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Abstract 

Background: In 2019, the Open Pediatric Brain Tumor Atlas (OpenPBTA) was created as a 
global, collaborative open-science initiative to genomically characterize 1,074 pediatric brain 
tumors and 22 patient-derived cell lines. Here, we extend the OpenPBTA to create the Open 
Pediatric Cancer (OpenPedCan) Project, a harmonized open-source multi-omic dataset from 
6,112 pediatric cancer patients with 7,096 tumor events across more than 100 histologies. 
Combined with RNA-Seq from the Genotype-Tissue Expression (GTEx) and The Cancer 
Genome Atlas (TCGA), OpenPedCan contains nearly 48,000 total biospecimens (24,002 tumor 
and 23,893 normal specimens). 

Findings: We utilized Gabriella Miller Kids First (GMKF) workflows to harmonize WGS, WXS, 
RNA-seq, and Targeted Sequencing datasets to include somatic SNVs, InDels, CNVs, SVs, 
RNA expression, fusions, and splice variants. We integrated summarized CPTAC whole cell 
proteomics and phospho-proteomics data, miRNA-Seq data, and have developed a methylation 
array harmonization workflow to include m-values, beta-vales, and copy number calls. 
OpenPedCan contains reproducible, dockerized workflows in GitHub, CAVATICA, and Amazon 
Web Services (AWS) to deliver harmonized and processed data from over 60 scalable modules 
which can be leveraged both locally and on AWS. The processed data are released in a 
versioned manner and accessible through CAVATICA or AWS S3 download (from GitHub), and 
queryable through PedcBioPortal and the NCI’s pediatric Molecular Targets Platform. Notably, 
we have expanded PBTA molecular subtyping to include methylation information to align with 
the WHO 2021 Central Nervous System Tumor classifications, allowing us to create research-
grade integrated diagnoses for these tumors. 

Conclusions: OpenPedCan data and its reproducible analysis module framework are openly 
available and can be utilized and/or adapted by researchers to accelerate discovery, validation, 
and clinical translation. 

Keywords 

Pediatric cancer, open science, reproducibility, multi-omics 

Data Description 

The Open Pediatric Cancer (OpenPedCan) project at the Children’s Hospital of Philadelphia 
(CHOP) is an open analysis effort in which we harmonize pediatric cancer data from multiple 
sources, perform downstream cancer analyses on these data, and provide them on 
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PedcBioPortal and v2.1 of NCI’s Pediatric Molecular Targets Platform (MTP). We harmonized, 
aggregated, and analyzed data from multiple pediatric and adult data sources, building upon the 
work of the OpenPBTA (Figure 1). Biospecimen-level metadata and clinical data are contained 
in Supplemental Table 1. 

Figure 1: OpenPedCan Data. A, OpenPedCan contains multi-omic data from seven cohorts of 
pediatric tumors (A-B) with counts by tumor event, RNA-Seq from adult tumors from The Cancer 
Genome Atlas (TCGA) Program (C-D) and RNA-Seq from normal adult tissues from the 
Genotype-Tissue Expression (GTeX) project (E) with counts by specimen. (Abbreviations: 
TARGET = Therapeutically Applicable Research to Generate Effective Treatments , PPTC = 
Pediatric Preclinical Testing Consortium, PBTA = Pediatric Brain Tumor Atlas, Maris = 
Neuroblastoma cell lines from the Maris Laboratory at CHOP, GMKF = Gabriella Miller Kids 
First, DGD = Division of Genomic Diagnostics at CHOP, CPTAC = Clinical Proteomic Tumor 
Analysis Consortium) 

OpenPedCan currently include the following datasets, described more fully below: 

• OpenPBTA 
• TARGET 
• Kids First Neuroblastoma (X01) 
• Kids First PBTA (X01) 
• Chordoma Foundation 
• PPTC 
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• Maris 
• MI-ONCOSEQ Study 
• DGD 
• GTEx 
• TCGA 
• CPTAC PBTA 
• CPTAC GBM 
• HOPE proteomics 

Open Pediatric Brain Tumor Atlas (OpenPBTA) 

In September of 2018, the Children’s Brain Tumor Network (CBTN) released the Pediatric Brain 
Tumor Atlas (PBTA), a genomic dataset (whole genome sequencing, whole exome sequencing, 
RNA sequencing, proteomic, and clinical data) for nearly 1,000 tumors, available from the 
Gabriella Miller Kids First Portal. In September of 2019, the Open Pediatric Brain Tumor Atlas 
(OpenPBTA) Project was launched. OpenPBTA was a global open science initiative to 
comprehensively define the molecular landscape of tumors of 943 patients from the CBTN and 
the PNOC003 DIPG clinical trial from the Pediatric Pacific Neuro-oncology Consortium through 
real-time, collaborative analyses and collaborative manuscript writing on GitHub [1]. Additional 
PBTA data has been, and will be continually added to, OpenPedCan. 

Therapeutically Applicable Research to Generate Effective Treatments (TARGET) 

The Therapeutically Applicable Research to Generate Effective Treatments (TARGET) Initiative 
is an NCI-funded collection of disease-specific projects that seeks to identify the genomic 
changes of pediatric cancers. The overall goal is to collect genomic data to accelerate the 
development of more effective therapies. OpenPedCan analyses include the seven diseases 
present in the TARGET dataset: Acute Lymphoblastic Leukemia (ALL), Acute Myeloid Leukemia 
(AML), Clear cell sarcoma of the kidney, Neuroblastoma, Osteosarcoma, Rhabdoid tumor, and 
Wilm’s Tumor. 

Gabriella Miller Kids First (Neuroblastoma) and PBTA 

The Gabriella Miller Kids First Pediatric Research Program (Kids First) is a large-scale effort to 
accelerate research and gene discovery in pediatric cancers and structural birth defects. The 
program includes whole genome sequencing (WGS) from patients with pediatric cancers and 
structural birth defects and their families. OpenPedCan analyses include Neuroblastoma and 
PBTA data from the Kids First projects. 

Chordoma Foundation 

The Chordoma Foundation seeks to advance research and improve healthcare for patients 
diagnosed with chordoma and has shared patient and model sequencing data with the CBTN. 

Pediatric Preclinical Testing Consortium (PPTC) 
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The National Cancer Institute’s (NCI) former PPTC, now the Pediatric Preclinical in Vivo Testing 
(PIVOT) Program, molecularly and pharmacologically characterizes cell-derived and patient-
derived xenograft (PDX) models. OpenPedCan includes re-harmonized RNA-Seq data for 244 
models from the initial PPTC study [2]. 

MI-ONCOSEQ Study [3] 

These clinical sequencing data from the University of Michigan were donated to CBTN and 
added to the PBTA cohort. 

Division of Genomic Diagnostics at Children’s Hospital of Philadelphia (DGD) 

CHOP’s Division of Genomic Diagnostics has partnered with CCDI to add somatic panel 
sequencing data to OpenPedCan and the Molecular Targets Platform. 

The Genotype-Tissue Expression Project (GTEx) 

The GTEx project is an ongoing effort to build a comprehensive public data resource and tissue 
bank to study tissue-specific gene expression, regulation and their relationship with genetic 
variants. Samples were collected from 54 non-diseased tissue sites across nearly 1000 
individuals, primarily for molecular assays including WGS, WXS, and RNA-Seq. OpenPedCan 
project includes 17,382 GTEx RNA-Seq samples from GTEx v8 release, which span across 31 
GTEx groups in the v12 release. 

The Cancer Genome Atlas Program (TCGA) 

TCGA is a landmark cancer genomics program that molecularly characterized over 20,000 
primary cancer and matched normal samples spanning 33 cancer types. It is a joint effort 
between NCI and the National Human Genome Research Institute. OpenPedCan project 
includes 10,414 TCGA RNA-Seq samples (716 normal and 9698 tumor) from 33 cancer types. 

Clinical Proteomic Tumor Analysis Consortium (CPTAC) PBTA proteomics study 

The CPTAC pediatric pan-brain tumor study [4] contains 218 tumors profiled by proteogenomics 
and are included in OPC. 

CPTAC adult GBM proteomics study 

This CPTAC adult GBM study [5] contains 99 tumors profiled by proteogenomics and are 
included in OPC. 

Project HOPE proteomics study 

Project HOPE is an adolescent and young adult high-grade glioma study (in preparation for 
publication) that contains 90 tumors profiled by proteogenomics and are included in OPC. 
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Context 

Creation of this dataset had multiple motivations. First, we sought to harmonize, summarize, 
and contextualize pediatric cancer genomics data among normal tissues (GTEx) and adult 
cancer tissues (TCGA) to enable the creation of the National Cancer Institute’s Molecular 
Targets Platform (MTP) at https://moleculartargets.ccdi.cancer.gov/. Next, we created this 
resource for broad community use to promote rapid reuse and accelerate the discovery of 
additional mechanisms contributing to the pathogenesis of pediatric cancers and/or to identify 
novel candidate therapeutic targets for pediatric cancer. 

Similar to OpenPBTA, OpenPedCan operates on a pull request model to accept contributions. 
We set up continuous integration software via GitHub Actions to confirm the reproducibility of 
analyses within the project’s Docker container. We maintained a data release folder on Amazon 
S3, downloadable directly from S3 or our open-access CAVATICA project, with merged files for 
each analysis. As we produced new results, identified data issues, or added additional data, we 
created new data releases in a versioned manner. The project maintainers include scientists 
from the Center for Data-Driven Discovery in Biomedicine and formerly the Department of 
Biomedical and Health Informatics at the Children’s Hospital of Philadelphia. 

Methods 

An overview of the OpenPedCan methods is depicted in Figure 2. Briefly, most primary 
harmonization analysis workflows were performed with Kids First pipelines written in Common 
Workflow Language (CWL) using CAVATICA (detailed below). Alignment and expression 
quantification for GTEx and TCGA RNA-Seq was performed by the respective consortium. 
Custom python, R, and/or bash scripts were then created in OpenPedCan using the primary 
harmonized output files. 
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Figure 2: OpenPedCan Analysis Workflow. Depicted are the datasets (yellow, orange, and 
grey) contained within OpenPedCan. These datasets are made available in a harmonized 
manner through primary analysis workflows (blue) for DNA, RNA, and/or proteogenomics data. 
Files derived from the primary analysis workflows (green) are released within OpenPedCan. 
Additional analysis modules developed within OpenPedCan (red) also generate results files 
(green) which are released within OpenPedCan. 

Method Details 

Nucleic acids extraction and library preparation (PBTA X01 and miRNA-
Seq) 

For detailed methods about the OpenPBTA cohort, please refer to the manuscript [1]. For the 
PBTA X01 cohort, libraries were prepped using the Illumina TruSeq Strand-Specific Protocol to 
pull out poly-adenylated transcripts. 

cDNA Library Construction 

Total RNA was quantified using the Quant-iT™ RiboGreen® RNA Assay Kit and normalized to 
5ng/ul. Following plating, 2 uL of ERCC controls (using a 1:1000 dilution) were spiked into each 
sample. An aliquot of 325 ng for each sample was transferred into library preparation. The 
resultant 400bp cDNA went through dual-indexed library preparation: ‘A’ base addition, adapter 
ligation using P7 adapters, and PCR enrichment using P5 adapters. After enrichment, the 
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libraries were quantified using Quant-iT PicoGreen (1:200 dilution). Samples were normalized to 
5 ng/uL. The sample set was pooled and quantified using the KAPA Library Quantification Kit for 
Illumina Sequencing Platforms. 

miRNA Extraction and Library Preparation 

Total RNA for CBTN samples was extracted as described in OpenPBTA [1] and prepared 
according to the HTG Edge Seq protocol for the extracted RNA miRNA Whole transcriptome 
assay (WTA). 15ng of RNA were mixed in 25ul of lysis buffer, which were then loaded onto a 
96-well plate. Human Fetal Brain Total RNA (Takara Bio USA, #636526) and Human Brain Total 
RNA (Ambion, Inc., Austin, TX, USA) were used as controls. The plate was loaded into the HTG 
EdgeSeq processor along with the miRNA WTA assay reagent pack. Samples were processed 
for 18-20 hours, then were barcoded and amplified using a unique forward and reverse primer 
combination. PCR settings used for barcoding and amplification were 95C for 4 min, 16 cycles 
of (95C for 15 sec, 56C for 45 sec, 68C for 45 sec), and 68C for 10 min. Barcoded and amplified 
samples were cleaned using AMPure magnetic beads (Ampure XP,Cat# A63881). Libraries 
were quantified using the KAPA Biosystem assay qPCR kit (Kapa Biosystems Cat#KK4824) 
and CT values were used to determine the pM concentration of each library. 

Data generation 

PBTA X01 Illumina Sequencing Pooled libraries were normalized to 2nM and denatured using 
0.1 N NaOH prior to sequencing. Flowcell cluster amplification and sequencing were performed 
according to the manufacturer’s protocols using the NovaSeq 6000. Each run was a 151bp 
paired-end with an eight-base index barcode read. Data was analyzed using the Broad Picard 
Pipeline which includes de-multiplexing and data aggregation. 

PBTA miRNA Sequencing Libraries were pooled, denatured, and loaded onto sequencing 
cartridge. Libraries were sequenced using an Illumina Nextseq 500 per manufacturer guidelines. 
FASTQ files were generated from raw sequencing data using Illumina BaseSpace and analyzed 
with the HTG EdgeSeq Parser software v5.4.0.7543 to generate an excel file containing 
quantification of 2083 miRNAs per sample. Any sample that did not pass the quality control set 
by the HTG REVEAL software version 2.0.1 (Tuscon, AR, USA) was excluded from the 
analysis. 

DNA WGS Alignment and SNP Calling 

Please refer to the OpenPBTA manuscript for details on DNA WGS Alignment, prediction of 
participants’ genetic sex, and SNP calling for B-allele Frequency (BAF) generation. [1]. 

Somatic Mutation and INDEL Calling 

For matched tumor/normal samples, we used the same mutation calling methods as described 
in OpenPBTA manuscript for details [1]. For tumor only samples, we ran Mutect2 from GATK 
v4.2.2.0 using the following workflow. 

VCF annotation and MAF creation 
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Somatic variants were annotated by the Ensembl Variant Effect Predictor (VEP v105) [6]. From 
tumor only variant calls, we removed variants with alt_depth == 0 or t_depth < 4. 

Consensus SNV Calling (tumor/normal only) 

We adopted the consensus SNV calling method described in OpenPBTA manuscript with 
adjustment [1]. For SNV calling, we combined four consensus SNV calling algorithms: 
Strelka2[7], Mutect2[8], Lancet[9], and VarDict[10]. 

Strelka2 outputs multi-nucleotide polymorphisms (MNPs) as consecutive single-nucleotide 
polymorphisms. In order preserve MNPs, we gather MNP calls from the other caller inputs, and 
search for evidence supporting these consecutive SNP calls as MNP candidates. Once found, 
the Strelka2 SNP calls supporting a MNP are converted to a single MNP call. This is done to 
preserve the predicted gene model as accurately as possible in our consensus calls. 
Consensus SNV from all four callers were collected and by default, calls that were detected in at 
least two calling algorithms or marked with “HotSpotAllele” were retained. 

For all SNVs, potential non-hotspot germline variants were removed if they had a normal depth 
<= 7 and gnomAD allele frequency > 0.001. Final results were saved in MAF format. 

Somatic Copy Number Variant (CNV) Calling 

We called copy number variants for tumor/normal samples using Control-FREEC [11,12] and 
CNVkit [13] as described in the OpenPBTA manuscript [1]. We used GATK [14] to call CNVs for 
matched tumor/normal WGS samples when there were at least 30 male and 30 female normals 
from the same sequencing platform available for panel of normal creation. For tumor only 
samples, we used Control-FREEC with the following modifications. Instead of the b-allele 
frequency germline input file, we used the dbSNP_v153_ucsc-
compatible.converted.vt.decomp.norm.common_snps.vcf.gz dbSNP common snps 
file and to avoid hard-to-call regions, utilized the hg38_canonical_150.mappability 
mappability file. Both are also linked in the public Kids First references CAVATICA project. The 
Control-FREEC tumor only workflow can be found here. 

Somatic Structural Variant Calling (WGS samples only) 

Please refer to the OpenPBTA manuscript for details [1]. 

Methylation Analysis 

Methylation array preprocessing 

We preprocessed raw Illumina 450K and EPIC 850K Infinium Human Methylation Bead Array 
intensities using the array preprocessing methods implemented in the minfi Bioconductor 
package [15]. We utilized either preprocessFunnorm when an array dataset had both tumor 
and normal samples or multiple OpenPedcan-defined cancer_groups and 
preprocessQuantile when an array dataset had only tumor samples from a single 
OpenPedcan-defined cancer_group to estimate usable methylation measurements (beta-
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values and m-values) and copy number (cn-values). Some Illumina Infinium array probes 
targeting CpG loci contain single-nucleotide polymorphisms (SNPs) near or within the probe 
[16], which could affect DNA methylation measurements [17]. As the minfi preprocessing 
workflow recommends, we dropped probes containing common SNPs in dbSNP (minor allele 
frequency > 1%) at the CpG interrogation or the single nucleotide extensions. 

Details of methylation array preprocessing are available in the OpenPedCan methylation-
preprocessing module. 

Methylation classification of brain tumor molecular subtypes 

The Clinical Methylation Unit Laboratory of Pathology at the National Cancer Institute Center for 
Cancer Research ran the DKFZ brain classifier version 12.6, a comprehensive DNA 
methylation-based classification of CNS tumors across all entities and age groups [18] and/or 
the Bethesda Brain tumor classifier v2.0 (NIH_v2) and the combo reporter pipeline v2.0 on 
docker container trust1/bethesda:latest. Unprocessed IDAT-files from the Children’s Brain 
Tumor Network (CBTN) Infinium Human Methylation EPIC (850k) BeadChip 
arrays were used as input and the following information was compiled into the 
histologies.tsv file: dkfz_v12_methylation_subclass (predicted methylation 
subtype), dkfz_v12_methylation_subclass_score (classification score), 
dkfz_v12_methylation_mgmt_status (MGMT methylation status), 
dkfz_v12_methylation_mgmt_estimated (estimated MGMT methylation fraction), 
NIH_v2_methylation_Superfamily, 
NIH_v2_methylation_Superfamily_mean_score, 
NIH_v2_methylation_Superfamily_Consistency_score, 
NIH_v2_methylation_Class, NIH_v2_methylation_Class_mean_score, 
NIH_v2_methylation_Class_consistency_score, 
NIH_v2_methylation_Superfamily_match, and NIH_v2_methylation_Class_match. 

Gene Expression 

The tumor-normal-differential-expression module performs differential expression 
analyses for all sets of Disease (cancer_group) and Dataset (cohort) across all genes found 
in the gene-expression-rsem-tpm-collapsed.rds table. The purpose of this analysis is 
to highlight the correlation and understand the variability in gene expression in different cancer 
conditions across different histological tissues. For OpenPedCan v12 data release, this module 
performs expression analysis over 102 cancer groups across 52 histological tissues for all 
54,346 genes found in the dataset. This analysis was performed on the Children’s Hospital of 
Philadelphia HPC and was configured to use 96G of RAM per CPU, with one task (one iteration 
of expression analysis for each set of tissue and cancer group) per CPU (total 102x52=5304 
CPUs) using the R/DESeq2 package. Please refer to script run-tumor-normal-
differential-expression.sh in the module for additional details on Slurm processing 
configuration. The same analysis can also be performed on CAVATICA, but requires further 
optimization. The module describes the steps for CAVATICA set up, and scripts to publish an 
application on the portal. The required data files are also available publicly on CAVATICA under 
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the Open Pediatric Cancer (OpenPedCan) Open Access. Refer to the module for detailed 
description and scripts. 

Abundance Estimation 

Among the data sources used for OpenPedCan, GTEx and TCGA used GENCODE v26 and 
v36, respectively. Therefore, the gene symbols had to be harmonized to GENCODE v39 for 
compatibility with the rest of the dataset. The liftover process was done via a custom script. The 
script first constructs an object detailing the gene symbol changes from the HGNC symbol 
database. Using the symbol-change object, the script updates any columns containing gene 
symbols. This liftover process was used on GTEx RNA-Seq, TCGA RNA-Seq, DGD fusions, 
and DNA hotspot files. 

Additionally, the gene expression matrices had some instances where multiple Ensembl gene 
identifiers mapped to the same gene symbol. This was dealt with by filtering the expression 
matrix to only genes with [FPKM/TPM] > 0 and then selecting the instance of the gene symbol 
with the maximum mean [FPKM/TPM/Expected_count] value across samples. This enabled 
many downstream modules that require RNA-seq data have gene symbols as unique gene 
identifiers. Refer to collapse-rnaseq module for scripts and details. 

Gene fusion detection from RNA-Seq 

Gene fusions were called using Arriba [19] and STAR-Fusion [20] as previously reported in 
OpenPBTA [1]. We updated the annoFuseData R package to liftover gene symbols to be 
concordant with VEP v. 105. Fusions are now filtered with annoFuse [21] upstream and 
released in fusion-annoFuse.tsv.gz. 

Gene fusion detection from fusion panels (DGD only) 

Clinical RNA fusion calls from the CHOP DGD fusion panel are included in the data release in 
the fusion-dgd.tsv.gz file. 

Splicing quantification 

To detect alternative splicing events, we utilized rMATS turbo (v. 4.1.0) with 
Ensembl/GENCODE v39 GFF annotations using the Kids First RNA-Seq workflow. We used --
variable-read-length and -t paired options and applied an additional filter to include 
only splicing events with total junction read counts greater than 10. 

CPTAC PBTA, CPTAC GBM, and HOPE proteogenomics 

The following methods are the general proteomics approaches used for the CPTAC PBTA [4], 
CPTAC GBM [5], and HOPE (pre-publication, correspondence with Dr. Pei Wang) studies. For 
specific descriptions of sample preparation, mass spectrometry instrumentation and 
approaches, and data generation, processing, or analysis please refer to the relevant 
publications. 
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TMT-11 Labeling and Phosphopeptide Enrichment 

Proteome and phosphoproteome analysis of brain cancer samples in the CPTAC PBTA 
(pediatric), CPTAC GBM (adult), and HOPE (adolescent and young adult, AYA) cohort studies 
were structured as TMT11-plex experiments. Tumor samples were digested with LysC and 
trypsin. Digested peptides were labeled with TMT11-plex reagent and prepared for 
phosphopeptide enrichment. For each dataset, a common reference sample was compiled from 
representative samples within the cohort. Phosphopeptides were enriched using Immobilized 
Metal Affinity Chromatography (IMAC) with Fe3+-NTA-agarose bead kits. 

Liquid Chromatography with Tandem Mass Spectrometry (LC-MS/MS) Analysis 

To reduce sample complexity, peptide samples were separated by high pH reversed phase 
HPLC fractionation. For CPTAC PBTA a total of 96 fractions were consolidated into 12 final 
fractions for LC-MS/MS analysis. For CPTAC GBM and HOPE cohorts a total of 96 fractions 
were consolidated into 24 fractions. For CPTAC PBTA, global proteome mass spectrometry 
analyses were performed on an Orbitrap Fusion Tribrid Mass Spectrometer and 
phosphoproteome analyses were performed on an Orbitrap Fusion Lumos Tribrid Mass 
Spectrometer. For CPTAC GBM and HOPE studies, mass spectrometry analysis was 
performed using an Orbitrap Fusion Lumos Mass Spectrometer. 

Protein Identification 

The CPTAC PBTA spectra data were analyzed with MSFragger version 20190628 [22] 
searching against a CPTAC harmonized RefSeq-based sequence database containing 41,457 
proteins mapped to the human reference genome (GRCh38/hg38) obtained via the UCSC Table 
Browser on June 29, 2018, with the addition of 13 proteins encoded in the human mitochondrial 
genome, 264 common laboratory contaminant proteins, and an equal number of decoy 
sequences. The CPTAC GBM and HOPE spectra data were analyzed with MS-GF+ v9881 
[23,24,25] searching against the RefSeq human protein sequence database downloaded on 
June 29, 2018 (hg38; 41,734 proteins), combined with 264 contaminants, and a decoy database 
composed of the forward and reversed protein sequences. 

Protein Quantification and Data Analysis 

Relative protein (gene) abundance was calculated as the ratio of sample abundance to 
reference abundance using the summed reporter ion intensities from peptides mapped to the 
respective gene. For phosphoproteomic datasets, data were not summarized by protein but left 
at the phosphopeptide level. Global normalization was performed on the gene-level abundance 
matrix (log2 ratio) for global proteomic and on the site-level abundance matrix (log2 ratio) for 
phosphoproteomic data. The median, log2 relative protein or peptide abundance for each 
sample was calculated and used to normalize each sample to achieve a common median of 0. 
To identify TMT outliers, inter-TMT t-tests were performed for each individual protein or 
phosphopeptide. Batch effects were checked using the log2 relative protein or phosphopeptide 
abundance and corrected using the Combat algorithm [26]. Imputation was performed after 
batch effect correction for proteins or phosphopeptides with a missing rate < 50%. For the 
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phosphopeptide datasets, 440 markers associated with cold-regulated ischemia genes were 
filtered and removed. 

Creation of OpenPedCan Analysis modules 

Gene Set Variation Analysis (gene-set-enrichment-analysis analysis 
module) 

Please refer to the OpenPBTA manuscript for details [1]. 

Fusion prioritization (fusion_filtering analysis module) 

The fusion_filtering module filters artifacts and annotates fusion calls, with prioritization 
for oncogenic fusions, for the fusion calls from STAR-Fusion and Arriba. After artifact filtering, 
fusions were prioritized and annotated as “putative oncogenic fusions” when at least one gene 
was a known kinase, oncogene, tumor suppressor, curated transcription factor, on the COSMIC 
Cancer Gene Census List, or observed in TCGA. Fusions were retained in this module if they 
were called by both callers, recurrent or specific to a cancer group, or annotated as a putative 
oncogenic fusion. Please refer to the module linked above for more detailed documentation and 
scripts. 

Consensus CNV Calling (WGS samples only) (copy_number_consensus_call* 
analysis modules) 

We adopted the consensus CNV calling described in OpenPBTA manuscript [1] with minor 
adjustments. For each caller and sample with WGS performed, we called CNVs based on 
consensus among Control-FREEC [11,12], CNVkit [13], and GATK [14]. Sample and consensus 
caller files with more than 2,500 CNVs were removed to de-noise and increase data quality, 
based on cutoffs used in GISTIC [27]. For each sample, we included the following regions in the 
final consensus set: 1) regions with reciprocal overlap of 50% or more between at least two of 
the callers; 2) smaller CNV regions in which more than 90% of regions were covered by another 
caller. For GATK, if a panel of normal was not able to be created (required 30 male and 30 
female with the same sequencing platform), consensus was run for that tumor using Control-
FREEC, CNVkit, and MantaSV. We defined copy number as NA for any regions that had a 
neutral call for the samples included in the consensus file. We merged CNV regions within 
10,000 bp of each other with the same direction of gain or loss into single region. 

Any CNVs that overlapped 50% or more with immunoglobulin, telomeric, centromeric, segment 
duplicated regions, or that were shorter than 3000 bp were filtered out. The CNVKit calls for 
WXS samples were appended to the consensus CNV file. 

Focal Copy Number Calling (focal-cn-file-preparation analysis module) 

Please refer to the OpenPBTA manuscript for details on assignment of copy number status 
values to CNV segments, cytobands, and genes [1]. We applied criteria to resolve instances of 
multiple conflicting status calls for the same gene and sample, which are described in detail in 
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the focal-cn-file-preparation module. Briefly, we prioritized 1) non-neutral status calls, 2) calls 
made from dominant segments with respect to gene overlap, and 3) amplification and deep 
deletion status calls over gain and loss calls, respectively, when selecting a dominant status call 
per gene and sample. These methods resolved >99% of duplicated gene-level status calls. 

Mutational Signatures (mutational-signatures analysis module) 

We obtained mutational signature weights (i.e., exposures) from consensus SNVs using the 
deconstructSigs R package [28]. We estimated weights for single- and double-base substitution 
(SBS and DBS, respectively) signatures from the Catalogue of Somatic Mutations in Cancer 
(COSMIC) database versions 2 and 3.3, as well as SBS signatures from Alexandrov et al. 2013 
[29]. The following COSMIC SBS signatures were excluded from weight estimation in all tumors: 
1) sequencing artifact signatures, 2) signatures associated with environmental exposure, and 3) 
signatures with an unknown etiology. Additionally, we excluded therapy-associated signatures 
from mutational signature weight estimation in tumors collected prior to treatment (i.e. “Initial 
CNS Tumor” or “Primary Tumor”). 

Tumor Mutation Burden [TMB] (tmb-calculation analysis module) 

Recent clinical studies have associated high TMB with improved patient response rates and 
survival benefit from immune checkpoint inhibitors [30]. 

The Tumor Mutation Burden (TMB) tmb-calculation module was adapted from the snv-
callers module of the OpenPBTA project [1]. Here, we use mutations in the snv-
consensus-plus-hotspots.maf.tsv.gz file which is generated using Kids First DRC 
Consensus Calling Workflow and is included in the OpenPedCan data download. The 
consensus MAF contains SNVs or MNVs called in at least 2 of the 4 callers (Mutect2, Strelka2, 
Lancet, and Vardict) plus hotspot mutations if called in 1 of the 4 callers. We calculated TMB for 
tumor samples sequenced with either WGS or WXS. Briefly, we split the SNV consensus MAF 
into SNVs and multinucleotide variants (MNVs). We split the MNV subset into SNV calls, 
merged those back with the SNVs subset, and then removed sample-specific redundant calls. 
The resulting merged and non-redundant SNV consensus calls were used as input for the TMB 
calculation. We tallied only nonsynonymous variants with classifications of high/moderate 
consequence (“Missense_Mutation”, “Frame_Shift_Del”, “In_Frame_Ins”, “Frame_Shift_Ins”, 
“Splice_Site”, “Nonsense_Mutation”, “In_Frame_Del”, “Nonstop_Mutation”, and 
“Translation_Start_Site”) for the numerator. All BED files are provided in the data release. 

All mutation TMB 

For WGS samples, we calculated the size of the genome covered as the intersection of Strelka2 
and Mutect2’s effectively surveyed areas, regions common to all variant callers, and used this 
as the denominator. WGS_all_mutations_TMB = (total # mutations in consensus 
MAF) / intersection_strelka_mutect_vardict_genome_size For WXS samples, 
we used the size of the WXS bed region file as the denominator. WXS_all_mutations_TMB = 
(total # mutations in consensus MAF)) / wxs_genome_size 
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Coding only TMB 

We generated coding only TMB from the consensus MAF as well. We calculated the 
intersection for Strelka2 and Mutect2 surveyed regions using the coding sequence ranges in the 
GENCODE v39 gtf supplied in the OpenPedCan data download. We removed SNVs outside of 
these coding sequences prior to implementing the TMB calculation below: 
WGS_coding_only_TMB = (total # coding mutations in consensus MAF) / 

intersection_wgs_strelka_mutect_vardict_CDS_genome_size For WXS samples, 
we intersected each WXS bed region file with the GENCODE v39 coding sequence, sum only 
variants within this region for the numerator, and calculate the size of this region as the 
denominator. WXS_coding_only_TMB = (total # coding mutations in consensus 
MAF) / intersection_wxs_CDS_genome_size 

Finally, we include an option (nonsynfilter_focr) to use specific nonsynonymous mutation 
variant classifications recommended from the TMB Harmonization Project. 

Molecular Subtyping 

Here, we build upon the molecular subtyping performed in OpenPBTA [1] to align with WHO 
2021 subtypes [31]. Molecular subtypes were generated per tumor event and are listed for each 
biospecimen in Supplemental Table S1, with the number of tumors grouped by broad histology 
and molecular subtype in Supplemental Table S2. 

High-grade gliomas 

High-grade gliomas (HGG) were categorized based on a combination of clinical information, 
molecular features, and DNA methylation data. H3 K28-altered diffuse midline gliomas (DMG) 
were classified based on the presence of a p.K28M or p.K28I mutation in H3F3A, HIST1H3B, 
HIST1H3C, or HIST2H3C, or a high-confidence DKFZ methylation score (>=0.8) in the 
appropriate subclass. Oligodendroglioma, IDH-mutant tumors were classified based on high-
confidence “O_IDH” methylation classifications, and oligosarcoma, IDH-mutant tumors were 
defined as those with high-confidence “OLIGOSARC_IDH” methylation classifications. 
Pleomorphic xanthoastrocytomas (PXA) were classified using the following criteria: 1) 
methylation subtype is high-confidence “PXA” or pathology_free_text_diagnosis 
contains “pleomorphic xanthoastrocytoma” or “pxa”, and 2) tumor contains a BRAF V600E 
mutation and a CDKN2A or CDKN2B homozygous deletion. Methylation classifications were 
used in classifying the following subtypes: 

1. DHG, H3 G35 (“DHG_G34” and “GBM_G34” classifications) 
2. HGG, IDH (“A_IDH_HG” and “GBM_IDH” classifications) 
3. HGG, H3 wild type (methylation classification contains “GBM_MES”, “GBM_RTK”, 

“HGG_”, “HGAP”, “AAP”, or “ped_”) 

A new high-grade glioma entity called infant-type hemispheric gliomas (IHGs), characterized by 
distinct gene fusions enriched in receptor tyrosine kinase (RTK) genes including ALK, 
NTRK1/2/3, ROS1 or MET, was identified in 2021 [32]. To identify IHG tumors, first, tumors 
which were classified as “IHG” by the DKFZ methylation classifier or diagnosed as “infant type 
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hemispheric glioma” from pathology_free_text_diagnosis were selected [18]. Then, the 
corresponding tumor RNA-seq data were utilized to seek the evidence for RTK gene fusion. 
Based on the specific RTK gene fusion present in the samples, IHGs were further classified as 
“IHG, ALK-altered”, “IHG, NTRK-altered”, “IHG, ROS1-altered”, or “IHG, MET-altered”. If no 
fusion was observed, the samples were identified as “IHG, To be classified”. 

Atypical teratoid rhabdoid tumors 

Atypical teratoid rhabdoid tumors (ATRT) tumors were categorized into three subtypes: “ATRT, 
MYC”, “ATRT, SHH”, and “ATRT, TYR” [33]. In OpenPedCan, the molecular subtyping of ATRT 
was based solely on the DNA methylation data. Briefly, ATRT samples with a high confidence 
DKFZ methylation subclass score (>= 0.8) were selected and subtypes were assigned based on 
the DKFZ methylation subclass [18]. Samples with low confidence DKFZ methylation subclass 
scores (< 0.8) were identified as “ATRT, To be classified”. 

Neuroblastoma tumors 

Neuroblastoma (NBL) tumors with a pathology diagnosis of neuroblastoma, 
ganglioneuroblastoma, or ganglioneuroma were subtyped based on their MYCN copy number 
status as either “NBL, MYCN amplified” or “NBL, MYCN non-amplified”. If 
pathology_free_text_diagnosis was “NBL, MYCN non-amplified” and the genetic data 
suggested MYCN amplification, the samples were subtyped as “NBL, MYCN amplified”. On the 
other hand, if pathology_free_text_diagnosis was “NBL, MYCN amplified” and the 
genetic data suggested MYCN non-amplification, the RNA-Seq gene expression level of MYCN 
was used as a prediction indicator. In those cases, samples with MYCN gene expression above 
or below the cutoff (TPM >= 140.83 based on visual inspection of MYCN CNV status) were 
subtyped as “NBL, MYCN amplified” and “NBL, MYCN non-amplified”, respectively. MYCN gene 
expression was also used to subtype samples without DNA sequencing data. If a sample did not 
fit none of these situations, it was denoted as “NBL, To be classified”. 

Craniopharyngiomas 

In addition to molecular criteria established in OpenPBTA [1], craniopharyngiomas (CRANIO) 
are now subtyped using DNA methylation classifiers. Craniopharyngiomas with a high-
confidence methylation subclass containing “CPH_PAP” were classified as papillary (CRANIO, 
PAP), and those with high-confidence methylation subclass containing “CPH_ADM” were 
classified as adamantinomatous (CRANIO, ADAM), respectively. 

Ependymomas 

Ependymomas (EPN) are subtyped using the following criteria: 

1. Any spinal tumor with MYCN amplification or with a high-confidence “EPN, SP-MYCN” 
methylation classification was subtyped as EPN, spinal and MYCN-amplified (SP-
MYCN). 
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2. EPN tumors containing one or more gene fusions of YAP1::MAMLD1, YAP1::MAML2, or 
YAP1::FAM118B, or else had a high-confidence “EPN, ST YAP1” methylation 
classification were subtyped as EPN, ST YAP1. 

3. EPN tumors containing one or more gene fusions of ZFTA::RELA or ZFTA::MAML2, or 
else had a high-confidence “EPN, ST ZFTA” methylation classification were subtyped as 
EPN, ST ZFTA. This reflects an update to WHO classifications that now characterizes 
this subtype based on ZFTA fusions rather than RELA fusions. 

4. EPN tumors with 1) chromosome 1q gain and TKTL1 over-expression, or 2) EZHIP over-
expression, or 3) posterior fossa anatomical location and a histone H3 K28 mutation in 
H3F3A, HIST1H3B, HIST1H3C, or HIST2H3C, or 4) a high-confidence “EPN, PF A” 
methylation classification were subtyped as posterior fossa group A ependymomas 
(EPN, PF A). 

5. Tumors with 1) chr 6p or 6q loss and GPBP1 or IFT46 over-expression, or 2) a high-
confidence “EPN, PF B” methylation classification were subtyped as posterior fossa 
group B ependymomas (EPN, PF B). 

6. EPN tumors with a high-confidence “EPN, MPE” methylation classification were 
subtyped as myxopapillary ependymomas (EPN, MPE). 

7. EPN tumors with a high-confidence “EPN, PF SE” methylation classification were 
subtyped as posterior fossa subependymomas (EPN, PF SE). 

8. EPN tumors with a high-confidence “EPN, SP SE” methylation classification were 
subtyped as spinal subependymomas (EPN, SP SE). 

9. EPN tumors with a high-confidence “EPN, SP” methylation classification were subtyped 
as spinal ependymomas (EPN, SP). 

10. All other EPN tumors were classified as “EPN, To be classified”. 

Low-grade gliomas 

In addition to subtyping methods described in OpenPBTA [1], high-confidence methylation 
classifications are now used in classifying the following low-grade glioma (LGG) subtypes: 

1. LGG, other MAPK-altered (methylation subclass “PA_MID” or “PLNTY”) 
2. LGG, FGFR-altered (methylation subclass “PA_INF_FGFR”) 
3. LGG, IDH-altered (methylation subclass “A_IDH_LG”) 
4. LGG, MYB/MYBL1 fusion (methylation subclass “AG_MYB” or “LGG_MYB”) 
5. LGG, MAPK-altered (methylation subclass “LGG, MAPK”) 
6. LGG, BRAF- and MAPK-altered (methylation subclass “LGG, BRAF/MAPK”) 
7. SEGA, to be classified (methylation subclass “SEGA, To be classified”) 

Medulloblastomas (MBs) In addition to our previous work classifying MB tumors into the four 
major subtypes (WNT, SHH, Group 3, and Group 4) using the transcriptomic MedulloClassifier 
[34], we integrated high-confidence methylation classification, demographic, and molecular 
criteria to molecularly subtype SHH tumors into one of four subgroups (alpha, beta, gamma, or 
delta) (Figure 3). 
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Figure 3: Medulloblastoma Sample Clustering. A, UMAP projection of 271 MB tumors and B, 
63 SHH-activated MB tumors using methylation beta values of the 20,000 most variable probes 
from the Infinium MethylationEPIC array. C, UMAP projection of MB, SHH activated samples 
indicating copy number status of SHH subgroup known somatic driver genes CCND2, GLI2, 
MYCN, and PTEN. 

We implemented molecular subtyping as follows: 

1. MB tumors with methylation classification that contains “MB_SHH” are subtyped as 
SHH-activated medulloblastoma (MB, SHH) 

2. MB tumors with “MB_G34_I”, “MB_G34_II”, “MB_G34_III”, and “MB_G334_IV” 
methylation classifications are subtyped as medulloblastoma group 3 (MB, Group3) 

3. MB tumors with “MB_G34_V”, “MB_G34_VI”, “MB_G34_VII”, and “MB_G334_VIII” 
methylation classifications are subtyped as medulloblastoma group 4 (MB, Group4) 

4. MB tumors with “MB_WNT” methylation classification are subtyped as WNT-activated 
MB (MB, WNT) 

5. MB tumors with “MB_MYO” methylation classification are subtyped as medulloblastomas 
with myogenic differentiation (MB, MYO) 
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We classified MB, SHH subtype tumors using the following criteria: 

1. MB, SHH alpha: sample has a high-confidence “MB_SHH_3” methylation classification, 
or patient had an age at diagnosis >= 2 years and harbored one of the following 
molecular alterations in tumor or germline: 

– MYCN, GLI2, or CCND2 amplification or sample TPM z-score >= 2 in tumor. 
– A pathogenic or likely pathogenic germline variant in ELP1 or TP53. 
– A TP53 hotspot mutation in tumor. 
– Chromosome 9p gain or chromosome 17p loss in tumor. 

2. MB, SHH beta: sample has a high-confidence “MB_SHH_1” methylation classification, or 
patient had an age at diagnosis < 5 years and harbored one of the following molecular 
alterations: 

– A KMT2D loss of function variant. 
– PTEN copy number loss or deep deletion, or sample TPM z-score < -2. 

– Chromosome 2p or 2q gain. 

3. MB, SHH gamma: sample has a high-confidence “MB_SHH_2” methylation 
classification, or patient had an age at diagnosis < 5 years and tumor harbored a 
chromosome 2p arm gain. 

4. MB, SHH delta: sample has a high-confidence “MB_SHH_4” methylation classification, 
or patient had an age at diagnosis >= 10 years and harbored one of the following 
molecular alterations in tumor: 

– a DDX3X or SMO loss-of-function mutation. 
– a hotspot TERT or U1 snRNA gene mutation. 
– Chromosome 14q arm loss. 

Pineoblastomas 

Pineoblastomas (PB) are classified as follows using high-confidence methylation classifications: 

1. Pineoblastoma, MYC/FOXR2-activated (“PB_FOXR2” methylation classification) 
2. Pineoblastoma, RB1-altered (“PB_RB1” methylation classification) 
3. Pineoblastoma, group 1 (“PB_GRP1A” and “PB_GRP1B” methylation classifications) 
4. Pineoblastoma, group 2 (“PB_GRP2” methylation classification) 
5. All other pineoblastomas were classified as “PB, To be classified” 

non-MB, non-ATRT Embryonal Tumors 

Updates were made to non-MB, non-ATRT embryonal tumor subtyping as follows: 

1. Embryonal tumors with multilayered rosettes and C19MC-altered (ETMR, C19MC-
altered) were classified based on 1) high-confidence “ETMR_C19MC” methylation 
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classification or 2) TTYH1 gene fusion and either chromosome 19 amplification or 
LIN28A over-expression. 

2. ETMR, not otherwise specified (NOS) were classified based on LIN28A over-expression 
and no TTYH1 gene fusion. 

TP53 Alteration Annotation (tp53_nf1_score analysis module) 

Please refer to the OpenPBTA manuscript for details [1]. 

Selection of independent samples (independent-samples analysis module) 

For analyses that require all input biospecimens to be independent, we use the OpenPedCan-
analysis independent-samples module to select only one biospecimen from each input 
participant. For each input participant of an analysis, the independent biospecimen is selected 
based on the analysis-specific filters and preferences for the biospecimen metadata, such as 
experimental strategy, cancer group, and tumor descriptor. 

Data Validation and Quality Control 

We ran NGSCheckMate [35] to confirm tumor/normal sample matches as described in the 
OpenPBTA manuscript [1] and excluded mismatched samples. We also ran somalier 
relate [36] to identify potential mismatched samples. We required that at least 20M total reads 
with 50% of RNA-Seq reads mapped to the human reference for samples to be included in 
analysis. We required at least 20X coverage for tumor DNA samples to be included in this 
analysis. 

Re-use potential 

OpenPedCan serves as a community resource whose outputs and/or code can be leveraged 
directly to ask research questions or serve as an orthogonal validation dataset. We encourage 
re-use of the data, ideas and suggestions for improving the data or adding analyses, and/or 
direct code contributions through a pull-request. Further, the analysis modules can be run within 
the project Docker container locally or on EC2 and scaled as the data size increases. 

Availability of source code and requirements 

Project name: The Open Pediatric Cancer (OpenPedCan) Project Project home page: 
https://github.com/d3b-center/OpenPedCan-analysis Operating system(s): Platform 
independent Programming languages: R, Python, bash Other requirements: CAVATICA, Docker 
image at pgc-images.sbgenomics.com/d3b-bixu/openpedcanverse:latest License: CC-BY 4.0 

Primary analyses were performed using Gabriella Miller Kids First pipelines and are listed in the 
methods section. Analysis modules were developed within 
https://github.com/AlexsLemonade/OpenPBTA-analysis [1], modified based on OpenPBTA, or 
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newly created and can be found within the https://github.com/d3b-center/OpenPedCan-analysis 
publicly available repository. 

Software versions are documented in Supplemental Table 3. 

Data Availability 

Datasets 

The datasets supporting this study are available as follows: The TARGET dataset is available in 
dbGAP under phs000218.v23.p8 [37]. The GMKF Neuroblastoma dataset is available in dbGAP 
under phs001436.v1.p1[38]. The Pediatric Brain Tumor Atlas data (PBTA), containing the 
subcohorts OpenPBTA, Kids First PBTA (X01), Chordoma Foundation, MI-ONCOSEQ Study, 
PNOC, and DGD is available in dbGAP under phs002517.v2.p2 [39] or in the Kids First Portal 
(kidsfirstdrc.org). The raw Genotype-Tissue Expression (GTEx) dataset is available in dbGAP 
under phs000424.v9.p2 and publicly available at https://gtexportal.org/home/. The Cancer 
Genome Atlas (TCGA) dataset is available in dbGAP under phs000178.v11.p8 [40]. 

Merged summary files for the latest release of OpenPedCan are openly accessible in 
CAVATICA or via download-data.sh script in the https://github.com/d3b-
center/OpenPedCan-analysis repository. Cancer group summary data from release v11 are 
visible within the NCI’s pediatric Molecular Targets Platform. Cohort, cancer group, and 
individual data are visible within PedcBioPortal 
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