor stem cells to remodel the tumor’s immune 61

microenvironment [16]. Interaction of CSCs with their 62

niche is critical for tumor immunosuppression and tu- 63

mor recurrence. Moreover, it was demonstrated that a 64

high-stemness signature related to a poor immunogenic 65

response across 21 solid malignancies. Most notably, 66

CSCs are able to recruit tumor-associated immune cells 67

such as monocytes and macrophages, and these im- 68

mune cells can play a role in promoting tumor progres- 69

sion due to the remodeling of the tumor microenviron- 70

ment [17]. As a result, conducting systematic research 71

on cancer stem cells and other related cells within the 72

TME will be a vital approach in identifying new targets 73

for treating malignant tumors [18]. 74

In glioma, the TME includes not only tumor cells 75

but also immune cells, endothelial cells, glial cells, and 76

neuronal cells. GSCs can remodel the immune-tolerant 77

microenvironment of gliomas regardless of tissue cell 78

type, and immune-inflammatory cells in the tumor mi- 79

croenvironment are even capable of undergoing malig- 80

nant transformation through the remodeling of glioma 81

stem cells, which leads to changes in immune tolerance 82

and heterogeneity of tumors by a mechanism that may 83

be related to cell fusion [19]. Furthermore GSCs pro- 84

mote tumor angiogenesis and remodel the microenvi- 85

ronment of GBM by secreting histamine [20]. GBM has 86

the ability to recruit normal cells from its surroundings 87
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to support its growth, maintenance, and invasion into88

the brain. Studies have demonstrated that the microen-89

vironment in GBM varies depending on factors such90

as the isocitrate dehydrogenase status (mutated/wild91

type), the presence or absence of codeletion, and the92

expression of specific alterations like H3K27 and/or93

other gene mutations [21]. Recent investigations using94

Single-cell RNA sequencing (scRNA-seq) in high- and95

low-grade gliomas have revealed that intratumoral het-96

erogeneity and dynamic plasticity across different cel-97

lular states are characteristic features of malignant brain98

tumors. As the tumor grade increases, there is an ob-99

served increase in the proliferation of malignant cells,100

larger populations of undifferentiated glioma cells, and101

a shift towards a higher expression of macrophage pro-102

grams in the tumor microenvironment, compared to103

microglia expression programs [22].104

Human GSCs in adult and child were first reported in105

2003 by Singh SK [23], and in 2006 by Quanbin Zhang,106

respectively [24], and their mysteries have not yet been107

fully unveiled. The existence of GSCs can be a subject108

of debate, and the answer to whether they exist or not109

depends on various factors and perspectives. The stem110

cell marker CD133 expressing cells which are identified111

as GSCs in experiments tend to express the progenitor112

marker Nestin simultaneously [24], thus they are actu-113

ally progenitor cells that have initiated the differentia-114

tion process. Real GSCs are treatment-resistant, quies-115

cent and pluripotent and reside in a niche determined by116

the adaptive GBM immune microenvironment (Fig. 2A117

and 1B). The mystery lies in the fact that if the same118

cells are traced by only CD133 single positive fluores-119

cent staining but not by CD133 and Nestin double stain-120

ing, they may be GSPCs, rather than GSCs [2,25]. As121

of today, there are still cells that are discreetly referred122

to as GSC-like cells, rather than being explicitly la-123

beled as GSCs. This distinction reflects ongoing debates124

and complexities in the field of glioma research [26].125

In fact, as early as 2011, GSCs were defined as those126

cells capable of driving tumor formation and spread-127

ing by differentially labeling human GBM cell com-128

ponents in a xenograft model and following tumor de-129

velopment using a living microscope [27]. GSCs have130

also been reported as capable of differentiation into off-131

spring cells which may reverse-differentiate into stem132

cells [24] (Fig. 2D). This is not consistent with the view133

of Singh SK [28], who cloned GSCs from pediatric134

GBM and stated that GSCs originated from resident135

neural stem cells (NSCs) of the host hippocampus or un-136

der ependyma and differentiate irreversibly [23]. Sub-137

sequent research appeared to provide evidence support-138

ing the concept of reverse-differentiation in GSCs [24]. 139

This suggests that GSCs may possess the ability to re- 140

vert back to a less differentiated state, adding further 141

complexity to our understanding of these cells and their 142

role in glioma. Furthermore, new CD133+ cells were 143

detected in the in vitro cell cultures of rat glioma C6 144

after all CD133+ had been removed and defined most 145

C6 cells as GSCs [29]. The potential for C6 cells to 146

reverse differentiate into GSCs now seems a more real- 147

istic possibility. Under the conditions at the time, this 148

reverse differentiation observation was not comprehen- 149

sive enough, and the potential stem cell microenviron- 150

ment, especially the Niche, was proposed later and is 151

still a hot topic today. 152

2.2. Stem cell niche 153

Studies conducted on Drosophila have contributed 154

to the introduction of the concept of the niche [30], 155

and in many instances, niches have been observed to 156

be located in close proximity to the endothelium of 157

blood vessels [31]. The understanding of its function 158

has improved with the deeper research. Our research 159

of GSCs transdifferentiating into vascular endothelial 160

cells [25,32] was published in 2011, ahead of similar 161

reports by Wang R [33] and Ricci-Vitiani L [34], and 162

exciting commentary by Victoria L Bautch [35]. Nowa- 163

days, it is understood that this transdifferentiation pro- 164

cess may occur within the hypoxic periarterial niche 165

of GSCs [36]. The GSC niche may also be subdivided 166

into perivascular, peri-hypoxic, immune extracellular 167

matrix and GBM peri-invasive sectors [37,38,39,40, 168

41], the functions of which remain obscure except as an 169

adaptive GBM immune microenvironment. The niche 170

regulates angiogenesis and protects the GSC from ra- 171

diotherapy and chemotherapy, driving recurrent GBM 172

(rGBM) [42,43]. Macrophage niches are similar to the 173

adaptive immune microenvironment of GBM. 174

2.3. Macrophage niche and tumor-associated 175

macrophages 176

Researchers believe that the macrophage niche 177

(mNiche) can be characterized by four fundamental 178

functions: (1) providing a physical foundation or scaf- 179

fold for the macrophage; (2) supplying nutritional fac- 180

tors to support the macrophage’s self-maintenance abil- 181

ity; (3) imparting the tissue-specific identity to the 182

resident macrophage within the niche; and (4) the 183

macrophages, in turn, should provide benefits to their 184

niche. The mNiche plays an important role in tumor 185
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Fig. 2. Schematic diagram of GSCs and immune-related mechanisms: A. Tumor entities, including the hypoxic niche and cell necrosis niches
caused by tumor cell pyroptosis and ferroptosis and the macrophage niche, involved in adaptive immunity in the tumor microenvironment. B.
The jagged and vague tumor periphery mediates tumor cell invasion and dissemination and marginal ecological niches are colonized here. C.
Inflammatory necrotic cells located in the tumor necrosis zone caused by pyroptosis and ferroptosis. D. Hippocampus-subependymal neural stem
cell niche: Maintenance and expansion of hippocampal- and subventricular-derived neural stem cells follow both symmetric and asymmetric
disaggregation patterns to maintain homeostasis of glial-associated downstream cells in normal brain tissue, which in the case of GBM are largely
replaced by the associated tumor stem cell niche. At this point, tumor cells may reverse-differentiate into GSCs.

progression. mNiche is found throughout all mam-186

malian organs. In addition to their role as immunesen-187

tinels, macrophages perform day-to-day functions es-188

sential to tissue homeostasis. mNiche maintains tissue189

homeostasis of macrophage, controls the macrophage190

population size and imprints their tissue-specific iden-191

tity [41]. The mNiche has attracted attention for its po-192

tential therapeutic value. Previously, competition be-193

tween macrophage precursors was proposed for devel-194

opment into resident macrophages in a limited number195

of niches [44]. Tight regulation ensures that monocytes196

differentiate into multiple heterogeneous macrophages197

only when niche space is available.198

Nevertheless, the study of mNiche in tumors is still199

in its early stages, but significant progress has been200

made in understanding tumor-associated macrophages201

(TAMs). TAMs are the most abundant immune cells202

present in tumor tissues and are typically classified203

into two distinct subtypes: M1 macrophages and M2204

macrophages [45].205

M1 macrophages are known for their anti-tumor206

functions, whereas M2 macrophages have the opposite207

effect, promoting tumor development, metastasis, and208

inhibiting the anti-tumor immune response mediated by209

T cells. Additionally, M2 macrophages facilitate tumor210

angiogenesis and contribute to tumor progression. As a211

result, TAMs have become a promising target for tumor 212

therapy [45]. 213

In gliomas, similar to other solid tumors, the infiltra- 214

tion of TAMs is a notable characteristic. In GBM, TAMs 215

are significantly elevated, as confirmed through bioin- 216

formatics studies. Higher levels of TAMs are associated 217

with a decreased overall survival rate in glioma patients, 218

suggesting that increased TAMs may be one of the 219

mechanisms involved in immune escape in GBM. These 220

findings indicate that TAMs-related signatures can serve 221

as valuable prognostic biomarkers in GBM [46]. 222

In addition to the presence of mNiche, the immune 223

microenvironment of GBM is more complicated than 224

in that of extracranial cancers such as the cold immune 225

microenvironment. 226

3. The cold GBM immune microenvironment 227

resists the immune response 228

3.1. Cold immune microenvironment of GBM 229

Cancers may be classified as “hot” when there is a 230

large T cell and inflammatory response after immune 231
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checkpoint inhibitor treatment, “warm” or “cold” when232

there is little response to treatment [47]. For example,233

approximately 50% of melanoma patients respond to234

the combined blockade of the immune checkpoint PD-235

1 and CTLA-4, 75% of whom have a long-lasting re-236

sponse [48]. Thus, melanoma is a hot tumor type. Con-237

versely, Glioblastoma is a cold tumor, mainly because238

of immune tolerance in the GBM microenvironment.239

Compared to other tumor types, glioblastomas have rel-240

atively few tumor-infiltrating lymphocytes (TILs), and241

those that are present have been shown to be highly242

expressive of exhaustion markers. The glioblastoma mi-243

croenvironment is characterized by the presence of a244

large number of myeloid cells, such as microglia and245

macrophages, which have immunosuppressive activ-246

ity. In addition, defects in antigen-presenting mecha-247

nisms can make the tumor cold in response to T-cell-248

dependent immunity. Finally, necrosis in glioblastoma249

plays an important role in weakening the anti-tumor im-250

mune response [47]. Only 10% of GBM patients have251

a short-lived response to immunotherapy [49,50]. The252

concept of transforming a “Cold” tumor into a “Hot”253

one is a novel area of research in tumor immunotherapy254

(IO). However, the impact of intratumoral injection of255

tilsotolimod, an oligodeoxynucleotide Toll-like receptor256

9 (TLR9) agonist, in patients with advanced melanoma257

has not been conclusively determined [51], suggesting258

that traditional research approaches still have limita-259

tions. Fortunately, quantitative systems pharmacology260

modeling in cancer immunotherapy holds great promise261

in addressing major challenges in the IO field [52].262

3.2. Exploration for GBM cold environment263

In the case of GBM, immunotherapy research has264

not stopped because of the cold immune microenviron-265

ment. Preclinical GBM models suggest Antigen-primed266

T cells could accumulate in brain tumors through267

healthy tissue tracking [53], and execute cytotoxic func-268

tion with cellular precision [54], as well as adapt to a tu-269

mor’s evolving molecular profile via epitope spreading.270

Antitumor CD8 T cells can be controlled by PD-1/PD-271

L1 interactions [55]. PD-1 blockade augmented the272

anti-tumor CD8 T cell response, allowing the formation273

of memory T cells with the ability to prevent delayed tu-274

mor outgrowth [56]. In summary, data from preclinical275

models indicated the potential for GBM immunother-276

apy [56,57,58,59,60] but clinical trials have proved un-277

successful [61]. The phase III clinical trial of the anti-278

PD-1 monoclonal antibody, nivolumab, and the anti-279

growth factor VEGF-A monoclonal antibody, bevaci-280

zumab, for rGBM was terminated. However, Jackson, et 281

al. considered that the cold nature of GBM may be con- 282

verted into hot [62]. Recently, GBM cold tumors were 283

divided into two subtypes with immune tolerance or 284

immunodeficiency from data in the TCGA-GBM tran- 285

scription database and the GEO dataset [63]. Tumor- 286

associated macrophages were indicated as promising 287

new therapeutic targets and GIPS as a biomarker for as- 288

sessing the immune evasion mechanism, immunother- 289

apy response and patient prognosis. 290

3.3. Can microglia/macrophages turn cold GBM hot? 291

Resident tissue macrophages (RTMs) proposed by 292

Blériot C [64] appear to be much more reasonable than 293

those of macrophages in the tumor tissue microen- 294

vironment simply divided into M1 and M2 proposed 295

earlier [50,65]. The heterogeneity of RTMs includes 296

four characteristics: cell origin, local environment, in- 297

flammatory state and residence time in tissues that 298

contributes to the resilient adaptation of macrophages 299

to their dynamic environment [64]. Brain RTMs also 300

present these characteristics, in addition to the blood- 301

brain barrier [66,67,68] and the cerebral lymphatic sys- 302

tem [69,70,71]. Microglia are a unique tissue-resident 303

macrophage population that plays an important role in 304

maintaining the tissue homeostasis of the CNS [72]. 305

Its characteristics and functions are mediated by Sall1, 306

SMAD2/3, IRF8, Nr4a1 (Nur77), Nr4a2 (Nurr1) and 307

Nr4a3 (Nor1). Nr4a1 (Nur77) can downregulate the 308

transcription of thyroxine-hydroxylase by recruiting the 309

CoREST complex involving HDAC1 and HDAC2 en- 310

zymes in the TH promoter region [73,74,75,76]. Mice 311

lacking Nr4a1 had poor prognosis and had high con- 312

centrations of norepinephrine (NE), pro-inflammatory 313

IL-6, and autoimmune effector T cells at the site of the 314

affected tissue area in the CNS, which was also nec- 315

essary for GBM to switch from cold to hot. Thus, we 316

may deduce that if a similar experiment is performed 317

in a GBM mouse model, transcriptomic sequencing of 318

the tumor and myeloid precursor derived macrophages 319

may enable identification turnoff factors responsible 320

for turning cold GBM into a hot tumor. Appropriate 321

sequencing targets would be those concerned with ini- 322

tiation of pyroptosis or ferroptosis, which can trigger 323

an acute inflammatory response. Hence, there is a rea- 324

son to be optimistic about the search for regulatory 325

molecules that could potentially transform GBM from 326

a cold tumor microenvironment to a hot one. 327
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4. Pyroptosis and ferroptosis328

4.1. Pyroptosis, PP329

Thornberry NA [77] observed cysteine aspartase330

[caspase]-1-mediated programmed cell death, of a form331

morphologically distinct from apoptosis [AP], but of332

unknown mechanism in 1992. By 2015, PP effect is ini-333

tially understood after gasdermin D (GSDMD) cleavage334

target of caspases-1 and -11 was discovered [78,79]. PP335

was shown to be mediated by a pro-inflammatory cas-336

pase effect which caused cell death by cell membrane337

rupture and cell disintegration and was an anti-infective338

mode of inflammatory cell death against pathogens [63,339

80,81,82,83,84,85,86,87]. Chemical disruption of GS-340

DMD was found to inhibit inflammatory cell death341

and activate IL-1 secretion by macrophages [88,89].342

More recently, methods to regulate its activity have343

recently been investigated. Succinate and disulfiram344

have been found to inactivate GSDMD to control PP345

and Ragulator-Rag complex has been found to be nec-346

essary for GSDMD pore formation and pyroptosis in347

macrophages [90,91,92]. Thus, mediation of PP centers348

around the inflammatory caspase substrate, GSDMD,349

which releases GSDMD-N and GSDMD-C domains on350

lysis, leading to PP by forming membrane pores. The351

extensive gasdermin family is composed of GSDMA,352

GSDMB, GSDMC, GSDMD, GSDME/DNFA5 and353

PVJK/GSDMF of which Gasdermin E shows promise354

as a potential target for disease therapy [93,94].355

4.2. Glioma pyroptosis (GPP)356

Recent interest in GPP [95,96,97,98,99] has fo-357

cused on TCGA and CCGA database bio-informatics-358

selection of genes and non-coding RNA (ncRNAs) as-359

sociated with GPP and glioma prognosis [100,101,102].360

Indeed, copy number variation and somatic mutation of361

33 PP-related genes have been associated with GBM362

survival prognosis and a prognostic model constructed363

from 7 PP-related genes for validation in the CGGA co-364

hort [95]. Moreover, CASP8, CASP4, CASP1, NLRP3,365

NLRP1 and NLRC4 have been identified as hub genes366

that divide gliomas into two subtypes with good and367

poor prognoses [96]. Fifteen scorch-death-related genes368

predicted overall glioma survival and nine pairs of tar-369

get genes and drugs were identified. Genes encoding370

caspase 3 and IL-18 have been suggested as a potential371

prognostic biomarkers for overall survival of patients372

with diffuse gliomas [97]. Patients in the high-risk sub-373

group had shorter survival times than those in the low-374

risk subgroup. GSEA and ssGSEA showed the acti- 375

vation of immune-related pathways and the extensive 376

infiltration of immune cells in high-risk subgroup. The 377

prognostic value of PP-related gene expression in infil- 378

trating immune cells has been indicated [98] in addition 379

to glioma prognosis models of PP-related genes [99] 380

and PP-related ncRNAs, including miRNA, lncRNA 381

and circRNA, have also been implicated [100]. Most 382

circRNAs are highly conserved and exon-derived with 383

a few arising from intron cyclization. They may be clas- 384

sified as follows: exon circRNA (ecRNA), cyclic intron 385

RNA (ciRNA), exon-intron circRNA (EIciRNA) and 386

tRNA intron cyclic RNA (tri RNA) [103]. Expression of 387

circRNA varies with developmental stage and is tissue- 388

specific. Because circRNA is insensitive to nuclease 389

and more stable than linear RNA, circRNA has obvi- 390

ous advantages in the development and application of 391

new clinical diagnostic markers, such as the autophagy- 392

associated circRNA, circCDYL [104] and other circR- 393

NAs have been linked to cancer cell ferroptosis [105], 394

tumorigenesis [106], tumor metabolism [107] and drug 395

resistance [108]. 396

4.3. Ferroptosis and glioma immunity 397

Ferroptosis, similar to PP described above, is differ- 398

ent from AP, but rather a recently highly concerned, new 399

form of cell death that plays an important role in the oc- 400

currence and development of many diseases. The com- 401

prehensive introduction from the past, present and fu- 402

ture of ferroptosis research written in 2020 lacked rele- 403

vance to glioma [109] However, by 2021, Fe deficiency- 404

related genes was proved to predict prognosis and im- 405

munotherapy in glioma., and the prognostic ferroptosis- 406

related lncRNAs in glioma were associated with the im- 407

mune landscape of glioma microenvironment and radio- 408

therapy response [110,111]. Furthermore, the charac- 409

terization of a ferroptosis signature has been employed 410

to assess the predictive prognosis and potential effec- 411

tiveness of immunotherapy in glioblastoma [112], Ad- 412

ditionally, a prognostic risk model has been developed 413

using seven Fe deficiency-related genes for low-grade 414

glioma (LGG), considering their implications for im- 415

munotherapy [113]. The utility of ferroptosis for GBM 416

and LGG research is thus demonstrated. 417

Ferroptosis has also been shown to be responsible for 418

glioma-associated immunogenic cell death [114,115, 419

116]. The immunogenicity of ferroptosis in vitro and 420

in vivo was first demonstrated by the induction of fer- 421

roptosis by RAS-selective lethal compound 3 (RSL3) 422

in mouse fibrosarcoma MCA205 or glioma GL261 423
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cells. Ironophils promoted bone marrow-derived den-424

dritic cell (BMDC) phenotype maturation and elicited a425

vaccination-like effect in immunocompetent mice sug-426

gesting that the mechanism of immunogenicity is very427

tightly regulated by the adaptive immune system and428

is time dependent [117]. RNA-sequencing was used429

to construct a prognostic risk score model (FRGPRS)430

related to GBM overall survival from Fe deficiency re-431

lated genes. Further comparison of genomic and clini-432

cal features, immune infiltration, enrichment pathways,433

pan-cancer, drug resistance and immune checkpoint in-434

hibitor therapy in different FRGPRS subgroups showed435

that five Hub genes in the FRGPRS could be used to436

predict overall and progression-free survival of GBM437

patients. High FRGPRS was associated with strong im-438

munity, higher tumor tissue ratio, good cytotoxic immu-439

nity and chemotherapy response in GBM patients [118].440

The utility of ferroptosis for GBM treatment was also441

reported, and combination of Onofen and cold atmo-442

spheric plasmas could trigger AP, ferroptosis and im-443

munogenic responses in GBM [119,120]. Temozolo-444

mide was found to precipitate ferroptosis through dmt1-445

dependent pathways [121] and the ferroptosis inducer,446

disulfiram, could trigger lysosomal membrane perme-447

ability by upregulating ROS and enhanced the radiosen-448

sitivity of GBM cells [122]. Recently, scholars redis-449

covered from transcriptomic data that CYBB and SOD2450

genes were significantly up-regulated in the mesenchy-451

mal subtype of GBM. In GBM cells that are resistant to452

the chemotherapy drug TMZ, they exhibit mesenchy-453

mal and stemness characteristics while also displaying454

resistance to ferroptosis, a type of cell death caused455

by iron-dependent oxidative stress. This resistance to456

ferroptosis is achieved through the activation of the457

CYBB/Nrf2/SOD2 axis. As a result, CYBB plays a458

crucial role in conferring ferroptosis resilience in mes-459

enchymal GBM. The downstream compensatory activ-460

ity of CYBB, achieved through the Nrf2/SOD2 axis,461

presents an opportunity for exploiting a potential strat-462

egy to overcome TMZ resistance by modulating fer-463

roptosis. This finding holds promise for the develop-464

ment of new approaches to tackle drug resistance in465

mesenchymal GBM [123].466

In summary, PP and ferroptosis in GBM are con-467

fined to the cell necrosis region, followed by immune468

adaptation (Fig. 2C). However, the immune cells come469

from the CNS lymphatic system (Fig. 2E), and the brain470

has traditionally been regarded as immune-exempt and471

lacking a lymphatic system, a view that may require472

updating.473

5. Metabolic adaptations of GBM 474

The metabolic abnormalities in glioma involve dis- 475

ruptions in sugar, protein, and fat metabolism. Recently, 476

more attention has been directed towards studying the 477

glycosylation of post-translational modifications of pro- 478

teins. The differential expression of glycosyltransferase 479

genes determines the type of glycosylation and epige- 480

netically regulates the progression of glioma. Hypoxia, 481

a well-known factor in gliomas, has been found to in- 482

duce GLT8D1, which enhances stem cell maintenance 483

in glioma by inhibiting CD133 degradation through N- 484

linked glycosylation [124]. As a result of these findings, 485

various changes in the biology, biomarkers, and targeted 486

therapies for glioma have emerged [125]. Comprehen- 487

sive analyses have identified glycosyltransferase sig- 488

natures and prognostic long non-coding RNAs (lncR- 489

NAs) related to glycosylation from databases such as 490

TCGA and CGGA [126]. These analyses can be used to 491

evaluate the prognosis of glioma patients and construct 492

prognostic models for overall survival [127]. 493

GSC-specific histamine secretion has been found to 494

drive proangiogenic tumor microenvironment remod- 495

eling. Histamine, a metabolite secreted by GSCs, is 496

produced due to MYC-mediated transcriptional up- 497

regulation of histidine decarboxylase (HDC) through 498

GSC-specific H3K4me3 modification. GSC-secreted 499

histamine promotes angiogenesis and GBM progression 500

by activating endothelial cells through the histamine H1 501

receptor (H1R)-Ca2+-NFkB axis [128]. Interestingly, 502

the role of histamine in the GBM microenvironment is 503

opposite to that in the peripheral blood, where histamine 504

triggers a positive immune response. The blood-brain 505

barrier limits the entry of peripheral blood histamine 506

into the GBM microenvironment, making the role of 507

histamine-driven pro-angiogenic tumor microenviron- 508

ment remodeling particularly noteworthy. Another im- 509

portant factor of concern is the MYC oncogene, which 510

is often referred to as a “Superoncogene” due to its 511

powerful role in regulating GBM metabolism [129]. 512

The understanding of MYC has evolved over the years, 513

and it is now known to control gene expression at mul- 514

tiple levels, including directly binding to chromatin and 515

recruiting transcriptional coregulators, regulating RNA 516

polymerase activity, and more. GBM is characterized by 517

Myc deregulation and undergoes significant metabolic 518

changes to meet the increased energy demand. Con- 519

versely, cancer metabolism disorders also impact MYC 520

expression and function, making MYC a crucial link 521

between metabolic pathway activation and gene expres- 522

sion. Ongoing and future studies will focus on control- 523
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ling the Myc oncogene and exploring new treatments524

for GBM by targeting metabolic pathways to deprive525

tumor cells of nutrients through inhibiting MYC ex-526

pression [129]. In summary, metabolic adaptations in527

GBM play a vital role in its malignant progression.528

6. The immune system in the normal brain and529

the lymphatic system in GBM530

Lymphatic vessels do not exist in human brain in531

medical cognition for a long time. However, as early as532

2015, discharge of cerebral interstitial fluid and macro-533

molecules by the dural lymphatic system and struc-534

ture and function of CNS lymphatic vessels were de-535

scribed [130,131]. Meningeal lymphatic vessels at the536

skull base were proved to involve in the clearance537

of cerebrospinal fluid (CSF) and neuroinflammation-538

induced lymphangiogenesis near the cribriform plate539

was showed to contribute to drainage of CNS-derived540

antigens and immune cells in 2019 [132,133]. Further-541

more, untill 2021, meningeal lymphatic vessels were542

found to regulate lymphatic drainage and immunity in543

brain tumors [134] and VEGF-c-dependent lymphatic544

drainage to participate in immune surveillance [135].545

Finally, a complete CNS lymphatic system, encompass-546

ing arachnoid villi, periarangial pathways and dural547

lymphatic vessels and communicating with the cere-548

brospinal fluid has been proposed [136]. The view of549

immune exemption for the CNS has thus been consid-550

erably revised.551

The situation is more complex in GBM and lym-552

phatic outflow of cerebrospinal fluid in glioma is de-553

creased [137]. Indeed, GBM cells inoculation proximal554

to the left ventricle (LV) in a mouse model disrupted the555

ependymal barrier and increased tumor-CSF interac-556

tion, negatively impacting immunotherapy. The author557

considered the occurrence of therapeutic targets in cere-558

brospinal fluid only if healthy ependymal membrane559

cells were present [138].560

7. GBM immunotherapy561

The failure of phase III GBM immunotherapy clin-562

ical trials has been attributed to the targeting of a sin-563

gle anti-tumor component, ignoring the acknowledged564

heterogeneity of the environment [139]. Further re-565

search progress has been widely concerned. Success-566

ful advances in immune checkpoint blockade therapy567

and targeting immunosuppressive proteins, such as pro-568

grammed cell death protein-1(PD-1) and/or cytotoxic T 569

lymphocyte-associated antigen-4 (CTLA-4), have been 570

reviewed [140], Initiating a paradigm shift in clinical 571

and preclinical research and applied immunotherapy to 572

solid tumors, which will be a potential breakthrough 573

in the field of GBM drug treatment. However, resis- 574

tance to GBM therapy has been ascribed to cancer stem 575

cells (CSCs) and the inability of immunotherapy (IT) 576

to completely eliminate CSCs results in failure to uni- 577

versally prolong patient survival [141]. A systematic 578

IT approach to CSC elimination may provide a solu- 579

tion and progress has been made in CAR-T, immune 580

checkpoint inhibitors, vaccination and oncolytic virus 581

therapies for GBM (Fig. 3 and Table 1). 582

7.1. CAR-T for gliomas 583

Chimeric antigen receptors (CAR) engineered T cell 584

mediated adoptive immunotherapy (CAR-T) has made 585

great progression in the treatment of hematological ma- 586

lignancies [142]. As far as GBM is concerned, as the pe- 587

culiarities of the immune microenvironment described 588

above, CAR-T has been of limited benefit for GBM, 589

although preclinical models have furnished hope [143]. 590

More research continues with the aim of improving 591

CAR efficacy in GBM [144,145]. The following three 592

research approaches have been described. 593

7.1.1. IL13rα2 specific CAR-T 594

Interleukin 13 receptor subunit α-2 (IL13Rα2) is 595

present in 60 percent of GBMs and is associated with 596

pro-inflammatory and immune pathway activation [146, 597

147]. Overexpression of IL13Rα2 in GBM patients 598

results in the activation of phosphatidylinositol-3 ki- 599

nase/AKT/rapamycin pathway, thereby leading to poor 600

prognosis and increased tumor aggressiveness [148, 601

149]. Intracranial injection of IL13-zetakine CAR- 602

T into tumor-bearing animals significantly prolonged 603

survival [150] and the brain inflammation, grade 3 604

headache and transient grade 3 neurological events were 605

controllable by infusion of IL13rα2-directed CAR-T 606

cells through implanted container/catheter system into 607

the tumor resection stumps. Decreased IL13 Rα2 tu- 608

mor expression, persistently increased tumor necrosis 609

volume observed during MRI and improved overall sur- 610

vival resulted from treatment [150]. Second-generation 611

IL13-zetakine CAR-T cells for 6-cycle tumor residual 612

infusion and 10-cycle ventricular system infusion (via 613

lumbar puncture) were developed to treat one patient of 614

rGBM. Residual intraluminal perfusion inhibited local 615

tumor progression but extraluminal intracranial tumor 616
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Table 1
Overview of immunotherapy modalities to glioblastoma

Immunotherapy modal-
ities

Description

CAR-T cell therapy Including IL13rα2 specific CAR-T, EGFRvIII CAR-T, HER2 specific CAR-T, B7-H3 specific CAR-T and CAR-NK
immunotherapy

Immune checkpoint in-
hibitor therapy

PD-1/PD-L1 blocking therapy

Tumor vaccination Including cell vaccines, synthetic peptide vaccine, and nucleic acid vaccine
Oncolytic virus therapy Using intratumoral delivery of virus to TME for treatment, or causes direct cytotoxicity through viral infection and

replication

Fig. 3. Current immunotherapy modalities for the treatment of glioblastoma: 1. CAR T-cell therapy such as anti-IL-13Rα2CART cell therapy,
anti-EGFRvIII CART cell therapy, anti-HER2 CART cell therapy, anti-BFH3 CART cell therapy, and the relatively specific CAR-NK cell therapy;
2. Immune checkpoint inhibitor therapy, the most important of which is to inhibit the binding of PD-1 and PD-L1, thus restoring the tumor cell
killing effect of CTL; 3. Vaccine therapies, including cellular vaccines, SPV and NAV, which can promote the tumor-killing effect of CTL; 4.
Oncolytic virus therapies, are viruses that can selectively infect or replicate in tumor cells, which not only directly kill infected tumor cells, but
also promote the tumor-killing effect of CTL.

progression and new spinal cord lesions were discov-617

ered. Although, the fifth ventricular infusion reduced618

intracranial and spinal cord tumors by 77–100% but619

only lasted 7.5 months. Recently, a novel TanCAR,620

comprising the tandem arrangement of IL13 (4MS) and621

EphA2 scFv, was reported to selectively kill GBM tu-622

mor cells, but did not kill normal cells bearing only the623

IL13Rα1/IL4Rα receptor. TanCAR T cells have proved624

more effective in glioma reduction than single IL13625

CAR or EphA2 scFv CARs and prevent antigen escape626

reducing off-target cytotoxicity in a xenograft mouse 627

model [151]. 628

7.1.2. EGFRvIII CAR-T and CAR-NK immunotherapy 629

The antitumor effects of EGFRvIII-specific CAR-T 630

in in vitro and in vivo models of U87 cells were re- 631

ported in 2013 [152]. It was later discovered that Infu- 632

sion of CAR-modified T cell (CART)-EGFRvIII cells 633

into ten recurrent GBM patients produced off-tumor 634

toxicity or cytokine release syndrome and significant 635
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EGFRvIII -mediated CAR-T cells were found in pe-636

ripheral blood [153]. Third generation EGFRvIII CAR-637

T (G3-EGFRvIII) increased IFN-γ levels on co-culture638

with glioma cells in vitro and prolonged survival in639

tumor-bearing mice [154] but controversies remain over640

clinical treatments based on EGFRvIII CAR-T due to641

EGFRvIII do not represent prognostic keys in EGFR-642

amplified glioma patients [155].643

CAR-NK, a development based on CAR-T, is al-644

ready a fourth-generation engineered cell, which has645

received as much attention as CAR-T, Fourth gener-646

ation EGFRvIII specific CAR-NKs have been engi-647

neered [156]. Since EGFRvIII specific CAR-NK has648

been reported, a number of researchers [157,158,159,649

160,161] have demonstrated their results from differ-650

ent perspectives such as molecular mechanism and effi-651

cacy. Especially, MSCs can be home to GBM and not652

healthy brain cells, hence it serves as a tumour-specific653

drug-delivery system, including pro-apoptotic factors654

and tumor necrosis factor-related apoptosis-inducing655

ligands (TRAIL) [162]. Furthermore, the design of bi-656

functional MSCs expressing high levels of TRAIL and657

GD2 tCAR, which is associated with a robust anti-658

tumor activity against GD2-positive GBM cells, shows659

promise [163,164].660

7.1.3. HER2 or B7-H3 specific CAR-T therapy661

HER2 is highly expressed on GBM ependymoma and662

medulloblastoma, but not in normal CNS tissues [165].663

HER2-specific T cells, which target primary glioblas-664

toma stem cells, have demonstrated promising preclini-665

cal effects in 10 GBM patients [166]. In clinical treat-666

ment of 17 HER2-positive, progressive GBM patients,667

there were no dose-limiting toxic effects, and CAR-668

T cells were detected in the peripheral blood for up669

to 12 months after infusion. However, despite these670

findings, there was no notable expansion of CAR-T671

cells or significant survival benefit observed in these672

patients [167].673

B7-H3 (also known as CD276) is a newly found674

molecule of B7 family. B7-H3 could promote the ac-675

tivation of T cells and the proliferation of IFN-γ. It is676

highly expressed in all most human cancers, associated677

with undesirable treatment outcomes and survival time,678

due to function of the immune checkpoint molecule.679

B7-H3 is frequently overexpressed in GBM patients,680

and its expression levels were correlated to the malig-681

nancy grade and poor survival in both low-grade glioma682

(LGG) and GBM patients. Therefore, it may serve as a683

valuable target for CAR-T therapy [168,169,170,171,684

172].685

CAR-T research on both hematological and solid 686

tumors has increased between 2009–2021 [173]. When 687

it comes to GBM, including targets such as IL13Ra2, 688

EGFRvIII, and HER2, there are challenges that need to 689

be addressed. However, obstacles still exist, such as the 690

high investment costs and a lack of cooperation among 691

research units. 692

7.2. Immune checkpoint inhibitor therapy 693

Immunotherapy, involved in various immune check- 694

point inhibitor molecules, has improved patients’ sur- 695

vival in different types of cancers. This is one of the 696

most hopeful approaches for antitumor therapy. Glioma 697

immune checkpoints including PD-1/PDL-1, Tim- 698

3/Galectin-9, CTLA4, LAG3 and TIGIT/CD96, are tar- 699

gets for immune checkpoint inhibitor therapy [174]. 700

The anti-PD-1 and anti-PD-L1 monoclonal antibodies 701

approved by the US FDA- block distinct inhibitory sig- 702

nals that unleash T cells to aid tumor eradication. T 703

cells, B cells, TAMs, myeloid stem cells (MDSCs) and 704

natural killer cells (NK) all target the PD-1/PD-L1 path- 705

way in GBM to trigger an anti-tumor immune response. 706

Tumor that has been immunosuppressed is removed first 707

and then immunotherapy is used to enhance the func- 708

tions of the tumor infiltrating lymphocytes (TILs). Un- 709

fortunately, the administration of checkpoint inhibitor 710

therapy has shown limited success in GBM clinical 711

trials, primarily due to the challenges of successfully 712

delivering the drugs across the BBB. Some progress 713

has been made since PD-1/PD-L1 blocking therapy was 714

predicted to be the future for cancer immunotherapy in 715

2019 [175]. PD-L1-mediated GBM immunosuppres- 716

sion has been reported to be related with infiltration and 717

M2 polarization of TAM [176], suggesting targeting 718

both TAMs and mNiche as a promising strategy [44]. 719

Indeed, CD137 and PD-L1 targeted immunoviral ther- 720

apy has been shown to induce a lasting anti-tumor im- 721

mune response in a malignant glioma model [177]. 722

Follicular helper T cells have been found to restore 723

CD8+-dependent anti-tumor immunity and anti- PD- 724

L1/PD-1 activity [178]. For gliomas, the PD-1/PD-L1 725

axis and adenosine pathways have been found to be im- 726

munosuppressive [179] and TIGIT and PD-1 immune 727

checkpoint pathways to be associated with prognosis 728

and anti-tumor immunity [180]. Despite these promis- 729

ing results, we are still far from resolving the clinical 730

challenges posed by the disease. Indeed, the prognostic 731

value of bioinformatics in relation to immune check- 732

point inhibition for GBM has been extensively stud- 733

ied [181,182,183]. Additionally, the inhibitory impact 734
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of engineered extracellular vesicle irradiation on GBM735

immune checkpoints has been reported [184], and all736

of these findings hold promise for potential clinical737

applications.738

7.3. Vaccination: Cell, peptide and mRNA vaccines for739

glioma740

Cell vaccines: In addition to CAR-T and CAR-NK741

regarded as T and NK cell vaccines [185], Dendritic cell742

(DC) fusion vaccine is the most important cell vaccine.743

Bone marrow-derived DC fusion vaccines have been744

given to tumor-bearing mice, alone or in combination745

with telimazolid, to prolong survival time [186,187].746

Glioma stem cell-targeted dendritic cells as a tumor747

vaccine against malignant glioma and DC glioma cell748

fusion as an antitumor vaccine in vitro culture have also749

been studied respectively [188,189]. In a large phase750

III clinical trial of DC vaccine for GBM, 331 patients751

with GBM after standardized treatment were included,752

patients were randomized to receive temozolomide plus753

DC vaccine (n = 232) or temozolomide and placebo754

(n = 99). The results showed that the addition of DC755

vaccine to standard therapy is both feasible and safe for756

patients, and it has the potential to extend survival. Only757

2.1% of patients experienced a grade 3 or 4 adverse758

event [190]. Indeed, an almost complete response of759

GBM patients to treatment with an allogeneic dendritic760

cell-based vaccine was an encouraging outcome of a761

2022 trial [191].762

Synthetic peptide vaccine (SPV): TollR-3/poly-ICLC763

and TGF-β improved the therapeutic efficacy of glioma-764

associated antigen peptide vaccines on tumor-bearing765

mice [192,193] and patients with WHO grade II766

gliomas produced a strong CD8+ T cell response after767

receiving peptide vaccine combined with polyurethra-768

some (iclc) [194]. Following these encouraging out-769

comes, VEGF receptor 1 and 2 peptide vaccine was770

investigated [195], peptide vaccines (ICT-107), autolo-771

gous dendritic cells (DC) pulsed with six synthetic pep-772

tide epitopes targeting GBM tumor/stem cell-associated773

antigens MAGE-1, HER-2, AIM-2, TRP-2, gp100, and774

IL13Rα2, was proposed [196], multiple glioma tumor775

antigens/glioma angiogenesis-related antigen peptide776

vaccine was evaluated [197], neoantigen vaccine us-777

ing multi-epitope, personalized neoantigen vaccination778

strategies was created [198], and mass cytometry for de-779

tecting H3.3K27M-specific vaccine mutant IDH1 vac-780

cine were developed [199,200]. These vaccines have781

been tested in newly diagnosed and relapsed GBM dif-782

fuse midline glioma respectively, and the results show783

that they are well tolerated and have good curative ef- 784

fect. However, they all belong to single-center phase 785

I/II clinical trials and need to be further studied. 786

Nucleic acid vaccine (NAV): Both DNAV and mR- 787

NAV are safe and more easily manufactured than SPVs 788

and aim to transmit genetic information encoding tu- 789

mor antigens (Tas) to the host to generate an anti- 790

cancer immune response [201,202]. Although NAV is 791

safe and easy to manufacture compared to SPVs, they 792

have so far not been considered a viable alternative to 793

SPVs. Judging from the situation that has been car- 794

ried out, DNAV for cervical cancer, prostate cancer and 795

breast cancer and mRNAV for melanoma, GBM and 796

prostate cancer have been investigated. A DNA vac- 797

cine with a glioma antigen, SOX6 and a vaccine tar- 798

geting IL13Rα2 have been shown to induce therapeu- 799

tic anti-tumor immunity in 2008 [203,204]. Thirteen 800

years later, an immune response of a new DNA-based 801

immunotherapy and increased survival times in differ- 802

ent tumor models have also been reported [205]. Be- 803

tween 2021 and 2022, 6 studies used information in the 804

TCGA and/or CGGA databases to screen for suitable 805

tumor-associated or tumor-specific antigen candidates 806

for mRNAV in gliomas but no mRNAVs were synthe- 807

sized [206,207,208,209,210,211]. Therefore, the use of 808

mRNAV as a specific prophylactic vaccine for clinical 809

trials still appears to be distant or not yet feasible at 810

present. 811

7.4. Oncolytic virus therapy 812

Oncolytic viruses (OVs) can replicate in cancer cells 813

but not in normal cells, leading to death of the tumor 814

cells. Oncolytic viruses therapy (OVT) uses intratu- 815

moral delivery of virus to TME for treatment, or causes 816

direct cytotoxicity through viral infection and replica- 817

tion [212,213]. The treatment induces immunogenic 818

cell death (ICD) in infected tumor cells when destruc- 819

tion of tumor cells by OVT releases antigens into the 820

TME, recruiting and activating local dendritic cells and 821

specific T cells [213]. The research on oncolytic virus 822

has never ceased. Earlier regimens involving the HSV1- 823

tk gene with the antiviral drug acyclovir [212,214] suf- 824

fered from poor vector delivery and poor efficacy. How- 825

ever, HSV1G207, developed later, has been shown to 826

be safe and effective in clinical trials. The advantage 827

is that it allows conditional replication in tumor cells 828

while preventing infection of normal cells [215], phase 829

I clinical trials have been conducted, whether alone 830

or in combination with radiotherapy GBM is effective 831

and safe [216,217,218]. Furthermore, the new drug, 832
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HSV-rQnestin34.5v.2, is currently undergoing clinical833

trials, and it has demonstrated low toxicity to human834

beings [219,220].835

8. Summary and outlook836

8.1. Plasticity of the GSC niche837

The aforementioned GSCs Niche are almost ubiq-838

uitous in and around GBM entities, and their func-839

tion has not been fully demonstrated. The perivascu-840

lar niche (PVN) is considered to be a complex mi-841

croenvironment containing endothelial cells plus astro-842

cytes, pericytes, immune cells and other stromal cells843

that regulate GSC biology [221,222,223]. It is not clear844

how the various cellular components of PVN change845

GSC behavior, such as proliferation, quiescence, in-846

vasive dissemination, homing and chemoradiation re-847

sistance. Previous 2D and 3D in vitro cultures and848

tumor-bearing mouse models have inevitable limita-849

tions, and bionic models have received great attention850

and shown a bright future [224,225,226,227,228,229,851

230]. However, it seems that there are still many diffi-852

culties whether the wish of using bionic model to com-853

pletely replace clinical cases can be achieved. Single-854

cell sequencing has been used to detect the interactions855

between GSCs and immune cells during tumorigene-856

sis [13], analyze the inhibition of CD161 receptor by857

GBM infiltrating T cells [12], reveal functional hetero-858

geneity of glioma-associated brain macrophages [11],859

and reveal the role of m6A-modified RNA in the860

glioblastoma microenvironment [231]. Single cell se-861

quencing can detect the molecules of all single cell862

components from clinical specimens. In biomimetic863

models, the cells are often artificially introduced or864

stocked to mimic the natural environment, ranging from865

biomimicry to simulation, and even high simulation,866

eventually forming a realistic landscape resembling867

clinical GBM. However, such models come with po-868

tential risks that are difficult to achieve or replicate in869

reality.870

The dynamic nature of CSCs implies plasticity of871

GSCs [232], reinforcing the message of our recently872

published review “GSCs and Their Microenvironments:873

Docking and Transformation” [233]. In short, GSCs874

change according to the microenvironment and thera-875

peutic signals.876

8.2. A cure for GBM877

Standard care for GBM only prolongs the patient’s878

very short lifespan and the prognosis is particularly879

severe for unresectable GBM [234,235,236,237,238]. 880

Immunotherapy promises to be less than ideal [239, 881

240,241]. Future treatment direction pays more atten- 882

tion to combination strategies. For example, the bis- 883

pecific antibodies targeting two different antigens has 884

proven to be a valuable approach, [242,243] but the 885

BBB excludes most macromolecular monoclonal anti- 886

bodies [244,245]. Fortunately, novel cyclic peptides that 887

modulate BBB functions have been reported to enhance 888

monoclonal antibody delivery to the brain [244] and 889

focused ultrasound-mediated BBB disruption has been 890

showed to improve the delivery of anti-CD47 mono- 891

clonal antibodies [246]. Alternatively, intratumoral ad- 892

ministration is very valuable for improving drug dis- 893

tribution and sustained release. For example, PLGA 894

nanoparticles which have been found to enhance the 895

penetration of paclitaxel in brain tissue, including some 896

other implants, can improve the therapeutic effect [247, 897

248,249,250,251]. In addition, nanoformulation has 898

been used to transform “cold” GBM tumors into “hot” 899

and promote immune cell infiltration [252,253]. In- 900

tranasal administration has also been proposed as a po- 901

tential delivery method [254,255]. However, most of the 902

mentioned approaches are still in the preclinical stage, 903

and more research is needed to explore their potential 904

effectiveness and safety for further investigation. 905

Botanical medicines, such as leaf extract of Termi- 906

nalia catappa L. inhibited tumor cell migration and in- 907

vasion in a human GBM PDX [256,257], artemisia an- 908

nua had an in vitro anti-cancer effect and resveratrol 909

inhibited the proliferation of dendritic cells induced by 910

human GBM GSCs [258]. 911

In short, there is hope to improve GBM, especially 912

the survival prognosis of rGBM, which is currently in 913

the stage of in vitro or in vivo experiments in animals, 914

and there is still a painstaking research process on when 915

incurable GBM can be turned into a treatable one. 916

8.3. A new model of GBM immunotherapy 917

GBM heterogeneity of cell composition, gene expres- 918

sion and phenotype means that some experimental mod- 919

els involved in the above preclinical studies are over- 920

simplified, such as spheroids which represent a random 921

aggregations of cells without a tissue-like structure, ex- 922

tracellular matrix or neighboring non-tumor cells. Het- 923

erogeneous tumor spheres that better meet the require- 924

ments of clinical research are being studied, including 925

heterospheres from co-culture of cancer and stromal 926

cells, producing spheroids containing NK cells [259] 927

or grown in the presence of osteoclasts and probiotics, 928
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increased cytotoxicity to CSCs [260]. Moreover, an929

immunocompetent cancer stem cell model that reca-930

pitulates tumor heterogeneity, invasiveness, vascular-931

ity, and immunosuppressive microenvironment in syn-932

geneic immunocompetent mice was developed and used933

for tested a genetically engineered oncolytic herpes934

simplex virus that is armed with interleukin 12 (G47-935

mIL12). The results showed G47∆-mIL12 could pro-936

vide a multifaceted approach to targeting GSCs, tumor937

microenvironment, and the immune system [261].938

Organotype tissue sectioning models involve cul-939

ture of surgically removed tumor tissue, maintaining940

inter- and intra-tumor heterogeneity and tumor struc-941

ture [262,263,264]. This technique does not involve se-942

lective growth of tumor cells may be used for person-943

alized treatments and to evaluate individual sensitivity944

to invasive and patient-specific effects of anti-invasive945

drugs [263]. An in vitro brain slice model for targeting946

of brain metastases of breast cancer has also been con-947

structed [265]. Such a model is expected to contribute948

to immunotherapy studies of solid tumors, including949

GBM.950

Currently, one of the most cutting-edge areas of re-951

search is focused on organoid models. Organoid mod-952

els have the ability to replicate the structure and func-953

tion of original organs, and in the long-term, they hold954

the potential to replace patient-based studies [266,267].955

They have potential for basic cancer research, drug956

screening and personalized susceptibility studies and957

may bridge the gap between in vitro and in vivo cancer958

models [266,268]. The GBM organoid model, gener-959

ated by traditional 3D culture, genetic engineering and960

co-culture, shows promise, preserving the phenotype961

and 3D TME of the original tumor [269,270,271,272,962

273,274,275,276,277,278]. These methods can also be963

used to produce other organoid models of brain tumor964

such as medulloblastoma and brain metastasis. It has965

been widely used in basic research and clinical trans-966

formation research, especially in immunotherapy re-967

search, which has considerable potential. Combining968

innovative technologies, such as 3D bioprinting and 4D969

real-time imaging, are likely to produce realistic mod-970

eling of brain tumor organoids although structural and971

genetic fidelity aspects remain unclear [279].972

In summary, the path towards transforming incurable973

GBM into a curable condition has come closer, but there974

is still a considerable distance to cover. Nevertheless,975

there is hope as a recent seminar, co-organized by the976

National Brain Tumor Society and the Parker Institute977

of Cancer Immunotherapy, has brought together experts978

who have highlighted potential future directions for979

GBM therapy [280,281,282].980

9. Conclusions 981

Glioma microenvironment, which is remodeled by 982

GSCs, is different from other cancers. In addition to 983

the unique characteristics mentioned above, the hetero- 984

geneity of GSCs and TME is the key to be clarified in 985

the future. For example, Driving factors of GSC plas- 986

ticity and heterogeneity (such as reprogramming tran- 987

scription factors and epigenetic modifications) has been 988

proved to be related to the induction of immunosuppres- 989

sive cell states, which may lead to therapeutic oppor- 990

tunities for GSC-intrinsic mechanisms [283]. Another 991

example is the interaction between tumor-associated 992

microglia/macrophages and GSCs in TME [284]. We 993

have only verified that SU3 (GSCs) can trigger the 994

malignant transformation of macrophages into cancer 995

cells [285]. However, if we can elucidate the molecular 996

mechanisms underlying this transformation, we may be 997

able to manipulate the related molecules and revert the 998

transformed macrophages back to the M1 state, which 999

could potentially inhibit GSCs. 1000
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