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Abstract: Glioblastoma multiforme (GBM) is one of the most aggressive and difficult-to-treat brain
tumors, with a poor prognosis due to its high resistance to conventional therapies. Current treatment
options, including surgical resection, radiotherapy, and chemotherapy, have limited effectiveness in
improving long-term survival. Despite the emergence of new therapies, monotherapy approaches
have not shown significant improvements, highlighting the need for innovative therapeutic strategies.
Combination therapies appear to be the most promising solution, as they target multiple molecular
pathways involved in GBM progression. One area of growing interest is the incorporation of
phytotherapy and micotherapy as complementary treatments, which offer potential benefits due
to their anti-tumor, anti-inflammatory, and immunomodulatory properties. This review examines
the current challenges in GBM treatment, discusses the potential of combination therapies, and
highlights the promising role of phytotherapy and micotherapy as integrative therapeutic options for
GBM management.
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natural adjuvant

1. Challenges in Glioblastoma Treatment

Glioblastoma (GBM) is the most aggressive and common primary brain tumor in
adults, marked by rapid growth, extensive invasion into surrounding tissue, and resistance
to therapies. The World Health Organization (WHO) redefined GBM in 2021 as an isocitrate
dehydrogenase (IDH) wild-type diffuse astrocytic glioma. Diagnosis is confirmed by
evidence of microvascular proliferation, necrosis, telomerase reverse transcriptase promoter
mutations, EGFR (epidermal growth factor receptor) gene amplification, or chromosome
copy number alterations (+7/−10) [1].

A significant challenge in treating GBM is the blood–brain barrier (BBB), which restricts
most drugs from entering the central nervous system (CNS), limiting the efficacy of systemic
chemotherapies and hindering the development of new treatments [2]. Additionally, the
tumor microenvironment (TME) is hostile, featuring hypoxic regions that promote an
aggressive phenotype, enhance tumor invasion, and stimulate angiogenesis. This, along
with the immunosuppressive nature of the TME, creates a protective niche that renders
GBM particularly refractory to treatment [3,4].

The heterogeneity of glioblastoma, both within individual tumors and among different
patients, presents significant challenges for developing effective therapeutic strategies.
GBM tumors are composed of diverse populations of cancer cells, each with unique genetic
and epigenetic characteristics, which makes it difficult to effectively target all cells with
a single approach [5,6]. This diversity also includes cancer stem cells, which have the
ability to self-renew and often drive tumor regrowth after treatment, further complicating
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efforts to achieve long-lasting therapeutic success [7]. Moreover, different tumor regions
exhibit varying levels of proliferation, hypoxia, and invasiveness, further complicating
therapy [8]. Moreover, GBM cells harbor numerous mutations, affecting key pathways such
as EGFR, PTEN, and TP53, leading to multiple resistance mechanisms [9,10]. Consequently,
treatments like chemotherapy and radiation often fail to eradicate the tumor completely,
emphasizing the need for personalized, multi-targeted therapeutic approaches to address
this complexity.

2. The Inadequacy of Temozolomide Treatment

Chemotherapy is pivotal in the standard care of glioblastoma, with temozolomide
(TMZ), an oral alkylating agent, remaining the cornerstone. TMZ is administered alongside
radiotherapy after surgical resection, as in the Stupp protocol [11]. Its ability to cross
the blood–brain barrier (BBB) and synergize with radiation prolongs survival; however,
resistance frequently develops during treatment [12].

Elevated expression of O6-methylguanine-DNA methyltransferase (MGMT) signifi-
cantly enhances resistance to TMZ. Proteomic and metabolomic analyses have revealed a
strong link between an unmethylated MGMT promoter and the activation of DNA damage
repair (DDR) pathways [13]. The role of DDR has been validated in both MGMT-deficient
GBM cells [14], and through in vivo and ex vivo studies [15,16]. Additionally, the epider-
mal growth factor receptor variant III (EGFRvIII) has been shown to activate the NF-κB
pathway, crucial in DDR processes. Proteins like E2F1 and RAD51AP1 also play key roles
in the DDR mechanisms of EGFRvIII-positive GBM cells [17–19].

Epigenetic modifications, such as H3K9ac, have been found to upregulate MGMT
expression, further contributing to TMZ resistance [20]. The MGMT status also correlates
with differential immune responses, suggesting its potential as a predictor of treatment
outcomes [21]. Other epigenetic changes, such as histone modifications [20,22] and the
role of non-coding RNAs, have been linked to resistance mechanisms. For example, down-
regulated miR-34a or high levels of miR-1246 have been associated with increased TMZ
resistance [23,24] through their interaction with tumor suppressor genes. Additionally, long
non-coding RNAs (lncRNAs), such as the lncRNA HOXD-AS2/STAT3 feedback loop [25],
and the recently discovered LINC00470/EGR2/SOX4 axis [26], have shed new light on
resistance modulation.

Further resistance mechanisms, including metabolic adaptations and nutrient avail-
ability, especially under hypoxia, are receiving attention [27,28]. Hypoxia-inducible factors
and oxidative phosphorylation [29] have been shown to promote cell survival, while au-
tophagy helps counteract TMZ-induced cytotoxicity [30]. Other significant players include
ABC transporters, efflux pumps, and transcription factors like the EGR protein family, as
well as proteins such as metalloproteinases and annexins, all of which contribute to poor
TMZ responses [31–33].

Recent discoveries about TMZ-induced hypermutation have revealed insights into
tumor recurrence, chemoresistance, and its impact on prognostication and clinical trial
design [34]. Meanwhile, the safety profile of TMZ continues to be debated, with studies
presenting conflicting data on its association with neurocognitive disorders [35–38] and rec-
ognizing risks of secondary neoplasms and myelosuppression, which may hinder immune
surveillance and promote tumor progression [39–41].

3. The Limitations of Monotherapy

Before the advent of TMZ, nimustine (ACNU), carmustine (BCNU) and lomustine
(CCNU) were long used for the treatment of gliomas [42]. They are nitrosourea com-
pounds that act through the alkylation (DNA cross-linking) and carbonylation of proteins.
Unfortunately, a high frequency of toxicity profiles was reported. In recent years, these
chemotherapy drugs have been rediscovered. The possible efficacy of ACNU against
TMZ-resistant brain tumor cells has been highlighted in preliminary in vitro and in vivo
studies [43], and it also seems to be an excellent candidate for convection-enhanced delivery
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(CED) [44]. Studies have also been reported to evaluate BCNU’s actual positive effect in
clinical use on brain tumors with a high grading. The in vivo results are encouraging
but do not show superior efficacy compared to that observed with TMZ [45–47]. Despite
this, research for new delivery routes that guarantee greater availability at the site of
need is ongoing using in vitro and ex vivo models [48,49]. Similarly, despite promising
in vitro results [43], no clinically relevant improvement appears to be given by the use
of CCNU [50,51]; on the contrary, severe side effects are reported [52]. However, CCNU
is administered in combination with procarbazine, a methylating agent, and vincristine,
which inhibits microtubule formation, for recurrent GBM or patients who do not respond
to TMZ, according to what is called the PVC regimen [53].

Other chemotherapy drugs have been considered for the treatment of GBM. Alky-
lating agents such as cisplatin or carboplatin have been evaluated. Cisplatin is a highly
effective chemotherapeutic agent capable of targeting actively and inactively duplicating
cells; however, its application in treating GBM is restricted due to significant systemic
toxicity and poor penetration into brain tumor tissue. In this regard, previous studies
showed how direct delivery of this chemotherapeutic agent to the brain could improve
patient outcomes [54,55]. Similar results were also obtained, through clinical studies, after
carboplatin administration [56,57]. Despite this, the use of fourth-generation platinum
compounds, capable of forming platinum-DNA adducts and mainly intrastrand cross-links,
remains a promising resource [58].

Research into the immune microenvironment of glioblastoma has sparked significant
interest in testing immunotherapies. Chimeric antigen receptor (CAR) T cells and CAR
natural killer (CAR-NK) cells are cutting-edge immunotherapies. CAR T-cell therapy
involves genetically engineering patients’ T cells to express receptors to antigens on the
surface of GBM cells; CAR-NK cell therapy uses natural killer cells, either from the patient
or a donor, which are also engineered to express CARs targeting GBM cells. NK cells have
innate tumor-killing abilities and less toxicity compared to CAR-T cells [59,60]. In vitro
and preclinical studies have shown promising results for cell therapies [61–64], but these
findings have not been entirely satisfactory partially due to the immunosuppressive tumor
microenvironment: thus, new GBM-targeting CAR-T cells countering TGF-β-mediated
immune suppression in the TME are being developed on murine models [65]. However,
despite this enthusiasm, clinical trials involving immunotherapy in glioblastoma have so
far not demonstrated a clear survival benefit for patients. A retrospective study of adult
patients diagnosed with first-recurrence GBM did not show extended overall survival
resulting from the administration of Pembrolizumab [66], an immune checkpoint inhibitor
blocking programmed death receptor-1 (PD-1); consistently, no positive results emerged
in patients with recurrent high-grade gliomas or glioblastoma [67,68]. Nivolumab, also a
PD-1 inhibitor, gave more promising results in a GBM-bearing rodent model [69] and in
GBM patients [70,71]; in particular, systemic immune responses seemed to be enhanced
by nivolumab. Despite this, the treatment’s effectiveness was hindered by the tumor’s
anti-inflammatory mechanisms, reducing the overall clinical impact [72]. New hope is
represented by IGV-001, a personalized approach where patient’s tumor cells are treated
with an agent to induce immunogenic cell death, encapsulated in small devices that are then
implanted into the patient to trigger a strong immune response. The therapy gave good
results in GL261-bearing mice [73] and is currently in clinical trials for newly diagnosed
GBM patients [74,75].

Moreover, recent research in cancer vaccines for glioblastoma highlights a variety of
innovative strategies. Personalized mRNA [76–79] or DNA vaccines [80–83], designed
and evaluated through in silico and omics approaches [76–78] and tested in preclinical
models [79–83], seemed very promising as tools for immunotherapy; however, it has also
been noticed that they contribute to the immunosuppressive environment within the tumor,
helping the GBM evade the body’s immune system [83], which could limit the success
of immunotherapies or other treatments. Similarly, dendritic cell vaccines, promising in
the preliminary studies, did not achieve a mean overall survival improvement in clinical
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studies [84–88]; on the contrary, treatment-emergent adverse effects on the central nervous
system were noticed in a phase II study, where patients showed mostly mild adverse effects
(injection-site reactions, flu-like symptoms, and bone pain) and more than half experienced
serious seizures, falls, or cerebral edema [88].

Great space and interest are being given to oncolytic virus (oV) therapy, particularly
that mediated by herpes simplex virus [89–91], flavivirus, and adenovirus [92,93], in preclin-
ical settings [89–91,93] and in in vitro studies [92]. Oncolytic virus therapy in recent years
has shown great efficacy in in vitro and in vivo GBM models, demonstrating substantial
antitumor activity and favorable tolerance [94], but it is also true that oV sensitivity varies
from patient to patient [95] and that its efficacy could be limited by insufficient delivery
to tumors after systemic injection and the propensity of oVs to induce the expression of
immune checkpoints. For this reason, research groups are working to improve the perfor-
mance of this therapeutic strategy, targeting genes encoding immune checkpoint proteins,
e.g., PD1 [96,97], or suppressing IL-2 [97,98] in mouse cancer models. Despite these ad-
vances, immunotherapy in glioblastoma remains largely ineffective as a single therapy. To
date, targeted therapies like nivolumab [72,99–101] and pembrolizumab [66,67,102,103]
(PD-1 inhibitors) alone have also shown limited success in GBM trials.

Nevertheless, aiming to impair specific molecules or pathways that drive GBM growth
and resistance to standard treatments with targeted therapies seems to be a promising
new frontier. Due to the known overexpression or mutation of receptor tyrosine kinases
(RTKs) in GBM, RTK inhibitors have been developed. For example, drugs targeting EGFR
(epidermal growth factor receptor), especially the EGFRvIII variant, such as afatinib, which
gave interesting in vitro and in silico results [104,105], dacomitinib, studied both in vitro
and in mice models [106], and erlotinib, whose possible therapeutic interest has been
validated in silico, have shown limited success [107]—likely due to tumor heterogeneity
and resistance mechanisms—or have not yet moved to more advanced stage studies.
Drugs like imatinib [108–110] are being investigated in vitro, in murine models [111],
and in clinical settings [112,113] for their potential role in targeting the platelet-derived
growth factor receptor (PDGFR). However, the results have been mixed. Studies have
identified both resistance mechanisms and significant variability in cellular responses,
highlighting the challenges in achieving consistent therapeutic outcomes with this approach.
Anti-angiogenic therapies like bevacizumab, a VEGF (vascular endothelial growth factor
receptor) inhibitor, are FDA-approved, but their impact on overall survival remains modest,
likely due to compensatory pathways [114] and the presence of different molecular subtypes
of GBM [115]. Thus, their use as a monotherapy did not give any benefit in terms of
overall survival and quality of life (QoL) improvements in both clinical and preclinical
studies [116–120].

A similar rationale has guided research interest in glioblastoma therapy towards
PI3K/AKT/mTOR (phosphoinositide 3-kinase/ protein kinase B/ mammalian target of
rapamycin) pathway inhibitors, which should impend cell survival and growth and regu-
late protein synthesis and cell metabolism. Drugs like buparlisib (PI3K inhibitor) [121–125],
everolimus (mTOR inhibitor) [126–130], and ipatasertib (AKT inhibitor) [131–133] have
been tested in vitro and in vivo (buparlisib and everolimus reached clinical studies), but
their success seemed limited by compensatory mechanisms and toxicity concerns. In the
context of cellular energy homeostasis, autophagy and proteasomes have gained attention,
while marizomib, a proteasome inhibitor, has been studied for its possible beneficial effect
in cancer treatment. However, the latter did not demonstrate any meaningful benefit and
also seemed to exacerbate other adverse effects of chemotherapy [134–136].

Inhibitors targeting enzymes like isocitrate dehydrogenase (IDH) (in mutant GBM),
LDH (lactate dehydrogenase), and GLS (glutaminase) are being studied for their potential
to starve GBM cells. Ivosidenib, an IDH1 inhibitor whose effects were evaluated in sil-
ico [137], showed promise in IDH-mutant GBMs by targeting the metabolic vulnerabilities
of these tumors [138]. LDH has been recognized as a prognostic marker of invasiveness in
preliminary studies and its inhibition seemed to be favorable for the outcome. Nevertheless,
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inconsistent results have been recorded in preclinical studies, showing the heterogeneous re-
sponse from molecularly different GBM cells and the activation of compensatory metabolic
pathways [139–141]. Also, GLS inhibition evaluation gave promising preclinical results
when used in combined therapy [142–147].

Since GBM cells are metabolically very active, in the context of metabolic targeting,
different forms of starvation and their effect on tumor growth have been considered; in
addition to the effect of glutamate homeostasis mentioned above, the ketogenic diet with
glucose starvation, arginine deprivation, and the role of iron in tumor growth have also
been investigated. The maintenance of low glucose levels has given positive results not
only in combined therapy in preclinical and clinical studies [121,148,149] but also in a case
report of monotherapy [150]. Despite this, some points are poorly clarified; in fact, the
ketogenic diet in murine models seems to promote an immunosuppressive phenotype in
macrophages, thus limiting the clinical relevance of the findings [151].

In addition, the importance of targeting DNA damage repair and chromatin organi-
zation mechanisms in GBM has gained attention as it offers the opportunity to modulate
the epigenetic regulation of gene expression and chromatin organization as well as DDR
(DNA damage repair) pathways. Histone deacetylase (HDAC) inhibitors such as panobino-
stat [152–157] have been tested in GBM in vitro and in vivo using the multiomics approach,
showing some efficacy—especially when combined with other treatments. Valproic acid,
an antiepileptic drug used for its HDACi activity, has been repurposed for GBM treat-
ment due to its promising effects in vitro [158,159]; however, the efficacy of monotherapy
in clinical settings was also scarce in this case [160]. Similarly, poly(ADP-ribose) poly-
merase (PARP) inhibitors targeting DNA repair mechanisms, like niraparib [161–163] and
olaparib [162,164–169], have shown potential positive effects in preclinical trials; how-
ever, even in this case, the most encouraging results in terms of possible benefits from
introduction into clinical practice have emerged from their use in combination therapy.

The limited success rate of several investigations on new drugs and the urgency to
identify valid glioblastoma treatments lead to a drug repurposing approach, which is cost-
effective and needs less time to bring FDA-approved drugs to clinical trials. Metformin,
used to manage type 2 diabetes, is known to reduce gluconeogenesis, enhance peripheral
glucose uptake, and increase metabolism. Due to its effects on metabolic pathways and
cellular signaling, metformin gained attention as an anti-GBM treatment both in in vitro
and in clinical studies [170–173]. For its involvement in metabolism, disulfiram, an alde-
hyde dehydrogenase inhibitor used in alcoholism management, has been tested on GBM,
revealing promising adjuvant efficacy in vitro [174,175], as also confirmed by in vivo and
clinical studies [175,176]. Chloroquine’s and hydroxychloroquine’s ability to modulate
autophagy and cell metabolism made these drugs, used to prevent and treat malaria, of
interest for their use against GBM in vitro [157,177]; however, once again, they alone did
not reach clinically relevant results [178,179].

Not only is chemotherapy being investigated for its potential role in treating deadly
cancers, but innovative therapeutic approaches are also being extensively studied and de-
veloped. Proton therapy, sonodynamic or photodynamic therapy, hyperthermia, and tumor
treating fields have been recognized as non-invasive techniques that could give beneficial
results for GBM patients’ QoL thanks to their limited adverse systemic effects. Proton
therapy, with its unique Bragg peak effect, offers the advantage of precise tumor targeting,
making it a promising approach in cancer treatment. However, while it shows significant
potential, its long-term effectiveness compared to conventional therapies remains under
ongoing evaluation. In combination therapies, proton therapy has demonstrated beneficial
adjuvant effects, as noted in previous clinical studies [180]. On the other hand, the results
are less clear when proton therapy is used as a monotherapy in clinical trials or in rat
models, with more research needed to fully understand its independent efficacy. [181,182].
Sonodynamic [183–186] and photodynamic [187–190] therapies, extensively studied across
various settings, use energy waves to activate a photosensitizer or sonosensitizer within
the tumor, leading to reactive oxygen species (ROS) production. While promising, their
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efficacy as monotherapies for aggressive tumors like glioblastoma is still unclear due to
concerns about penetration depth and reliance on oxygen [187,191]. Hyperthermia therapy
consists of heating the tumor to 40–45 ◦C to stimulate immune response and make cells
more sensitive to chemotherapy, thus making hyperthermia inefficient as a monother-
apy [191–193]. Moreover, the complex vascular network seems to contribute to inconsistent
responses to this treatment, as shown in in silico approaches [194]. Most of all, in recent
years, tumor treating fields (TTFs) have gained credibility. TTF has been approved as
adjuvant therapy for glioblastoma, and its efficacy as a monotherapy has been proved
in clinical studies [195]. It uses alternating electric fields to disrupt cancer cell division,
and has shown promise as a novel CNS drug delivery strategy by inducing transient BBB
permeabilization in in vitro and in vivo models [196,197]. Although its safety profile as
a monotherapy has been demonstrated, with fewer side effects than the Stupp protocol
and other possible chemotherapies [198], many aspects are still unclear in relation to the
variability of responses between different patient samples [199]. Furthermore, the greatest
success of this therapy in GBM patients was once again recorded when used in conjunction
with other treatments [200]; unfortunately, as a monotherapy, it is only successful when
used continuously for more than 18 h a day, which raises important compliance issues [201].
In this context, a recently concluded phase I study assessed the safety of a portable device
for tumor treating fields therapy, NovoTTF-200A (NCT03477110). A phase II study on
Optune® System (NCT04492163) also gave promising results.

4. Beyond Monotherapy: The Power of Combined Treatments

Monotherapy has shown limited success due to the complexity and adaptability of
GBM cells, combining therapeutic approaches and leveraging different mechanisms of
action to overcome tumor heterogeneity, improve treatment efficacy, and delay or prevent
resistance by targeting multiple pathways simultaneously. Therefore, numerous studies
are underway to evaluate the safety and efficacy of different combination therapies in the
treatment of GBM [202] (Table 1).

Table 1. Therapeutic strategies and experimental treatments for glioblastoma. This table provides
an overview of therapeutic strategies under investigation for glioblastoma, providing details on the
type of therapy, therapeutic class, underlying mechanism, monotherapy effectiveness, and notable
limitations or challenges associated with each strategy. Abbreviations: ACNU (nimustine), AKT
(protein kinase B), BBB (blood–brain barrier), BCNU (carmustine), CAR-NK/T (chimeric antigen
receptor natural killer/T cells), CCNU (lomustine), CED (convection-enhanced delivery), CNS (cen-
tral nervous system), DNA (deoxyribonucleic acid), EGFR (epidermal growth factor receptor), GBM
(glioblastoma), GLS (glutaminase), HDAC (histone deacetylase), HSV (herpes simplex virus), IDH
(isocitrate dehydrogenase), IGV-001 (immunotherapy inducing immunogenic cell death), LDH (lac-
tate dehydrogenase), mRNA (messenger ribonucleic acid), mTOR (mechanistic target of rapamycin),
PARP (poly(ADP-ribose) polymerase), PD-1 (programmed death 1), PDGFR (platelet-derived growth
factor receptor), PI3K (phosphatidylInositol 3-kinase), RTK (receptor tyrosine kinase), TME (tumor mi-
croenvironment), TMZ (temozolomide), VEGF (vascular endothelial growth factor), VEGFR (vascular
endothelial growth factor receptor.

Therapy Therapeutic Class Mechanism Monotherapy
Effectiveness Limitations and Notes

ACNU [42–44] Chemical compound,
nitrosoureas

Alkylation (DNA
cross-linking), protein

carbonylation

Effective in vitro and in vivo
in TMZ-resistant cells,

especially via CED

High toxicity in preclinical
models

BCNU and CCNU
[42,45–53]

Chemical compound,
nitrosoureas

Alkylation (DNA
cross-linking), protein

carbonylation

Comparable to TMZ, no
clinical relevance

High toxicity in preclinical
models

Cisplatin, Carboplatin,
and Derivatives [54–58]

Chemical compound,
platinum derivatives

Alkylation (DNA
cross-linking)

Effective when locally
delivered according to clinical

studies

Systemic toxicity and poor
BBB penetration in

preclinical and clinical
settings



Curr. Issues Mol. Biol. 2024, 46 14330

Table 1. Cont.

Therapy Therapeutic Class Mechanism Monotherapy
Effectiveness Limitations and Notes

CAR-T and CAR-NK Cell
Therapy [59–65]

Genetically
engineered cells,
immunotherapy

Genetically engineered
cells target GBM surface

antigens

Promising in vitro and
preclinical studies; no clear
survival benefit in clinical

trials

Immunosuppressive TME
in in vitro and preclinical

studies; NK cells have
fewer toxicities than

T cells

Pembrolizumab [65–68]
Monoclonal antibody,
immune checkpoint

inhibitor
PD-1 inhibitor No significant survival benefit

in clinical settings

Limited efficacy in GBM
due to

immunosuppressive
tumor environment

Nivolumab [69–72]
Monoclonal antibody,
immune checkpoint

inhibitor
PD-1 inhibitor

Promising in rodent models;
moderate immune response in

patients, but limited
effectiveness

Variable patient response;
limited BBB penetration

IGV-001 [73–75] Peptide-based
immunotherapy

Inductor of immunogenic
cell death

Promising preclinical results;
undergoing clinical trials for

newly diagnosed GBM
No notes to date

Cancer Vaccines (mRNA
[76–79], DNA [80–83],

Dendritic Cell [84–88])

Viral vector or
cell-based vaccine Immune stimulation

Preliminary promising
according to in silico analysis
and in preclinical studies, but

limited improvement in
survival in clinical settings

Contributed to immune
suppression in TME;
adverse CNS effects

emerged in clinical studies

Oncolytic Virus (HSV,
Flavivirus, Adenovirus)

[89–98]
Viral therapy Selectively replicates in

and kills tumor cells

Promising in vitro and mouse
models; different response in

patients

Insufficient delivery to
tumor; increased

expression of immune
checkpoints

RTK Inhibitors [104–113]
Small molecule,
tyrosine kinase

inhibitors

Inhibits receptor tyrosine
kinases like EGFR and

PDGFR

Therapeutic interest observed
from in silico to preclinical

studies. Limited efficacy and
mixed outcomes have been
obtained in clinical settings
(where such an advanced

stage was achieved)

Tumor heterogeneity and
resistance mechanisms

emerged in preclinical and
clinical settings

VEGF Inhibitors
(Bevacizumab) [114–120]

Monoclonal antibody,
anti-angiogenic agent Inhibits angiogenesis Modest impact on survival in

preclinical and clinical studies

Compensatory pathways
and GBM molecular

heterogeneity

PI3K/AKT/mTOR
Pathway Inhibitors

(Buparlisib, Everolimus,
Ipatasertib) [126–133]

Small molecules,
pathway inhibitors

Targets PI3K, AKT, and
mTOR for cell growth

regulation

Limited efficacy and mixed
outcomes in vitro and in vivo

Compensatory pathways
and GBM molecular

heterogeneity resulted in
variable therapeutic

response in clinical studies

Autophagy and
Proteasome Inhibitors
(Marizomib) [134–136]

Small molecule,
proteasome inhibitor

Inhibits proteasome to
disrupt cellular

metabolism

Limited benefit in clinical
studies

Exacerbates chemotherapy
side effects

Metabolic Targeting
(IDH, LDH, GLS

Inhibitors) [137–147]

Small molecules,
metabolic modulators

Alters cellular metabolism
by inhibiting metabolic

enzymes

Promising in silico and in
some preclinical models

Compensatory metabolic
pathways activation

observed in some
preclinical studies

Starvation-Based
Metabolism Modifiers

[121,148–151]

Nutritional
intervention

Glucose/arginine
deprivation, ketogenic

diet to limit tumor growth

Promising results in preclinical
and clinical studies for glucose

starvation

Ketogenic diet may have
immunosuppressive

effects on macrophages
according to preclinical

evaluation

HDAC Inhibitors
(Panobinostat, Valproic

Acid) [152–160]

Small molecules,
epigenetic modulators

Modulates epigenetic gene
expression and chromatin

organization

Promising effects in vitro and
in preclinical studies but no

noteworthy benefits in clinical
trials

Systemic toxicity, poor
BBB penetration and GBM
molecular heterogeneity

PARP Inhibitors
(Niraparib, Olaparib)

[161–169]

Small molecules, DNA
repair inhibitors

Inhibits DNA repair
mechanisms

Promising effects in preclinical
trial but irrelevant efficacy in

preclinical trials as
monotherapy

Compensatory pathways
and GBM molecular

heterogeneity
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Table 1. Cont.

Therapy Therapeutic Class Mechanism Monotherapy
Effectiveness Limitations and Notes

Metformin [170–173] Small molecule,
metabolic modulator

Gluconeogenesis inhibitor;
enhances glucose

metabolism

Effectiveness showed in vivo
and clinical studies

Systemic toxicity and poor
BBB penetration are

limiting factors

Disulfiram [174–176] Small molecule,
metabolic modulator

Aldehyde dehydrogenase
inhibitor

Shows potential in disrupting
GBM metabolism in preclinical

and clinical settings

Systemic toxicity and poor
BBB penetration are

limiting factors

Chloroquine
[157,177–179]]

Small molecule,
autophagy modulator

Modulates autophagy and
cell metabolism

Modulates cancer metabolism
in vitro and is still under

investigation; some clinical
benefit in combination

therapies

Systemic toxicity and poor
BBB penetration are

limiting factors

Proton Therapy [180–182] Radiation therapy Uses Bragg peak to target
tumors precisely

Promising as adjuvant in
clinical studies, but long-term

effectiveness uncertain

Limited by delivery depth
and tumor heterogeneity,

as monotherapy in
preclinical and clinical
trials the efficacy is not

certain to date

Sonodynamic/Photodynamic
Therapy [183–190] Non-invasive therapy

Uses ultrasound/light
waves to activate

sensitizers within tumor

Promising ROS production;
under investigation from

in vitro to in clinic

Depth of the tumor,
heterogeneity, and

hypoxia impact
efficacy

Hyperthermia Therapy
[191–194]

Adjunctive thermal
therapy

Increases tumor
temperature to sensitize
cells to chemotherapy

Ineffective alone; promising in
combination therapies

Complex tumor
vascularization limits

effectiveness according to
in silico studies

Tumor Treating Fields
[195–201] Physical therapy

Alternating electric fields
disrupt cancer cell

division

Effective according to clinical
trials but with heterogenous

response among patients

Compliance challenges
and variable patient

response

In early phase I, the safety of a new dual-action alkylating agent, tinostamustine,
which appears capable of targeting both cancer cells and the tumor microenvironment,
is under analysis as an adjuvant in patients who completed concomitant treatment with
temozolomide and radiation. Patients are also being recruited for studies whose objective
is to evaluate the safety of blockers of DNA damage repair mechanisms, such as AZD1390,
niraparib, pamiparib, and olaparib, in combination with standard-of-care fractionated
radiotherapy. Phase I/II studies have also evaluated the effect of pamiparib (or BGB-290)
in combination with TMZ (NCT03914742), but the results have not been published yet.
Additionally, various combinations of targeted therapies are being explored in clinical
trials to enhance therapeutic efficacy and overcome current treatment limitations. For
instance, LY3214996, an ERK1/2 inhibitor, is being tested in combination with abemaciclib,
a CDK4/6 inhibitor. Another promising combination includes AB154, an anti-TIGIT (T
cell immunoreceptor with Ig and ITIM domains) immune checkpoint inhibitor, alongside
AB122, an anti-PD-1 known as zimberelimab. Additionally, defactinib, a focal adhesion
kinase inhibitor, is being studied in combination with VS-6766, a RAF/MEK inhibitor. In
addition, in light of the importance of personalized therapy, a study has been opened
for the evaluation of the effects, in combination with standard-of-care treatments, of a
cocktail of up to 3 FDA-approved drugs from a panel of compounds selected through
high-throughput screening of cancer stem cells derived from the patient’s tumor [202].

In phase I, different drugs are being tested in combination with standard-of-care radi-
ation therapy and temozolomide: for example, chlorpromazine or cannabinoids, known
for their antipsychotic, anti-inflammatory, and anti-angiogenesis properties; chloroquine,
which is used as antimalaric; or specific inhibitors like tadalafil, hosphodiesterase type 5
(PDE5) inhibitors, or CC-90010, bromodomain and extra-terminal motif (BET) inhibitor. In
addition, new types of therapy are under consideration in phase I/II studies, such as the
association of AGuIX nanoparticles, a radiosensitizer, personalized dendritic-cell vaccines,
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and radiotherapy in combination with TMZ. There is growing hope in the potential of im-
munomodulatory drugs to improve cancer treatment outcomes. PD-1 inhibitors, including
nivolumab, pembrolizumab, cemiplimab, and spartalizumab, are currently being tested in
combination with other immune-targeting therapies. For example, they are paired with
CTLA-4 inhibitors like ipilimumab, which is also being studied alongside radiotherapy in
an active phase III trial. Other combinations under investigation include PD-1 inhibitors
with dual ILT2/ILT4 antagonists, such as NGM707, TIGIT inhibitors like ASP8374, and
TIM-3 inhibitors, such as MBG453. It should be noted that a phase IV study on pem-
brolizumab in combination with standard therapy is currently open. A phase II study
using regorafenib, a VEGFR inhibitor, taken together with nivolumab (NCT04704154), has
recently been completed, but the results of this study do not support further evaluation of
regorafenib combined with nivolumab in GBM [202,203]. Immunomodulators and cancer
therapeutic vaccines, such as nivolumab and bevacizumab with EO2401 or imiquimod—an
activator of toll-like receptor 7—with the GBM6-AD vaccine, are raising interest. In 2024,
the phase II studies of pembrolizumab, another PD-1 inhibitor, in combination with lerapol-
turev (NCT04479241) or SurVaxM (NCT04013672), an oncolytic virus and a peptide vaccine
targeting survivin, have been completed; however, neither progression-free survival nor
overall survival were reported at the time of the review. In a phase II study, azeliragon, an
anti-inflammatory drug, is currently being tested in combination with radiation therapy
to explore its potential to enhance treatment outcomes. Other innovative approaches un-
der investigation include UCPVax, an anti-cancer vaccine derived from telomerase-based
helper peptides designed to stimulate a robust TH1 CD4 T cell response, used along with
temozolomide (TMZ). Another promising candidate is berubicin, which works by interca-
lating into DNA strands to inhibit topoisomerase II activity and is administered following
standard-of-care treatments. A recently completed phase III study also investigated enzas-
taurin hydrochloride, an inhibitor that targets protein kinase C and downstream signaling
pathways, such as PI3K/AKT and MAPK. This study combined enzastaurin with radiother-
apy and temozolomide (RT and TMZ) (NCT03776071). While conclusive results have yet to
be published, interim findings on progression-free survival were not as promising when
compared to outcomes seen with other therapeutic agents [202,204] (Table 2) (Figure 1).

Table 2. Combination therapies under investigation in clinical trials for glioblastoma treatment
according to the NIH website. The table summarizes various therapeutic strategies and combination
trials for glioblastoma, categorized by the therapeutic agents, trial details, clinical phase, objectives
and known effects. Abbreviations: AB154 (anti-TIGIT monoclonal antibody), AB122 (zimberelimab,
anti-PD-1 monoclonal antibody), AGuIX (advanced gadolinium-based nanoparticles), BET (bromod-
omain and extra-terminal domain protein family), CDK4/6 (cyclin-dependent kinase 4/6), CTLA-4
(cytotoxic T-lymphocyte associated protein 4), DDR (DNA damage repair), ERK1/2 (extracellular
signal-regulated kinase 1/2), GBM (glioblastoma), PD-1 (programmed death 1), PDE5 (phosphodi-
esterase 5), PKC (protein kinase C), RAF/MEK (rapidly accelerated fibrosarcoma/mitogen-activated
protein kinase kinase), RT (radiotherapy), SurVaxM (Vaccine targeting Survivin), TIGIT (T cell im-
munoreceptor with immunoglobulin and ITIM domains), TME (tumor microenvironment), TMZ
(temozolomide), UCPVax (universal cancer peptide vaccine), VEGFR (vascular endothelial growth
factor receptor).

Therapeutic Agents Combination Therapy/Trial
Details Clinical Phase Objective/Known Effects

Tinostamustine
+ TMZ + Radiation

Dual-action alkylating agent +
standard therapy Phase I

Targets both cancer cells and TME; aims to
increase sensitivity to radiotherapy and

delay recurrence

AZD1390, Niraparib, Pamiparib,
Olaparib

+ Radiation

DDR (DNA damage repair)
inhibitors

+ radiation
Phase I Expected to improve radiation efficacy by

blocking DNA repair in tumor cells

Pamiparib (BGB-290)
+ TMZ

DDR inhibitor + TMZ
chemotherapy Phase I/II Aims to exploit DNA repair deficiencies in GBM

cells to enhance TMZ efficacy
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Table 2. Cont.

Therapeutic Agents Combination Therapy/Trial
Details Clinical Phase Objective/Known Effects

LY3214996
+ Abemaciclib

ERK1/2 inhibitor + CDK4/6
inhibitor Preclinical Expected to synergize in controlling cell cycle

and inhibiting tumor growth

AB154 (Anti-TIGIT)
+ AB122 (Zimberelimab, Anti-PD-1) Dual checkpoint inhibition Phase I

Aims to boost immune response against GBM
cells, potentially overcoming

immune suppression within TME

Defactinib + VS-6766
Focal adhesion kinase

inhibitor
+ RAF/MEK inhibitor

Preclinical Intended to inhibit pathways involved in cell
adhesion and proliferation

Personalized
High-Throughput Screened Drug

Cocktail

Patient-derived cancer stem
cell-targeted drugs + standard

therapy
Phase I

Individualized combination aiming to
enhance efficacy based on specific tumor profile;

effectiveness varies by patient

Chlorpromazine,
Cannabinoids,
Chloroquine

+ Radiation + TMZ

Various agents with
anti-inflammatory and

antipsychotic properties +
standard therapy

Phase I
Potential anti-angiogenic,

autophagy-modulating effects; seeking to
improve tumor response to standard therapy

Tadalafil
(PDE5 inhibitor),

CC-90010 (BET inhibitor) + Radiation +
TMZ

Vasodilatation factor +
transcription factor inhibitor +

standard therapy
Phase I Targeting specific pathways involved in

tumor growth

AGuIX Nanoparticles + Radiation +
TMZ

Radiosensitizer nanoparticles
+ standard therapy Phase I/II

Expected to enhance radiation delivery and
tumor targeting, increasing tumor response to

radiation

Dendritic Cell Vaccine + Radiation +
TMZ

Personalized immune
stimulation

+ standard therapy
Phase I/II

Seeks to generate strong immune response and
tumor antigen recognition; early

studies show potential for prolonging
survival

Nivolumab,
Pembrolizumab,

Cemiplimab,
Spartalizumab

+ CTLA-4 Inhibitors

PD-1 inhibitors + CTLA-4
inhibitors Phase I-III

Aims to break immune suppression in TME and
enable more effective immune

attack on GBM cells

Nivolumab
+ Regorafenib (VEGFR inhibitor)

Immune evasion inhibitor
+ angiogenesis inhibitor Phase II

Recently completed; efficacy results do not
support further evaluation in GBM due to

limited benefit

Pembrolizumab
+ Lerapolturev

(Oncolytic Virus)

PD-1 inhibition combined +
oncolytic virus Phase II Expected to enhance immune response through

direct oncolysis and immune activation

Azeliragon + Radiation Anti-inflammatory +
radiation Phase II Intended to reduce inflammation,

potentially improving radiation response

UCPVax
(Telomerase-derived vaccine) + TMZ

Anti-cancer vaccine targeting
telomerase + TMZ Phase II

Targeting telomerase in GBM cells to
enhance immune response; early results show

potential for improving survival

Berubicin
(Topoisomerase II

inhibitor) + Standard of Care

Topoisomerase II + standard
therapy Phase II Targets DNA replication, potentially

effective in aggressive tumors

Enzastaurin
Hydrochloride + RT

+ TMZ

PKC pathway inhibitor +
standard
therapy

Phase III
Interim results suggest limited impact on

progression-free survival compared to other
treatments; further data needed

EO2401/Imiquimod
+ Nivolumab/Bevacizumab

Immunomodulatory agents +
VEGFR inhibitor Phase II

Enhances immune cell recognition and
infiltration; early studies show promise for

increasing progression-free survival

SurVaxM (Peptide vaccine) +
Pembrolizumab

Vaccine targeting survivin +
PD-1 inhibitor Phase II Aims to increase survival by targeting

survivin-expressing tumor cells

Phytotherapy and Micotherapy with
Traditional Therapies

Natural compounds with
anti-tumor properties +

hemotherapies
Preclinical

Expected to enhance therapeutic response by
targeting tumor growth, therapy resistance, and

immunomodulation with lower toxicity;
selective GBM cell cytotoxicity offers potential

for complementary or adjuvant strategies
in GBM.
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Figure 1. Schematic representation of therapeutic strategies for glioblastoma. The diagram illus-
trates key molecular targets and pathways involved in GBM progression, highlighting therapies 
discussed in this review. Specifically, alginate microspheres containing dying GBM cells, peptide-
based immunotherapy, and cancer vaccines act as positive regulators of T lymphocyte activity. In 
parallel, immune checkpoint inhibitors and various agents such as imiquimod, ipilimumab, and 
AB154 exert inhibitory effects on specific receptors of these leukocytes. On the other hand, cell-based 
therapies using CAR-T and CAR-NK cells mediate an inhibitory effect on glioblastoma cells through 
recognition and interaction with specific tumor antigens. Transcription/replication inhibitors, alkyl-
ating agents, DDR pathway and HDAC inhibitors directly target tumor cells at the nuclear level, 
regulating transcription, replication, and gene expression. Defactinib inhibits mechanisms of focal 
adhesion and cellular migration. Specific molecules, e.g., autophagy/proteasome, IDH, LDH, and 
GLS inhibitors, metformin, and starvation therapies, block the metabolic processes of neoplastic 
cells. Tadalafil, azeliragon, phytotherapy, and micotherapy act as modulators of intracellular oxida-
tive stress levels. Cell growth pathways are inhibited by protein kinase C, PI3K/AKT/mTOR path-
way, ERK pathway, cell cycle, and RTK inhibitors. In particular, RTK inhibitors block cell growth 

Figure 1. Schematic representation of therapeutic strategies for glioblastoma. The diagram illustrates
key molecular targets and pathways involved in GBM progression, highlighting therapies discussed
in this review. Specifically, alginate microspheres containing dying GBM cells, peptide-based im-
munotherapy, and cancer vaccines act as positive regulators of T lymphocyte activity. In parallel,
immune checkpoint inhibitors and various agents such as imiquimod, ipilimumab, and AB154 exert
inhibitory effects on specific receptors of these leukocytes. On the other hand, cell-based therapies
using CAR-T and CAR-NK cells mediate an inhibitory effect on glioblastoma cells through recogni-
tion and interaction with specific tumor antigens. Transcription/replication inhibitors, alkylating
agents, DDR pathway and HDAC inhibitors directly target tumor cells at the nuclear level, regulating
transcription, replication, and gene expression. Defactinib inhibits mechanisms of focal adhesion and
cellular migration. Specific molecules, e.g., autophagy/proteasome, IDH, LDH, and GLS inhibitors,
metformin, and starvation therapies, block the metabolic processes of neoplastic cells. Tadalafil,
azeliragon, phytotherapy, and micotherapy act as modulators of intracellular oxidative stress levels.
Cell growth pathways are inhibited by protein kinase C, PI3K/AKT/mTOR pathway, ERK pathway,
cell cycle, and RTK inhibitors. In particular, RTK inhibitors block cell growth pathways by interacting
with specific tyrosine kinase receptors. Bevacizumab, regorafenib, and nivolumab inhibit both VEGF
molecules and its receptors. Additionally, oncolytic viruses mediate an inhibitory effect on GBM cells,
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as do proton therapy, sonodynamic and photodynamic therapy, hyperthermia, and tumor treating
fields. Red arrows indicate inhibitory effects, while green arrows represent activation or promotion of
therapeutic pathways. Abbreviations: ACNU (nimustine), BCNU (carmustine), CAR-NK (chimeric
antigen receptor natural killer cell), CAR-T (chimeric antigen receptor T-cell), CCNU (lomustine), DDR
(DNA damage repair), GBM (glioblastoma), GLS (glutaminase), HDAC (histone deacetylase), IDH
(isocitrate dehydrogenase), LDH (lactate dehydrogenase), PI3K/AKT/mTOR (phosphoinositide 3-
kinase/protein kinase B/mammalian target of rapamycin), RTK (receptor tyrosine kinases), TIGIT (T
cell immunoreceptor with IG and ITIM domains), TMZ (temozolomide), VEGF (vascular endothelial
growth factor), VEGFr (vascular endothelial growth factor receptor).

5. Integrating Phytotherapy and Micotherapy in Glioblastoma Treatment

Phytotherapy and micotherapy are gaining attention as promising complementary
approaches in the management of several pathophysiological conditions, from aging to
cancer, e.g., in glioblastoma, colorectal, liver, prostatic, lung, and breast cancer treatment. By
harnessing the anticancer properties of natural bioactive compounds, these therapies aim to
boost the effectiveness of traditional treatments and offer new support in managing various
cancer types [205–213]. These natural compounds exhibit various biological activities (anti-
inflammatory, immunomodulatory, antioxidant, and antiproliferative effects) that may
potentially improve treatment outcomes by targeting multiple cellular pathways associated
with tumor growth, therapy resistance, and invasive properties. Notably, their selective
cytotoxicity against GBM cells provides a safer therapeutic profile, making them ideal
candidates for combination or adjuvant strategies in GBM therapy.

In a previous review, various phytotherapeutics were reported to benefit glioblastoma
management, such as perrilyl alcohol, naringin, caffeine, artemisinin, and green tea extract,
which consistently showed improved survival and reduced tumor volume with intranasal
or oral administration of these compounds [214]. Recent in vitro studies on other natural
compounds expand upon this knowledge.

Phytotherapy’s potential in GBM treatment is supported by studies highlighting the
cytotoxic efficacy and selectivity of various plant-derived compounds. For example, the
dichloromethane fraction from Mimosa caesalpiniifolia (Sabià) stem bark, rich in betulinic
acid, which is known for its antioxidant and cytoprotective properties, shows effective
targeting of GBM cells (SF-295), while sparing non-cancerous cells, by inducing cell cycle
arrest [215]. Similarly, berberine, an alkaloid from Berberis vulgaris (Barberry), has shown
promise by reducing U87MG GBM cell viability through G1-phase arrest and apoptosis.
Berberine also enhances oxidative stress independently of conventional apoptosis path-
ways (AMPK, p53, and caspase-3), indicating its capacity to bypass traditional resistance
mechanisms [216]. Another notable compound is quercetin, a flavonoid with antioxidant
and anti-inflammatory effects, which modulates the tumor microenvironment by selectively
reducing GBM cell viability and suppressing the Axl/IL-6/STAT3 signaling pathway, key
elements in promoting tumor growth in vitro [217]. Phytochemicals like withanolides from
Withania somnifera (Ashwagandha) and polyphenols from Castanea sativa (Chestnut) fur-
ther underscore the role of natural compounds in modulating tumor-supportive signaling
in GBM. Both compounds show in silico favorable binding to EIF4A3, a protein implicated
in the regulation of oncogenic non-coding RNAs, suggesting a basis for their application in
precision oncology to target specific molecular drivers of GBM progression [218].

Advances in delivery techniques for natural compounds are also enhancing their
therapeutic efficacy against GBM. For example, α-mangostin from Garcinia mangostana
(Mangosteen), when delivered via biotinylated and polysaccharide-modified PAMAM G3
dendrimers, showed increased solubility, selectivity, and anticancer activity against U-118
MG glioblastoma cells. Although GBM cells exhibited some resistance to this compound,
likely due to limited mitochondrial targeting, the dendrimer conjugates reduced GBM
cell adhesion and proliferation in vitro [219]. Another effective approach is using natu-
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ral compounds in combination therapies. For instance, Rheum rhabarbarum (Rhubarb)
extract paired with the oncolytic Newcastle disease virus produced a synergistic effect,
enhancing immune responses and reducing tumor volume more effectively than monother-
apies in vitro [220]. Similarly, resveratrol combined with 5-fluorouracil inhibited GBM cell
proliferation in vitro by disrupting the Wnt/β-catenin signaling pathway and enhancing
apoptosis through increased caspase-3 activation, which reduces the required doses of each
compound, thereby lowering toxicity [221]. Muscone, a compound capable of crossing
the blood–brain barrier, has also shown in vitro efficacy in overcoming TMZ resistance
by targeting the FAK/EGFR/Integrin β1 pathway and inducing anoikis, a form of cell
death, and DNA damage [222]. These combination therapies underscore the potential for
phytotherapeutic agents to improve GBM sensitivity to standard chemotherapy and miti-
gate resistance. Also, curcumin, a bioactive compound in Curcuma longa (Turmeric), and
polydatin, a resveratrol glucoside from Polygonum cuspidatum (Japanese knotweed), have
shown promise in boosting TMZ effectiveness in in vitro models of GBM. As pretreatments,
they reduced MGMT expression and disrupted autophagy in both MGMT-negative and
-positive GBM cells [223]. Together, these studies support the use of natural compounds
in GBM therapy as multi-target agents that complement conventional treatments, poten-
tially improving outcomes by enhancing sensitivity, overcoming resistance, and engaging
multiple therapeutic mechanisms.

In addition to phytotherapy, micotherapy offers a viable complementary approach
to GBM treatment according to in vitro studies. The ethanolic extract from Trichoderma
asperelloides has shown selective cytotoxicity against T98G glioblastoma cells, with min-
imal toxicity to non-cancerous cells. This selective action is particularly notable when
compared to doxorubicin, as T. asperelloides demonstrated a similar level of efficacy but
with a safer profile. This suggests it may serve as an effective standalone or adjuvant ther-
apy to enhance chemotherapy efficacy while minimizing the risk to healthy tissues [224].
Another promising micotherapic agent is mycophenolic acid (MPA), a derivative from the
Penicillium species, which is commonly used as an immunosuppressant but has shown
anti-cancer effects by targeting inosine 5′-monophosphate dehydrogenase. MPA effectively
downregulated TERT expression, a gene critical for tumor progression, and modulated
MGMT levels, potentially enhancing chemotherapy response. MPA also exhibited synergy
with BCNU, oxaliplatin, irinotecan, and TMZ, particularly in U251 GBM cells, where it
increased apoptosis and reduced telomere length [225]. The role of medicinal mushrooms
as adjuvants in GBM therapy alongside platinum-based chemotherapy was also demon-
strated. Micotherapy impacted cell cycle progression, enhancing cell death signals and
promoting apoptosis through mitochondrial pathways. Micotherapic supplements also
influenced oxidative stress and led to necroptosis and ferroptosis, alternative cell death
pathways, especially when combined with chemotherapy [209,226,227]. This indicates that
micotherapy not only boosts chemotherapy’s effects but also activates distinct cell death
mechanisms, potentially improving outcomes and counteracting glioblastoma resistance.

To address the limitations of natural compounds, such as poor bioavailability and chal-
lenges in crossing the blood–brain barrier, derivatives and advanced delivery systems have
been developed. For instance, soloxolone para-methylanilide, a semisynthetic derivative of
oleanolic acid, has shown enhanced efficacy against GBM by reducing invasiveness and
promoting ROS-dependent apoptosis. When combined with TMZ, this derivative synergis-
tically increased cytotoxicity in vitro and in U87 xenograft models [228]. Similarly, DIM
(derivative of indole-3-carbinol) encapsulated in PLGA nanoparticles demonstrated im-
proved BBB penetration and reduced toxicity. In combination with TMZ, these dual-loaded
nanoparticles enhanced apoptosis markers, ROS production, and mitochondrial disruption,
significantly reducing tumor growth in C6 xenograft models. This encapsulation approach
has shown that natural compound derivatives can be optimized to target GBM’s complex
biology, making them highly promising for future therapeutic strategies [229] (Table 3).
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Table 3. Natural compounds and extracts investigated for glioblastoma therapy. This table includes
natural compounds sources, study types, therapeutic mechanisms, and observed effects or outcomes
in preclinical studies. Abbreviations: 5-FU (5-fluorouracil), BBB (blood–brain barrier), BCNU (car-
mustine), DOX (doxorubicin), EGFR (epidermal growth factor receptor), FAK (focal adhesion kinase),
GBM (glioblastoma), IL-6 (interleukin-6), MGMT (O6-methylguanine-DNA methyltransferase), PLGA
(poly(lactic-co-glycolic acid), ROS (reactive oxygen species), STAT3 (signal transducer and activator
of transcription 3), TERT (telomerase reverse transcriptase), TMZ (temozolomide).

Natural
Compound/Extract Source Study Type Therapeutic

Mechanisms Effects/Outcomes

Betulinic acid
(Dichloromethane

fraction) [215]

Mimosa
caesalpiniifolia

In vitro
(SF-295 cells)

Antioxidant, cytoprotective;
induces cell cycle arrest

Selective cytotoxicity against GBM cells;
spares non-cancerous cells by targeting

cell cycle in cancer cells

Berberine [216] Berberis vulgaris In vitro
(U87MG cells)

G1-phase arrest, apoptosis
enhancement, oxidative stress

induction independent of
apoptosis pathways

Reduces GBM cell viability; bypasses
conventional apoptosis resistance

mechanisms

Quercetin [217] Various plants In vitro
(GBM cells)

Modulates tumor
microenvironment; targets
Axl/IL-6/STAT3 pathway

Reduces GBM cell viability and
suppresses signaling pathways that

promote tumor growth

Withanolides [218] Withania somnifera
In silico models and

computational
predictions

Targets EIF4A3, involved in
oncogenic RNA regulation

Inhibits GBM cell growth by disrupting
non-coding RNA pathways implicated

in tumor progression

Polyphenols [218] Castanea sativa
In silico models and

computational
predictions

Binds EIF4A3;
modulates signaling

May suppress GBM-promoting
non-coding RNAs, providing specificity

for GBM cells

α-Mangostin
(via dendrimer
delivery) [219]

Garcinia mangostana In vitro
(U118 MG cells)

Increases solubility and selectivity;
reduces cell adhesion and

proliferation

Enhanced targeting of GBM cells with
reduced off-target effects; limited

mitochondrial targeting may
impact efficacy

Rhubarb Rhizome
Extract + Newcastle Disease

Virus [220]
Rheum rhabarbarum In vitro

(AMGM5 cells)
Immune response enhancement,

oncolytic virus synergy
Synergistic effect increases immune
response and reduces tumor volume

Resveratrol
+ 5-Fluorouracil [221] Various plants In vitro

(U87 cells)
Disrupts Wnt/β-catenin pathway,

increases caspase-3 activity

Inhibits GBM cell
proliferation; requires lower compound

doses, reducing toxicity

Muscone [222] Moschus moschiferus In vitro
(U251 cells)

Induces anoikis and DNA damage,
targets FAK/EGFR/Integrin

β1 pathway

Effective in overcoming TMZ resistance,
promotes cell death specific to

GBM cells

Curcumin
and Polydatin [223]

Curcuma longa,
Polygonum
cuspidatum

In vitro
(U87 and LN18 cells)

Lowers MGMT
expression, disrupts autophagy

Enhances TMZ
effectiveness in both MGMT-negative

and -positive GBM cells

Trichoderma
asperelloides Extract [224]

Trichoderma
asperelloides

In vitro
(T98G cells)

Reduce tumor cells
viability at low doses, sparing

healthy cells

Similar efficacy to doxorubicin, with
reduced side effects; potential as an

adjuvant therapy with DOX and 5-FU

Mycophenolic Acid (MPA)
[225] Penicillium species In vitro

(U251 cells)
Downregulates TERT, modulates
MGMT, apoptosis enhancement

Synergizes with BCNU, oxaliplatin,
irinotecan, and TMZ; reduces telomere

length and increases chemotherapy
sensitivity

Medicinal Mushrooms +
Platinum-based

Chemotherapy [209,226,227]
Various mushrooms In vitro

(U251 cells)

Promotes oxidative stress, induces
necroptosis

and ferroptosis

Enhances
chemotherapy response and activates

multiple cell death pathways

Soloxolone
para-methylanilide

(Oleanolic acid
derivative) [228]

Olea europaea In vitro and in vivo (U87
xenografts)

ROS-dependent apoptosis, reduces
invasiveness

Enhances cytotoxicity when combined
with TMZ; reduces tumor invasiveness

and growth in animal models

DIM (Deriv. of
indole-3-carbinol) (PLGA

nanoparticles) [229]

Various cruciferous
vegetables

In vivo
(C6 xenografts)

Improved BBB penetration,
enhances apoptosis and ROS

production

Reduced tumor growth in GBM animal
models; potential for enhanced delivery

and efficacy

Together, these studies underscore the potential of natural compounds in GBM therapy
as multi-target agents that complement traditional treatments. By enhancing GBM sensitiv-
ity, overcoming resistance, and engaging multiple therapeutic mechanisms, phytotherapy
and micotherapy could improve patient outcomes and reduce chemotherapy-related tox-
icity. Despite the fact that, to date, most studies on phytotherapy and micotherapy in
glioblastoma have limited in vivo or clinical data, the multi-targeted actions of natural
compounds in GBM remain highly promising. Addressing the need to test these com-
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pounds in complex settings to face challenges like blood–brain barrier penetration and
bioavailability could be crucial to unlocking their potential as effective adjuvants in GBM
therapy (Figure 2).
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Figure 2. Schematic representation of phytotherapeutic and micotherapeutic strategies for glioblas-
toma. The diagram illustrates key molecular targets and pathways involved in GBM progression,
highlighting therapies discussed in this review. Specifically, quercetin and resveratrol play a role
in stimulating the maturation of dendritic cells. In particular, resveratrol also regulates oxidative
stress in tumor cells while simultaneously inhibiting migration, cellular adhesion, and angiogen-
esis. These processes, i.e., vascular neogenesis, migration, and adhesion, are further negatively
regulated by α-mangostin. Compounds such as betulinic acid, berberine, quercetin, withanolides,
polyphenols, α-mangostin, resveratrol, muscone, trichoderma asperelloides extract, mycophenolic
acid, medicinal mushrooms, soloxolone para-methylanilide, and a derivative of indole-3-carbinol
demonstrate inhibitory effects on tumor growth, mitochondrial activity, and cell cycle. These com-
pounds also impact oxidative stress pathways and stimulate apoptotic cell death mechanisms. Their
mitochondrial action further affects the oxidative stress pathway, enhancing apoptotic signaling.
Additionally, the release of mitochondrial cytochrome c and the influence on the cell cycle by these
molecules drive the activation of apoptotic pathways. The regulation of DNA/RNA is inhibited by
withanolides, polyphenols, and mycophenolic acid. Notably, mycophenolic acid also suppresses
MGMT expression, an effect shared by polydatin and curcumin, both of which concurrently inhibit
autophagy. However, autophagic cell death is promoted by berberine. Red arrows indicate inhibitory
effects, while green arrows represent activation or promotion of therapeutic pathways. Abbreviations:
DCs (dendritic cells), GBM (glioblastoma), MGMT (O6-methylguanine-DNA methyltransferase),
ROS (reactive oxygen species).

6. Conclusions and Future Directions in Glioblastoma Treatment

The inadequacy of gold-standard therapies for glioblastoma, combined with the chal-
lenges posed by the tumor itself, often results in treatment failures. This reality highlights
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the urgent need for multi-targeted therapeutic strategies. Current treatment options have
significant limitations, leading to disappointing outcomes in numerous clinical trials. The
complexity of GBM, characterized by its resistance mechanisms and tumor heterogeneity,
calls for a shift toward more integrated treatment approaches.

To address these challenges, researchers are increasingly evaluating combination
therapies that exploit synergistic effects to enhance treatment efficacy. Ongoing clinical
trials are exploring various combinations of agents to improve patient outcomes. This
shift underscores the importance of integrating both conventional therapies and innovative
approaches, potentially leading to more effective treatment regimens.

In this context, phytotherapy and micotherapy offer promising avenues for comple-
menting traditional GBM treatments. These therapies utilize natural bioactive compounds
known for their anti-inflammatory, immunomodulatory, and antiproliferative properties.
Various plant-derived compounds have shown selective cytotoxicity against GBM cells
while sparing healthy cells, which could provide a safer therapeutic profile. Moreover,
incorporating these natural compounds may enhance the efficacy of standard treatments.
While specific clinical trials assessing phytotherapy and micotherapy in GBM are still
limited, ongoing studies investigating the effects of these natural compounds on immune
modulation and tumor growth inhibition are noteworthy. Integrating phytotherapy and
micotherapy into GBM treatment strategies could lead to innovative regimens that enhance
efficacy, reduce side effects, and improve patients’ QoL. To effectively integrate these ap-
proaches, it will be crucial to validate these strategies and elucidate their mechanisms of
action within the context of GBM. Additionally, establishing standardized dosages and
administration routes will be essential for successful implementation. Continued explo-
ration of these natural compounds in clinical settings is vital for confirming their roles in
GBM management.
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