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Abstract

Objective: Treatment of pediatric brain tumors is associated with potential

long-term cognitive sequelae. Patients treated with craniospinal irradiation for

posterior fossa tumors are at high risk. New biomarkers that could help to dif-

ferentiate treatment effects from other causes of cognitive dysfunction would be

valuable in tailoring optimal survivorship care. Biomarkers that reflect biologi-

cal mechanisms behind treatment-associated cognitive decline would also be

important in the evaluation of future treatment regimens for pediatric brain or

skull base tumors. Methods: In this biomarker-finding study, 10 adult survivors

of pediatric medulloblastoma, skull base tumors, and posterior fossa low-grade

glioma underwent study specific lumbar puncture at a minimum of 17 years

following treatment. We analyzed cerebrospinal fluid biomarkers reflecting neu-

ron and astrocyte integrity, amyloid metabolism, inflammation, extracellular

matrix, synaptic integrity, and blood–brain barrier function. The values were

compared with biomarker levels in healthy controls of comparable age. Results:

Biomarkers reflecting neuronal injury (neurofilament light chain protein),

astrocyte injury or activation (glial fibrillary acidic protein) as well as inflamma-

tion (YKL-40) were significantly elevated in cancer survivors compared to con-

trols. Biomarkers reflecting amyloid metabolism showed a pattern of decrease

in patients treated for medulloblastoma. Interpretation: The results suggest a

potential chronic low-grade neurodegeneration and astrocyte activation in

patients treated for pediatric brain or skull base tumors. Protein biomarkers of

CNS disease could potentially be used to increase our understanding of the

contribution from different tumor treatments with regard to long-term symp-

toms in cancer patients.
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Introduction

Cancer treatment during childhood is associated with a high

rate of survival,1 but also with complex medical and psycho-

social late effects.2,3 Of particular concern in the treatment

of malignant pediatric brain tumors are potential adverse

cognitive effects of cranial radiotherapy. Children with

medulloblastoma of the posterior fossa are routinely treated

with surgery and craniospinal irradiation (CSI) to the entire

central nervous system (CNS) as well as a localized radiation

boost to the tumor bed in the posterior fossa, followed by

chemotherapy. Cognitive impairment after CSI is common

and has been demonstrated in several cognitive domains.4,5

However, cognitive impairment after brain tumor treatment

can be seen also after partial brain radiotherapy or after sur-

gery alone, as demonstrated by Brinkman et al in a large

cohort of adult survivors of pediatric brain tumors assessed

by formal neurocognitive testing at a median time of

18 years from initial diagnosis. The group treated with CSI

was the most severely impaired across the tested cognitive

domains, but cognitive impairment was prevalent also with

focal or no radiotherapy. Additional independent risk fac-

tors in this study were a history of hydrocephalus or

seizures.6 Several other risk factors for cognitive impairment

have been described, including for example age at

treatment.7 The incidence of pediatric head and neck tumors

is considerably lower than that of brain tumors. There is a

knowledge gap about cognitive long-term sequelae after

treatment for head and neck or skull base tumors during

childhood, despite the fact that these patients often receive

considerable incidental radiation doses to the brain, includ-

ing the temporal lobes. We initiated a study of adult survi-

vors of pediatric brain and skull base tumors to assess

cognitive function, quality of life, and potential biomarkers

of late effects in the brain. The results regarding cognitive

function and quality of life in survivors of malignant poste-

rior fossa and skull base tumors were recently published and

confirmed significant cognitive impairments in patients

treated with CSI and a trend toward impaired function also

in patients treated for skull base tumors compared to a

healthy control group.8 We have previously found elevated

levels of biomarkers reflecting neuroaxonal injury (neurofi-

lament light chain [NfL] and tau), inflammatory signaling

(YKL-40 [also known as chitinase-3-like 1], interleukin [IL]-

15), astrogliosis (glial fibrillary acidic protein [GFAP]), and

synapse integrity (GAP-43 [growth-associated protein 43])

in the cerebrospinal fluid (CSF) after prophylactic cranial

irradiation (PCI) in patients with small cell lung cancer. The

study also revealed decreasing levels of soluble amyloid pre-

cursor proteins (sAPPa and sAPPb) and extracellular matrix

proteoglycans (brevican and neurocan) up to 1 year after

treatment.9,10 Based on these previous results, the aim of the

present study was to analyze CSF protein biomarkers, possi-

bly reflecting neurotoxicity after cranial radiotherapy or sur-

gery, in a cohort of childhood cancer survivors with long

follow-up time.
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Methods and Materials

Study protocol and participants

The patient cohort was recruited as part of a larger

follow-up study of adult survivors of childhood brain or

skull base tumors. The study was performed within the

framework of the long-term follow-up clinic for adult

childhood cancer survivors at the department of oncology

at the Sahlgrenska University Hospital. Three different

patient groups were included with the aim of studying

long-term effects of different cranial radiotherapy

exposures during childhood: malignant posterior fossa

tumors treated with CSI, skull base tumors exposed to inci-

dental brain irradiation and low-grade astrocytoma of the

posterior fossa treated with surgery alone (initially

intended as a control group). Additional inclusion criteria

were age >18 years and minimum follow-up time

>10 years. Invitations for a visit to the long-term follow-up

clinic, including study screening, were sent by mail to 38

eligible survivors. Ten individuals did not respond to the

letter. Of 28 screened persons, 23 consented to participate

in the main study. The entire study protocol included neu-

ropsychological assessment, magnetic resonance imaging

(MRI) of the brain, electroencephalography (EEG),

patient-reported outcomes assessment, examination from a

speech therapist and physician, endocrine laboratory

screening, as well as CSF sampling. Participants could

choose to take part in all study modalities or to opt out

from certain modalities. The results of the neuropsycholog-

ical assessment and patient-reported outcomes for patients

with skull base tumors and patients treated with CSI have

been published previously.8 Of 23 patients included in the

main study, 11 patients consented to CSF sampling. One

patient treated with CSI had a ventriculo-peritoneal shunt

and had markedly increased CSF protein. This patient sub-

sequently developed symptoms and radiological findings

consistent with over-shunting and was consequently

excluded from the statistical analysis. There were no other

patients with ventriculo-peritoneal shunt in the study

cohort. Due to the limited number of CSF samples in the

study, control CSF was also drawn from an existing bio-

bank of CSF from healthy volunteers. Twelve controls were

selected to represent a control group of comparable age

and sex distribution. However, due to the paucity of avail-

able control samples, no exact age matching was possible.

The demographics of the included patients and controls

are presented in Table 1. The study was approved by the

regional ethics review board (Dnr 721-15). The collection

of control samples was approved in a separate application

(Dnr 223-15). All patients and controls provided written

consent.

Biomarkers

Biomarkers selected for analysis were proteins involved in

maintaining neuronal structural integrity (NfL, tau),

astrocyte structural integrity (GFAP), amyloid protein

processing (sAPP isoforms alpha and beta, amyloid b 40

and 42 (Ab40 and Ab42), and extracellular matrix proteo-

glycans (brevican). Soluble triggering receptor expressed

on myeloid cells 2 (sTREM2) and YKL-40 was used to

investigate microglial activation and neuroinflammation.

GAP-43 and neurogranin were chosen as potential bio-

markers of synapse function, integrity, and plasticity. To

study potential effects on blood–brain barrier function,

we analyzed the levels of the shedded, soluble, form of

platelet-derived growth factor receptor beta (sPDGFRb).

Sample analysis

CSF NfL and GFAP concentrations were measured using

in-house enzyme-linked immunosorbent assays (ELISAs),

as previously described.11,12 CSF tau, Ab40, and Ab42
concentrations were measured using Lumipulse assays

(Fujirebio, Ghent, Belgium). sAPPa and sAPPb concen-

trations were measured using commercial ELISAs from

IBL (Tecan, M€annedorf, Switzerland). CSF sTREM2 con-

centration was measured using an immunoassay with

electrochemiluminescence detection, as previously

Table 1. Participant characteristics and treatment modalities of patients and controls.

Controls All patients Low-grade astrocytoma Skull base tumors Medulloblastoma

Participant characteristics

N= 12 10 3 4 3

Female (%) 75 40 33 25 67

Age, median (range) 26 (23–36) 32 (27–46) 29 (27–46) 31 (31–33) 34 (31–41)

Age at treatment, median (range) – 10 (3–15) 8 (3–15) 10 (7–13) 9 (6–11)

Years since treatment, median (range) – 23 (17–30) 23 (21–30) 22 (17–23) 25 (25–30)

Treatment

Surgery – 8/10 3/3 2/4 3/3

Chemotherapy – 5/10 – 3/4 2/3

Radiotherapy – 7/10 – 4/4 3/3
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described.13 CSF GAP-43 and neurogranin concentrations

were measured using in-house ELISAs as previously

described.14,15 CSF YKL-40 concentration was measured

using a commercially available ELISA kit (R&D Systems,

Minneapolis, MN, USA). CSF sPDGFRb concentration

was measured by sandwich ELISA (Thermo Fisher Scien-

tific, Waltham, MA, USA). All samples were analyzed as

singlicates in a single batch. Intra-assay coefficients of var-

iation were below 10% for all biomarkers.

Treatment

Three patients had low-grade astrocytoma of the posterior

fossa and were treated with surgery alone. Patients with

tumors of the skull base had sarcomas (n = 2), nasopha-

ryngeal cancer (n = 1), and angiofibroma (n = 1). In this

group, all patients had radiotherapy with treatment fields

extending into the temporal lobes, brain stem, and cere-

bellum. Two patients also had surgery, and three patients

were treated with chemotherapy. All malignant posterior

fossa tumors in the present analysis (n = 3) were medul-

loblastomas and were treated with surgery followed by

CSI and a posterior fossa boost. Two of three patients

also had chemotherapy. Patients received radiotherapy

using either 2D planning techniques or 3D conformal

radiotherapy. Patients with tumors of the skull base or

nasopharynx were often treated with two opposed lateral

fields and one anterior field. The prescribed doses to the

primary tumor volume were between 45–61.2 Gy with

1.7–1.8 Gy per fraction. Patients with medulloblastoma

received CSI with two opposed lateral fields covering the

entire brain and posterior fossa as well as fields covering

the entire spinal dural compartment. A sequential boost

was delivered to the entire posterior fossa. The range of

CSI doses was 32–35 Gy with 1.5–1.75 Gy given as one

daily fraction. The total boost dose to the posterior fossa

was 53.6–55 Gy.

Statistics

Descriptive statistics are presented using medians and

range or inter-quartile range. The non-parametric Mann–
Whitney U test was used for group comparisons of bio-

marker values and participant characteristics. Spearman’s

correlation analysis was used for correlation analyses

between biomarkers. R version 3.6.3 (R core team) and

SPSS version 27 (IBM Corp.) were used for all analyses.

Results

The median age of the patient group was slightly, but sig-

nificantly, higher than that of the control group (32 years

vs. 26 years, P = 0.02, Table 1). The values of all analyzed

biomarkers in patients and controls are displayed in

Table 2. The patient group had significantly higher levels

of NfL compared to controls (Table 2, Fig. 1). Although

NfL levels were only modestly increased compared to

controls in most patients, three of the adult cancer survi-

vors had NfL values at least 25% above the institutional

upper limit of normal using the same assay (<30 years:

<380 pg/mL; 30 to <40 years: <560 pg/mL; 40 to

<60 years: <890 pg/mL). We also found increased levels

of GFAP and YKL-40 in the treated group (Table 2,

Fig. 2). A correlation between age and both NfL

(q = 0.74, P < 0.01) and YKL-40 (q = 0.66, P < 0.01)

was observed across the study population. We performed

exploratory post hoc analyses in an attempt to reduce the

influence of age on the difference between the groups.

When removing the three youngest control subjects, the

difference in age was no longer significant (32 years vs.

29 years, P = 0.11), but NfL was still significantly

increased in patients compared to controls (median

439 pg/mL (IQR: 335–722) vs. 304 pg/mL (IQR: 144–
317), P = 0.01). The difference in YKL-40 did not remain

Table 2. Biomarker levels in all patients and controls.

Biomarker

Controls Patients

Patients vs

controls

Median

(IQR), N = 12

Median

(IQR), N = 10

Mann–Whitney

U, P=

Neuroaxonal injury

NfL (pg/mL) 266 (137–315) 439 (335–722) 0.003*

tau (pg/mL) 190 (163–242) 283 (182–322) 0.123

Inflammation

GFAP (pg/mL) 204 (118–265) 312 (225–373) 0.017*

sTREM-2 (pg/

mL)

1496 (1148–

2104)

2128 (1600–2406 0.08

YKL-40 (ng/mL) 66 (48–82) 93 (70–125) 0.025*

Extracellular matrix

Brevican (ng/

mL)

418 (352–467) 489 (304–582) 0.346

Amyloid metabolism

sAPPa (ng/mL) 316 (246–415) 269 (198–360) 0.456

sAPPb (ng/mL) 598 (550–758) 542 (359–666) 0.497

Ab40 (pg/mL) 12130 (9134–

14649)

11760 (9675–15488) 1.0

Ab42 (pg/mL) 1207 (839–

1464)

1181 (869–1522) 1.0

Ab42/Ab40

ratio

0.098 (0.093–

0.1)

0.099 (0.093–0.105) 0.539

Synaptic integrity

GAP-43 (pg/

mL)

2792 (1799–

3194)

3261 (2168–4206) 0.456

Neurogranin

(pg/mL)

132 (107–156) 151 (103–192) 0.582

Blood–brain barrier

sPDGFRb (pg/

mL)

278 (210–305) 322 (270–363) 0.107

Albumin ratio – 4.8 (3.2–8.5) –

IQR, inter-quartile range.

*P < 0.05.
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significant when removing the three youngest controls

(median 93 ng/mL (IQR: 70–125) vs. 75 ng/mL (IQR:

56–84), P = 0.079). There was no correlation between

GFAP and age, neither in the whole study population

(n = 22, q = 0.27, P = 0.22), nor in the individual groups

(patients: q = �0.13, P = 0.73; controls: q = 0.17,

P = 0.6). Because of this, no further attempt was made to

correct for age in the analysis of GFAP.

Biomarkers reflecting amyloid metabolism (sAPPa,
sAPPb, Ab40, and Ab42) showed no significant difference

between the control and patient groups (Table 2).

Patients with astrocytoma and skull base tumors had

values that qualitatively resembled controls. However, in

the patients treated with CSI, a tendency was seen toward

decreased values compared to controls (Fig. 3). The

Ab42/Ab40 ratio was very similar between patients and

controls (Table 2). We found no significant difference

between patients and controls in the biomarkers tau,

GAP-43, neurogranin, sPDGFRb, or brevican. We

observed a moderate to strong correlation between each

and all of the biomarkers of synapse integrity (GAP-43,

neurogranin), amyloid metabolism (Ab40, Ab42, sAPPa,
sAPPb), and extracellular matrix (brevican) across the

entire study population (Table S1, Fig. 3F).

Discussion

The aim of this biomarker-finding study was to investi-

gate CSF biomarkers reflecting CNS injury after cancer

treatment given during childhood in a cohort with long

follow-up time. Due to the long follow-up and the need

for lumbar puncture, the sample size was small. Neverthe-

less, we found modestly elevated NfL values in patients

compared to controls, with numerically higher values in

patients treated with CSI. In addition, biomarkers of

astrocyte activation/degradation (GFAP) as well as inflam-

matory signaling (YKL-40) were modestly increased in

patients compared to controls and this was especially pro-

nounced in patients treated with CSI. Due to the small

and heterogenous study cohort, it was not possible to

draw conclusions regarding the role of single treatment

modalities or the relationship between CSF proteins and

cognitive outcomes. However, the inclusion of a healthy

control group adds information about the effect sizes of

these biomarkers, something which can be of value when

designing future studies of late effects after treatment for

pediatric brain tumors.

NfL is an abundant structural component of the

axonal cytoskeleton and is released into the CSF as a
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Figure 1. Levels of biomarkers reflecting neuron or synapse degeneration. Astro, patients with low-grade astrocytoma of the posterior fossa; SB,

patients with skull base tumors; MB, patients with medulloblastoma.
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consequence of axonal injury, regardless of etiology.16

CSF levels of NfL are associated with disease activity in

several neurologic disorders, including multiple

sclerosis,17 ALS,18 and Alzheimer’s disease.19 Recent meth-

odological advances have led to development of assays

that allow the quantification of NfL in serum or plasma.20

NfL in blood is quickly gaining acceptance as a biomarker

reflecting neuroaxonal injury without the need for lumbar

puncture.21 This opens new possibilities to study larger

cohorts of adult cancer survivors, where NfL could be

more readily studied in relation to cognitive outcomes

and different treatment modalities.

Preclinical evidence strongly suggests that signaling

from activated microglia play an important role in induc-

ing a neurotoxic, pro-inflammatory phenotype in astro-

cytes following CNS injury and disease.22 TREM2

(triggering receptor expressed on myeloid cells 2) is an

immune receptor expressed by microglia, and its shedded

soluble form (sTREM2) has been investigated as a poten-

tial biomarker of microglia activity in neurological

disease.23 We found numerically elevated levels in this

cohort, but the comparison with healthy controls did not

reach statistical significance. GFAP, a type III intermediate

filament, is highly expressed in reactive astrocytes in areas

of reactive gliosis.24 In CSF, it is regarded as a biomarker

of astrocyte injury/activation and is elevated in several

neurologic diseases, including MS25 and neurodegenera-

tive dementias.26 YKL-40 is a glycoprotein secreted by

various cell types. Its physiological role has not been

firmly established but it is considered to play a role in tis-

sue remodeling during inflammation.27 YKL-40 is highly

expressed in reactive astrocytes in brain tissue from

patients with Creutzfeldt-Jakob disease and Alzheimer’s

disease28,29 and the CSF levels of YKL-40 have been found

to be elevated in several neurologic diseases with a neu-

roinflammatory component.28,30,31 The moderately ele-

vated levels of GFAP and YKL-40 observed in cancer

survivors in the present study could potentially reflect

both long-term reactive gliosis and ongoing low-grade

neuroinflammation.

In our previous longitudinal study of adult small cell

lung cancer patients receiving PCI, several biomarkers,

including NfL, GFAP, and YKL-40, were transiently ele-

vated 3 months following cranial irradiation, indicating

an acute injury to neurons and astrocytic cell populations

as well as an inflammatory response to radiotherapy.9

Interpreting biomarkers in patients treated for primary

brain tumors is more complex. As is the case with NfL,
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Figure 2. Levels of biomarkers reflecting astrocyte degeneration, inflammation, and blood–brain barrier function. Astro, patients with low-grade

astrocytoma of the posterior fossa; SB, patients with skull base tumors; MB, patients with medulloblastoma.
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recently developed ultra-sensitive assays allow quantifica-

tion of GFAP in peripheral blood, opening up possibilities

to study astrocyte injury and activation in cancer patients,

both during treatment and at long-term follow-up. In a

recent study of blood-based biomarkers in patients under-

going surgery and postoperative radiotherapy for malig-

nant glioma, plasma NfL and GFAP were both correlated

to preoperative tumor volume. There was a postoperative

increase in NfL but both GFAP and NfL subsequently

decreased during and up to 4–8 weeks after

radiotherapy.32 It is possible that any immediate effects

from radiotherapy on biomarker levels could have been

masked by effects of intracranial surgery as well as GFAP

expressed by the tumor tissue itself. This also illustrates

that biomarker levels will be influenced by both tumor-,

patient-, and treatment-related factors.

In the previous study of adult patients undergoing PCI,

we found decreasing levels of biomarkers of amyloid

metabolism. The reduction in these biomarkers occurred

already at 3 months but the levels remained decreased

1 year after radiotherapy and were also correlated with a

reduction in extracellular matrix biomarkers.9,10 During

intracellular trafficking, membrane-bound APP is cleaved

by a-secretase into sAPPa, which may serve a physiologi-

cal role in promoting neuronal plasticity and survival.33

The less common alternative cleavage by b-secretase gen-

erates sAPPb, and the remaining membrane-bound pep-

tide can then be sequentially cleaved by c-secretases into

amyloid b fragments of various length, including amyloid

b ending at residue 42 (Ab42), which has the potential to

form insoluble plaques in Alzheimer’s disease and Down’s

syndrome.34 A reduction in CSF Ab42 is one of the bio-

marker hallmarks of Alzheimer’s disease35 and correlates

with the deposition of amyloid in plaques in the cortex.36

However, reduced levels of CSF Ab42 have also been

found in diseases without plaque formation,37,38 suggest-

ing that decreased levels of Ab in CSF may reflect amy-

loid dysmetabolism of different aetiologies. The reduction

and correlation of both sAPPa and sAPPb as well as Ab
observed in patients treated with CSI in the present study

would perhaps suggest alterations in amyloid metabolism

up-stream of the cleavage of APP into sAPPa and sAPPb.
Although the group treated with CSI was too small for

formal statistical comparison, the reduced levels of amy-

loid biomarkers are in line with the results seen in

patients treated with PCI,9,10 warranting further study of

(A) (B) (C)

(D) (E) (F)

Figure 3. (A–E) Levels of biomarkers reflecting amyloid metabolism and extracellular matrix integrity. (F) Correlation between sAPPa and

brevican. Correlation coefficients represent Spearman’s rho. Astro, patients with low-grade astrocytoma of the posterior fossa; SB, patients with

skull base tumors; MB, patients with medulloblastoma.
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the effects of cranial radiotherapy on amyloid metabolism

in the context of radiation toxicity.

The major limitation of this pilot study is the small

sample size. The patient group was heterogenous, and the

need for lumbar puncture made the accrual of partici-

pants difficult. This also meant that the age was not per-

fectly matched between patients and controls. Although

cranial radiotherapy is an established risk factor for cog-

nitive decline, intracranial surgery as well as the adminis-

tration of chemotherapy could also have influenced the

results of the present study.39

Conclusions

The data from this pilot study suggest that protein bio-

markers of CNS disease could potentially be used to

increase our understanding of the contribution from dif-

ferent tumor treatments with regard to long-term symp-

toms in cancer patients. These data also suggest a

potential ongoing chronic low-grade neurodegeneration,

as well as astrocyte activation or degradation, many years

after treatment for pediatric brain or head and neck

tumors. With the advent of assays that can detect nervous

system specific biomarkers also in blood, future studies

will be able to assess these biomarkers in larger cohorts of

cancer survivors.
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