
Acc
ep

ted
 M

an
us

cri
pt

© The Author(s) 2024. Published by Oxford University Press on behalf of the Society for 

Neuro-Oncology. 

This is an Open Access article distributed under the terms of the Creative Commons 

Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits 

unrestricted reuse, distribution, and reproduction in any medium, provided the original work 

is properly cited. 

Practical and statistical aspects of subgroup analyses in surgical neuro-oncology: A comprehensive 

review from the PIONEER Consortium 

 

Dr. Jasper K.W. Gerritsen1,2 MD PhD (Corresponding author), Dr. Philipp Karschnia3,4 MD, Dr. Jacob S. 

Young2 MD, Prof. Martin J. van den Bent5 MD PhD, Prof. Susan M. Chang2 MD, Dr. Timothy R. Smith6 

MD PhD MPH, Dr. Brian V. Nahed7 MD FACS FAANS, Dr. Jordina Rincon-Torroella8 MD, Dr. Chetan 

Bettegowda8 MD PhD, Dr. Nader Sanai9 MD, Prof. Sandro M. Krieg10 MD PhD MBA, Prof. Takashi 

Maruyama11 MD, Prof. Philippe Schucht12 MD, Prof. Marike L.D. Broekman13,14,15 MD PhD, Prof. 

Joerg-Christian Tonn3 MD, Prof. Patrick Y. Wen16 MD, Prof. Steven De Vleeschouwer17 MD PhD, Prof. 

Arnaud J.P.E. Vincent1 MD PhD, Dr. Shawn Hervey-Jumper2 MD, Prof. Mitchel S. Berger2 MD FACS 

FAANS, Prof. Rania A. Mekary6,18 PhD, Prof. Annette M. Molinaro2,19 PhD 

 

1Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands 

2Department of Neurosurgery, University of California, San Francisco CA, USA 

3Department of Neurosurgery, Ludwig-Maximilian University Hospital, Munich, Germany 

4Department of Neurosurgery, University Hospital Erlangen, Germany  

5Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands 

6Department of Neurosurgery, Brigham and Women’s Hospital, Boston MA, USA 

7Department of Neurosurgery, Massachusetts General Hospital, Boston MA, USA 

8Department of Neurosurgery, Johns Hopkins University, Baltimore MD, USA 

D
ow

nloaded from
 https://academ

ic.oup.com
/neuro-oncology/advance-article/doi/10.1093/neuonc/noae261/7918484 by guest on 19 D

ecem
ber 2024



Acc
ep

ted
 M

an
us

cri
pt

9Department of Neurosurgery, Barrow Neurological Institute, Phoenix AZ, USA 

10Department of Neurosurgery, University Hospital Heidelberg, Germany 

11Department of Neurosurgery, Tokyo Women’s Medical University, Japan 

12Department of Neurosurgery, Inselspital University Hospital Bern, Switzerland 

13Department of Neurosurgery, Haaglanden Medical Center, The Hague, The Netherlands 

14Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands 

15Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The 

Netherlands 

16Department of Neuro-Oncology, Dana-Farber Cancer Institute, Boston MA, USA 

17Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium 

18Department of Pharmaceutical Business and Administrative Sciences, School of Pharmacy, MCPHS 

University, Boston MA, USA  

19Department of Epidemiology and Biostatistics, University of California, San Francisco CA, USA 

*Corresponding author 

Jasper K.W. Gerritsen, MD PhD 

Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands 

Address: Dr. Molewaterplein 40, 3015 GD Rotterdam 

Email: j.gerritsen@erasmusmc.nl 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/neuro-oncology/advance-article/doi/10.1093/neuonc/noae261/7918484 by guest on 19 D

ecem
ber 2024



Acc
ep

ted
 M

an
us

cri
pt

Author contributions 

JKWG, SMC, MSB, RAM, and AMM were responsible for the study concept and study design. JKWG, 

PK, JSY, MJvdB, SMC, SDV, AJPEV, SHJ, MSB, RAM, and AMM drafted the manuscript. All authors 

revised the manuscript 

 

Conflict of interest statement 

Enclosed is a manuscript to be considered for publication in Neuro-Oncology. As the corresponding 

author, I state that the contents of this manuscript have not been published elsewhere (both in 

whole or in part), nor are they under consideration by another publisher.  

 

I confirm that there are no known conflicts of interest associated with this publication, and there has 

been no significant financial support for this work that could have influenced its outcome. 

I confirm that the manuscript has been read and approved by all named authors and that there are no 

other persons who satisfied the criteria for authorship but are not listed. We further confirm that all 

have approved the order of authors listed in the manuscript.  

Jasper K.W. Gerritsen 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/neuro-oncology/advance-article/doi/10.1093/neuonc/noae261/7918484 by guest on 19 D

ecem
ber 2024



Acc
ep

ted
 M

an
us

cri
pt

Key points 

- Subgroup analyses play an important role in personalized surgical treatment for brain tumor 

patients 

- This paper reviews and summarizes for the first time in a comprehensive manner the most 

important practical and statistical considerations that are critical for this field 
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A B S T R A C T 

 

Subgroup analyses are essential to generate new hypotheses or to estimate treatment effects in 

clinically meaningful subgroups of patients. They play an important role in taking the next step 

towards personalized surgical treatment for brain tumor patients. However, subgroup analyses must 

be used with consideration and care because they have significant potential risks. Although some 

recommendations are available on the pearls and pitfalls of these analyses, a comprehensive guide is 

lacking, especially one focused on surgical neuro-oncology patients. This paper, therefore, reviews 

and summarizes for the first time comprehensively the practical and statistical considerations that 

are critical to this field. First, we evaluate the considerations when choosing a study design for 

surgical neuro-oncology studies and examine those unique to this field. Second, we give an overview 

of the relevant aspects to interpret subgroup analyses adequately. Third, we discuss the practical 

and statistical elements necessary to appropriately design and use subgroup analyses. The paper 

aims to provide an in-depth and complete guide to better understand risk modeling and assist the 

reader with practical examples of designing, using, and interpreting subgroup analyses. 
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Introduction 

 

Neurosurgeons can choose from an array of surgical modalities and techniques to achieve maximal 

safe resection of brain tumors. For example, techniques can be used to improve extent of resection 

(e.g. intraoperative MRI1,2, intraoperative fluorescence3, Raman spectroscopy4,5, or intraoperative 

ultrasound6,7), to prevent neurological deficits (e.g. evoked potentials8–10, minimally invasive 

techniques such as LITT (Laser Interstitial Thermal Therapy)11,12), or both (awake or asleep brain 

mapping13,14). There is increasing evidence on the role of certain aspects of surgery for neuro-

oncological patients, such as extent of resection, supramaximal resection, and intraoperative 

mapping15–21. At the same time, there have been notable improvements in classifying brain tumor 

patients based on molecular information22–24. These developments warrant new, comparative 

analyses of different surgical treatments in these newly classified patient subgroups.  

 

Traditionally, studies have evaluated the benefits of these surgical treatments in overall cohorts of 

brain tumor patients1,3,6. Although this is a powerful approach to demonstrate the overall benefit of 

a treatment, it fails to inform the neurosurgeon for which individual patient it would be beneficial, 

and for which it is unlikely to improve outcome25,26. This means that the specific effects of these 

treatments in important subgroups of patients – e.g., based on age, preoperative functioning status, 

or molecular mutation profile – remain unclear. This, in turn, might lead to the underuse of these 

modalities due to uncertainty about their benefits, even though these approaches could potentially 

improve the outcomes of selected patients. For example, recent evidence shows that maximal and 

supramaximal may be more important for astrocytoma grade 2 patients than oligodendroglioma 

grade 2 patients.20  
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On the other hand, this might also lead to the overuse of invasive modalities in patients who might 

have benefitted from avoiding invasive procedures. This might be illustrated by a recent study 

demonstrating that only patients <65 years old benefitted from supramaximal resection.16 Subgroup 

analyses can also provide insight into treatment effects in specific patient populations, informing risk 

stratification for prospective trials. For example, a clinical risk score for postoperative outcome in 

glioblastoma patients can decrease prognostic imbalance between study arms15,26. Last, post-hoc 

exploratory subgroup analyses can generate new hypotheses that can be validated in subsequent 

confirmatory studies27. 

 

It is essential to carefully design and interpret these subgroup analyses, as they are often exploratory 

post-hoc analyses with inherent statistical risks28–30. This highlights the need for a solid 

understanding of these analyses to ensure adequate design and interpretation. While certain 

aspects of subgroup analyses have been previously discussed in the literature, a comprehensive 

guide with practical pearls and pitfalls – especially one focused on surgical neuro-oncology patients – 

remains lacking. The fragmentation of existing recommendations can lead to improper use, selective 

reporting, and misinterpretation, which may harm clinical practice. This review aims to fill that gap 

by providing, for the first time, a comprehensive guide on planning, analyzing, and interpreting 

subgroup analyses in the context of surgical neuro-oncology studies. This guide has been put 

together by the members of the international PIONEER Consortium (Personalized Interventions and 

Outcomes in Neurosurgical Oncology Research Consortium), an updated name of the previously 

known ENCRAM Consortium (European and North American Consortium for Intraoperative Mapping 

in Glioma Patients) that is more representative of the expanded and changing scope of the 

Consortium. For this manuscript, we focus on subgroup analyses as stratified analyses of a study 

population of interest. We also evaluate various study designs and types of subgroup analyses, 

highlighting their advantages, challenges, pearls, and pitfalls in a practical setting.  
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Advantages and challenges of different study designs in surgical neuro-oncology 

 

Randomized controlled trials (RCTs) are challenging for any surgical intervention, and this also holds 

true for neuro-oncology. The need for individual and clinical equipoise greatly limits the options for 

control groups and blinded randomization is nearly impossible31. Individual equipoise means that the 

treating physician is truly uncertain about which treatment might be the best for a specific patient. 

In contrast, clinical equipoise embodies a similar uncertainty but expanded to the profession31–33. As 

such, only a handful of randomized controlled trials have been published evaluating surgical 

modalities' benefit in glioblastoma patients1,3,34. There are a few actively enrolling RTCs for 

glioblastoma patients: for instance, the SAFE trial is investigating the potential benefits of awake 

craniotomy (NCT03861299)35, the RESURGE trial is investigating re-resection in recurrent tumors 

(NCT02394626), and the BOLD and G-SUMIT trials are comparing supramaximal resection to other 

resections (NCT04243005 and NCT04737577, respectively). Table 1 summarizes key RCTs' design and 

study protocol and prospective cohort studies on resection for newly diagnosed diffuse gliomas. 

 

It is undisputed that RCTs have major strengths: it cannot be overstated that they are the only study 

design that can account for both known and unknown confounders due to randomization, unlike 

observational studies that can account for only known confounders. Additionally, they can be 

combined with blinding techniques (single-blind, double-blind, triple-blind), although complete 

blinding is not feasible for surgical studies in practice36. When preceded by appropriate power 

analyses, they are the best approach for comparing the overall benefit of different treatment arms 

with high internal validity37. However, several issues make designing and completing RCTs for 

investigating surgical neuro-oncological modalities particularly difficult38. Critically, the lack (or 

perceived lack) of equipoise often results in highly selective study recruitment, slow accrual and lack 
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of external generalizability39–42. Moreover, many RCTs suffer from slow accrual due to highly 

selective inclusion of patients with exceptional high-performance statuses. As a result, a 

considerable proportion of RCTs fail to be completed across neuro-oncology43,44. The effect of a lack 

of patient acceptance to be randomized in the context of brain tumor surgery is another barrier. 

Critically, RCTs are extremely costly and require significant resources and time to complete relative 

to observational studies with carefully selected propensity matched groups45. Finally, RCTs cannot 

include updates on the techniques when the trial is active (also called “episodic design”), which can 

limit the inclusion of new technology or fail to account for a change in equipoise during trial 

enrollment, potentially making any results outdated before they are published. Given these 

limitations, RCTs may be best applied to questions for very specific subgroups of patients in which 

there is a true equipoise of treatment, where broad generalizability is not necessary, and a large 

multicenter effort can accelerate patient recruitment. RCTs can be followed by post-hoc exploratory, 

hypothesis-generating subgroup analyses and subsequently, large observational studies with 

predefined subgroups to assess the risk-benefit ratio for selected patient subgroups. When there is a 

lack of equipoise and a large heterogeneity in clinical practice, prospective observational studies 

coupled with matching methods might be better suited to answer the research question. Notably, it 

has been shown that well-designed observational studies may find a similar magnitude of the 

associations between exposure and outcome as RCTs46,47. Figure 1 evaluates the methodological 

strengths and weaknesses of randomized versus observational study designs in surgical neuro-

oncology. 

Reasons to use subgroup analyses 

Generally, there are four main reasons for subgroup analyses, as described comprehensively by 

Rothwell in 200548. The first reason is possible heterogeneity in treatment effects related to risk. This 

poses an additional challenge because study arms are often skewed in the risk distribution within 

the study arms. This means that a disproportionate (low) number of patients is responsible for a 
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disproportionate (high) risk. As a consequence, the treatment effect might be over-interpreted for 

low-risk patients49. The long-standing debate on biopsy versus resection for elderly glioblastoma 

patients could be an example50,51. Within this subgroup, the location of the tumor causes possible 

heterogeneity in treatment effect: deep-seated, butterfly, or basal ganglia tumors have vastly 

different risk profiles than cortical tumors. This difference in risk warrants an additional subgroup 

analysis to adequately compare resection versus biopsy. The second reason is closely related: 

instead of differences in risk, there are potential differences in pathophysiology among the patients. 

Our previous publications might be practical examples14,19. We demonstrated that awake mapping 

and maximal resection only led to longer survival outcomes in patients with MGMT methylated 

tumors, but not in MGMT unmethylated tumors. We hypothesized that the cytoreduction synergized 

with the adjuvant treatment only in MGMT methylated patients.  

 

The third reason is an clinically important question regarding the practical application of the 

treatment, such as differences in risk-benefit ratios across patients due to age categories or surgery 

timing. For instance, Molinaro and co-authors found that supramaximal resection conferred a 

survival advantage only among patients 65 years or younger.16 Young and co-authors found that a 

longer time between diagnosis and surgery did not negatively impact survival in glioblastoma 

patients52. Importantly, they concluded that “future studies are needed to explore subgroups for 

whom time-to-surgery may impact clinical outcomes”. The fourth reason consists of the underuse of 

the treatment in specific groups. In neurosurgical oncology, for example, tumors presumed 

inoperable by some surgeons or centers may benefit from surgical resection. Krieg et al showed that 

a safe resection was possible in most of these patients in expert centers.53 Additionally, Southwell et 

al showed that the use of intraoperative mapping could even lead to not only a safe but also a 

maximum resection in a high percentage of these patients54. 
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The following paragraphs will elaborate on three methods of subgroup analysis: [1] prospective, 

confirmatory subgroup analyses (inferential subgroup analysis), [2] prospective, exploratory 

subgroup analyses (consistency assessment, supportive subgroup analysis), and [3] post-hoc, 

exploratory subgroup analyses55,56. These three types of subgroup analysis55 (Figure 2A) are powerful 

methods that can be employed for both randomized and observational study designs but need to be 

designed, performed, and interpreted cautiously (Figure 4).   

 

The three types of subgroup analysis 

 

[1] Prospective, confirmatory subgroup analyses 

With prospective subgroup analyses, the researchers define the subgroups they are interested in 

and their expected direction of treatment effect before the study starts (also called pre-defined 

subgroups). Often, these subgroups are defined by systematically evaluating previous evidence and 

identifying all potentially relevant factors (in a clinical or biological sense) and their potential 

interactions. The primary aim of the prospective, confirmatory subgroup analysis is to determine the 

efficacy of a certain treatment, surgery, or other intervention within a specific patient population. 

This requires comprehensive methodological planning and correcting for multiple testing to study 

causal relationships (inferential analyses). 

 

There are two general risks when planning prospective subgroup analyses: type I and type II errors. 

Type I errors (false positives) are often caused by studying too many different subgroups and carries 

the risk of overinterpretation of the results29,57,58. Type II errors (false negatives) are frequently the 

consequence of inadequate power because the subgroups were not considered during the sample 
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size calculation. This leads to underpowered analyses and unreliable results29. This is an inherent 

weakness with post-hoc subgroup analyses (elaborated upon later); however, prospective studies 

(discussed here) can pre-empt this problem by considering the subgroups when planning the study's 

sample size. 

Trial design is one of the key considerations when planning a prospective subgroup analysis. In a 

fixed design trial, the study design is documented before the start of the study and no modifications 

are allowed during the trial. Often, these trials only include the specific subgroup that the researcher 

is interested in, for example to study the benefit of resection in elderly patients >80 years of age 

(single population)51. On the other hand, studies can include multiple subgroups simultaneously 

(multi-population). For example, the currently accruing SUPRAMAX study investigates the benefit of 

supramaximal resection in three predefined subgroups: age, MGMT methylation status, and 

preoperative KPS status59.  

The alternative to a fixed design is an adaptive trial design. This means that the study design can be 

modified during the study by using an interim analysis at a time that was decided before the start of 

the trial.60,61 It is up to the statistical and clinical committees to decide about the timing of the 

interim analysis. This is done in order to detect an early trend in the data to decide whether the trial 

needs to be stopped or modified. The timing of this varies by the research question, study 

team/statistician, the specific design, the expected recruitment and event rates, length of time to 

assess the outcome, and other ethical considerations, without inflating the type I error rate or 

compromising power.62 Notably, if the analysis is conducted too early, it may lack sufficient power to 

detect any statistical significance and may erroneously lead to premature stopping. Hence, 

controlling for increased type I and type II errors while calculating sample size is needed.63,64 An 

example is adaptive randomization, in which the group allocation is altered based on the interim 

analysis and more (or even all) patients are allocated to the treatment group that is performing 

better (“drop-the-loser”)65. To our knowledge, neurosurgical trials have yet to use an adaptive 
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design, but these are already utilized in neuro-oncological trials. For example, Rahman et al used 

adaptive randomization in their study to compare abemaciclib, neratinib, and CC-115 (with 

chemotherapy plus radiotherapy as control arm) for their efficacy as adjuvant treatment in newly 

diagnosed glioblastoma patients66. They started the trial with a 1:1:1:1 randomization allocation, 

which was then automatically adapted during the trial. Based on the interim results, CC-115 had 

inferior PFS than the other treatment arms. Consequently, the randomization probability for this 

treatment arm decreased from 25% to 16% and as a result, 12 instead of 18 patients were included 

in the CC-115 arm. 

Adaptive trial designs can be advantageous for subgroup analyses in neurosurgical studies65. For 

example, they can reduce the required sample size with the same power by a drop-the-loser design 

or re-estimating the sample size based on the interim analysis. Decreasing or eliminating 

randomization to inferior treatment arms also helps accrual and acceptance of patients to be 

randomized, which are notable issues for neurosurgical trials65. A second advantage is the possibility 

to combine in one study both exploration and confirmation of 1) a treatment effect (e.g., effect of 

resection vs biopsy in thalamic glioma patients explored and confirmed) or 2) a covariate threshold 

(e.g., age cut-off value of 65, 70, and 75 years old for supramaximal explored, selected, and 

confirmed). 

A third advantage of adaptive designs is subgroup enrichment67,68. This means the subgroup of 

patients most likely to benefit from the treatment is selected. Although this is often a two-step 

approach in which the first study post-hoc identifies this subgroup, and a second study is 

prospectively “enriched” for this subgroup, these two steps can be combined into one study with an 

adaptive design. This allows individual patients quicker access to the most effective treatment and 

decreases unnecessary exposure to less effective treatments. Potential downsides of adaptive 

designs are the higher costs due to added support requirements from data managers and statistics 
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staff, and the risk of operation bias because caregivers and surgeons might learn which treatment is 

better during the trial.  

 

[2] Prospective, exploratory subgroup analyses (consistency assessment) 

The second type of subgroup analysis is the consistency assessment. Its primary aim is to examine if 

a treatment benefit demonstrated in an RCT, can be extrapolated to one or multiple predefined 

subgroups (treatment effect homogeneity). For instance, when a new surgical strategy is 

implemented and its effects are measured in the overall cohort, it could be useful to evaluate if the 

effects are the same in all the relevant subgroups. The RCT by Stummer et al on using 5-ALA in 

glioblastoma surgery is an example of this type of analysis3. They found that the 6-month 

progression-free survival was higher in the 5-ALA arm than in the conventional surgery arm (41.0% 

vs. 21.1%, p = 0.003). After stratifying these analyses for the predefined subgroups based on age, 

they found that this beneficial effect was consistent for younger and older patients (≤55 years vs <55 

years). To make the consistency assessment results easily interpretable, making a forest plot can be 

helpful. A forest plot summarizes the treatment effects across different subgroups in one 

comprehensive figure. This makes the results across the subgroups easier to digest for the reader 

and allows for examination if indeed there is treatment effect homogeneity56. However, because 

these results can be underpowered, they must be interpreted cautiously. 

 

[3] Post-hoc, exploratory subgroup analyses 

The third type of subgroup analysis is the post hoc, exploratory analysis. Because it is sometimes 

impossible to predefine all potentially important subgroups, some must be examined post-hoc (after 

completing the study). This can be true for electronic health records, claims databases, and registry 

studies. Importantly, even though the subgroups are identified post-hoc, the methods to identify 
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them can be defined prospectively. Alternatively, relevant patient subgroups can be identified post-

hoc with a systematic (disciplined) subgroup search55,69. This search aims to find patient subgroups 

that have a stronger effect of the surgery or treatment than other patient subgroups. It is important 

to note that post-hoc analyses cannot be used for inferential (causal) conclusions: their findings 

always need to be validated in a subsequent prospective confirmatory study. Furthermore, they are 

prone to confounding and should only be used as hypothesis-generating analyses. 

The GLIOMAP study is an example of a study that uses post-hoc, exploratory subgroup analyses, in 

this case to stratify for baseline prognostic imbalance. For this study we compared the survival of 

awake craniotomy versus asleep resection using Kaplan-Meier curves14. For the overall cohort and 

some of the matched subgroups, we observed “crossing curves”. This simply means that the Kaplan-

Meier curves crossed each other and can indicate non-proportional hazards. One way to address this 

issue is to stratify the analysis for an important prognostic variable, molecular factors (MGMT 

methylation status and IDH mutation status). After stratifying the analyses for these molecular 

factors, the survival curves separated without cross over. Other reasons to use post-hoc analyses are 

to investigate if certain subgroups may benefit from the intervention (when the overall effect was 

negative), those that may benefit the most from the intervention (when the overall effect was 

positive), or have a different safety profile. 

 

Therefore, the primary aim of post-hoc exploratory subgroup analyses is to investigate these 

differences between subgroups (treatment effect heterogeneity) and to generate new hypotheses.  

In statistical terms, treatment effect heterogeneity is defined as interaction: the treatment effect 

differs between subgroups because there is an interaction between the treatment and the subgroup 

covariate70. The GLIOMAP study might illustrate this14. One of the study's aims was to evaluate if 

awake craniotomy was predictive of complete resection of the contrast-enhancing tumor. We used 
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multiple multivariable logistic regression analyses in the overall cohort and subgroups for age, 

preoperative NIHSS score, and preoperative KPS. The regression analyses showed that awake 

craniotomy was predictive of complete resection in the overall cohort (OR 1.88, p=0.013), and the 

subgroups aged <70 (OR 1.86, p=0.028), aged ≥70 (OR 2.31, p=0.012), NIHSS 0-1 (OR 1.97, p=0.038), 

and KPS 90-100 (OR 2.44, p=0.0080). However, no significant effect was found in the subgroups of 

NIHSS ≥2 (OR 1.35, p=0.66), and KPS ≤80 (OR 2.19, p=0.18). We then used an interaction term 

between the treatment (awake craniotomy) and the subgroup covariate (age, NIHSS, or KPS) to 

study treatment effect heterogeneity among the subgroups. The interaction term is coded as a “*” 

between the treatment and subgroup covariate. The null hypothesis of the interaction is that test 

the treatment effect is the same for different covariate values, for example, younger or older 

patients. In our analysis, the interaction terms were nonsignificant for awake*age (p=0.77), 

awake*NIHSS (p=0.50), and awake*KPS (p=0.47). This indicates no statistical difference in the 

treatment effect of awake craniotomy on complete resection across these subgroups. In other 

words, the association between awake craniotomy and complete resection is similar for patients 

irrespective of age, preoperative NIHSS score, or preoperative KPS. The fact that we observed a 

nonsignificant effect in two subgroups (NIHSS ≥2 and KPS ≤80) suggests that the analyses for these 

subgroups might have been underpowered. This may have led to a type II error (false negative 

finding due to insufficient power). A common mistake is to claim that there is treatment effect 

heterogeneity because the association (odds ratio, hazard ratio) between the treatment and the 

outcome is different within each of the levels of the baseline variable. For example, testing the 

association between awake craniotomy and complete resection in younger patients and then 

separately in older patients does not answer if age influences this association. Only the interaction 

test (e.g., awake*age) determines if the effect in younger patients is different than in older patients. 

The theoretical reasons for this have been explained in previous papers30,71. 
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Interpreting post-hoc subgroup analyses can be a challenge. It is often helpful to evaluate if certain 

factors have been prespecified. This provides insight and may benefit the credibility of the subgroup 

findings. Examples of factors that can be prespecified are the rationale for the subgroup analysis 

(such as clinical or biological plausibility), the effect size and direction, covariate levels and cutoff 

values, the statistical methods that will be used, or the endpoint that will be studied. It is important 

to keep in mind that plausibility is not always reliable: most subgroups are comprised of well-known 

predictive or prognostic factors, and it is therefore very common for these subgroups to be 

considered “plausible”. One way to address this is to prospectively discuss a range of factors that 

would be by their underlying mechanism the most probable factors, along with their direction of 

effect.  

 

Multiplicity correction 

Post-hoc analyses are often done with several subgroups. In an extreme form, this can lead to “data 

dredging” or “fishing expeditions”. This means that a multiple subgroups is analyzed with the 

deliberate goal of finding a subgroup that has a significant outcome. This is problematic, because 

analyzing multiple of subgroups (multiple testing) makes these analyses prone to false-positive 

findings (type I error). The risk of false-positive findings increases with the number of tests that are 

performed (read: the number of hypotheses that are tested, the number of subgroups that are 

studied)56,58. This can be explained by the fact that typically, each analysis has an alpha of 5% 

associated with it (the risk to find a false-positive finding). If three analyses are performed with an 

alpha of 5%, the overall risk of a false-positive finding increases to 15%. This underlines the fact that 

for a correct interpretation of post-hoc analyses, it is vital to know how many tests have been 

performed for the subgroup analyses. The elevated risk of false-positive findings due to multiple 

testing can be mitigated by correcting for doing multiple tests (multiplicity correction). For 

multiplicity correction, three methods can be used: lowering the significance level α, increasing the 
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p-value, or widening the confidence interval of the individual tests. The goal of all three methods is 

to make it more difficult to reject the null hypothesis for an individual test (to get a significant 

result). This will decrease the risk of false-positive results. We will focus on the first method 

(lowering the significance level), because this is the most frequently used in daily practice. The 

approaches to do this are summarized in Figure 2B. 

The most commonly used multiplicity correction method is the Bonferroni method. This method is 

relatively simple: it divides the significance level α for the individual tests by the total number of 

tests performed. For example, when five hypotheses are tested in a study with an overall 

significance level of 0.05, the Bonferroni method lowers the significance level for the individual tests 

to 0.01. This ensures that testing five hypotheses with a significance level of 0.01 or testing one 

hypothesis with a significance level of 0.05 will have the same probability of finding false-positive 

results.  The Bonferroni method is a so-called single-step multiple testing procedure. This means that 

with one single adjustment to the significance level all the hypotheses of the study can be tested 

simultaneously (e.g., all hypotheses are significant when p < 0.01, instead of p < 0.05). The limitation 

of this method is that it decreases the power of the individual tests significantly as the number of 

tests increases. In other words, it can make the significance level α too conservative (e.g., 0.01 

instead of 0.05 can be too strict statistically in some instances). Alternatives that carry greater power 

are stepwise procedures57,58,72, which test the hypotheses in a particular order. This means that after 

each test, the significance level is adjusted based on the “data” of the first test, and with this new 

significance level, the next hypothesis is tested. Because the adjustment of the significance level of 

the test is based on the “data” of the previous test, these stepwise procedures are called data-

driven. Examples of data-driven procedures are Holm’s method, Hochberg’s method, and Hommel’s 

method73–75. The alternative to data-driven procedures is pre-specified procedures: the adjustment 

of the significance level is not based on the previous test but is pre-specified. Examples are the fixed-

sequence procedure, the fallback procedure, and the chain procedure57,58 (Figure 2B). The theory 

behind these methods falls outside of the scope of this paper. 
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These methods to correct for multiplicity (single-step or stepwise) are examples of sequential 

approaches. Their limitations are outlined in Figure 2B. An alternative to these methods is the alpha 

spending function, which offers a flexible approach by “spending” portions of the the overall type I 

error rate (alpha, usually 0.05) across multiple tests over time, such as the O’Brien-Fleming and 

Pocock boundaries.76–79 This approach can be useful particularly when conducting interim analyses 

as part of an adaptive randomized trial. For example, rather than requiring a predetermined (fixed) 

plan for carrying out the interim analyses, it allows for flexibility in the timing and number of interim 

analyses. This makes it easier to deal with unplanned deviations in the trial or extra analyses without 

inflating the type I error. Furthermore, this approach can adapt to the trial data by adjusting the 

spending rate of alpha based on the results of previous analyses. For example, if an early analysis 

looks promising, a smaller portion of alpha can be spent early, leaving more room for later tests. This 

may result in higher power (lower type II error caused by an underpowered analysis), especially for 

early or unexpected interim analyses, by avoiding the sometimes overly conservative nature of 

traditional sequential approaches (such as the Bonferroni). 

 

Application examples of subgroup analyses in neuro-oncology 

 

The choice for a certain method of subgroup analysis is dependent on the hypothesis that the 

researchers aim to test or the research question that they try to answer. This will influence the 

choice to confirm, explore, or discover specific subgroups. As described earlier, two common 

reasons to use subgroup analyses are to study the association between treatment and outcome in 

an already known subgroup (etiological analysis), or to discover important subgroups. 

We will give two practical examples that illustrate these reasons along with the pearls and pitfalls on 

their indications, analysis, and interpretation. These are summarized in Figure 3. 
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The study by Molinaro et al published in 2020 illustrates the first reason16. They investigated the 

value of minimizing the residual non-contrast-enhancing tumor volume in glioblastoma patients. The 

objective of this study was to assess the association of minimizing residual volume and survival while 

considering molecular and clinical factors. To this end, a variation of recursive partitioning analysis 

(RPA, a form of classification and regression trees (CART)) called partDSA was used to discover four 

distinct patient subgroups based on molecular and clinical data16,80. Each of these subgroups 

corresponded to different survival outcomes. These CART techniques are often displayed as the 

branches of a tree because they split the data into several smaller patient subgroups, hence the 

name “classification tree”. The tree starts with a root node at the top of the tree. This root node 

includes all the available training data. From this root node, a split in the tree occurs and is based the 

variable which increases the homogeneity of outcome (here, survival) in the resulting two new 

nodes (in this case: temozolomide after surgery: yes or no). These nodes can either be terminal or 

nonterminal nodes. Terminal nodes are nodes after which that specific branch of the tree stops: 

there are no more splits after this node. These nodes represent a distinct subgroup in the data. In 

this study, the first terminal node occurred after the first split: patients who had not undergone 

temozolomide after surgery formed a separate subgroup. Nonterminal nodes are nodes after which 

the branching of the tree continues. In this practical example, patients who had undergone 

temozolomide after surgery were split again for IDH status, age at diagnosis, and residual non-

contrast-enhancing (NCE) tumor after surgery. In the end, all the cases included in the learning set 

end up at one specific terminal node and the partition – the set of all terminal nodes – is completed. 

In the Molinaro study16, this resulted in four distinct subgroups of patients, based on four different 

nonterminal nodes: patients who did not receive temozolomide after surgery (subgroup 1), patients 

who received temozolomide, had an IDH wildtype tumor, and were older than 65 years old 

(subgroup 2), patients who received temozolomide, had an IDH wildtype tumor, were 65 years or 

younger, and had a residual NCE tumor of more than 5.4 ml (subgroup 3), and patients who received 
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temozolomide and had an IDH mutated tumor OR those who received temozolomide, had an IDH 

wildtype tumor, were 65 years or younger, and had a residual NCE tumor of less than 5.4 ml 

(subgroup 4). For this latter subgroup, the overall survival was similar between the subset of IDHwt 

tumors and the IDHmt tumors. Note that the partDSA algorithm differs from CART in that it 

inherently combines subgroups to maximize the homogeneity within a terminal node, rather than 

separate subgroups with similar outcomes. This is illustrated in our example study by the fact that 

subgroup 4 was formed by two distinct types of patients: IDHmt patients, and younger IDHwt 

patients with supramaximal resection. 

There are a few challenges with RPA81. The first is the risk of overfitting, i.e., fitting the data not only 

on the actual signal within the data but also on the noise. If the data are “overfit”: they only fit on 

the training data and not on other data, such as testing data or validation data (often because the 

model captures noise rather than the underlying pattern, which may lead to poor generalizability). 

To counteract overfitting, it is best not to have too many branches (subgroups). Therefore, like a 

tree, it can be pruned: finding a subtree of the “first draft” of the tree that is the best at predicting 

the outcome and is relatively protected to overfitting. However, the important part is deciding when 

to stop. There are two ways to test this: using an independent test set, or cross-validation (preferred 

for smaller datasets). Both these tests work by testing different potential subtrees for their potential 

to reliably predict the subgroups in data other than the original training set that the tree was built 

on. 

Random forest is a collection of individual trees which has excellent predictive abilities82.  As the 

name implies, this method works by building a large number of trees using random subsets of the 

data (e.g., with bootstrapping or bagging methods83–85). The final prediction uses results from all the 

different trees (the individual trees should not be pruned like in RPA because otherwise , there will 

be a loss of information). Random forests are more stable than “single trees” as developed by RPA 

and are less susceptible to prediction errors. The choice between random forest versus “single-tree” 
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RPA depends on a number of factors86. One major advantage of single-tree RPA is the 

interpretability of the tree structure. Each branch represents a clear decision rule and the final 

leaves represent distinct subgroups of patients. This means that single-tree RPA is useful to identify 

a single set of subgroups, assuming that the structure of the subgroups is simple and interactions are 

limited. However, single-tree RPA is prone to overfitting the data, especially when the tree grows 

too large. Also, it uses a “greedy algorithm”, which means that it splits each node without 

considering the overall structure. This can lead to suboptimal subgroup identification if the most 

informative splits are not chosen early in the tree. Third, it can be unstable, meaning that small 

changes in the data can lead to significant changes in the tree structure.87 Random forests, however, 

can solve some of these problems of single-tree RPA. multiple possible splits and interactions 

between variables, which handle complex nonlinear relationships and interactions between 

subgroups, “rank” the variables based on importance, and can visualize the relationship between 

variables. Because random forests combine the decisions and predictions of a large number of trees, 

they are more stable, less prone to overfitting, and their results are more generalizable than single 

trees.88 However, the downside of random forests is that they are more difficult to interpret than 

single trees (the overall model is a “black box”). Thus, the clear interpretability and identification of 

subgroups with single-tree RPA means that this method is ideal to clinical decision making. Random 

forests, on the other hand, are particularly useful when evaluating which variables are most 

important in predicting the outcome (especially when there is inadequate clinical knowledge to 

select the variables). 

The advantages and disadvantages of CART techniques are shown in Figure 3 along with their 

indications, organization, presentation, and interpretation. Other non-parametric methods exist to 

discover subgroups and have their own advantages and disadvantages. For example, some are 

better at handling continuous variables (MARS, multivariate adaptive regression splines89), more 

useful when the relationship between the predictor variable and outcome is not linear (GAM, 
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generalized additive models90), or instead of these supervised machine learning algorithms, are 

unsupervised (clustering91). 

 

The second common reason to use subgroup analyses is the etiological analysis to study the 

association between a treatment and outcome. Examples of statistical methods that can be used for 

these analyses are linear regression models (for continuous outcomes), logistic regression models 

(for binary outcomes), and Cox proportional-hazards regression models (for censored outcomes). 

Rather than discovering subgroups with “data mining” methods such as CART, MARS, and GAM, 

subgroups that already have been defined by the researcher are analyzed.  

It is vital that the homogeneity within and between subgroups is maximized before moving on to the 

actual data analysis. Homogeneity within the subgroup can be maximized by using stratification 

methods. In randomized controlled trials, this is called stratified randomization92. For example, 

Stummer et al randomly assigned patients to the 5-ALA and control arm, while considering the 

stratification factors age (≤55 years vs >55 years), KPS (70-80 vs >80), eloquence (non-eloquent vs 

eloquent), and study surgeon3. This means that the randomization method will make sure that the 

patients in both trial arms are evenly balanced for these factors. Observational studies can mimic the 

stratification randomization design by first stratifying patients based on predefined factors (e.g., age 

and functional status) before performing the analysis. An example can be observed in the GLIOMAP 

study and its supplementary analysis in which we stratified patients for age, preoperative 

neurological status, and preoperative functional status before moving on to the actual analysis14,19. 

Homogeneity between subgroups can be improved by using matching methods. The most commonly 

used method is propensity score matching93. This means that every patient gets assigned a 

propensity score. In the GLIOMAP study, this propensity score corresponded to the probability of 

having a certain exposure (awake craniotomy) based on their individual set of covariates (e.g., age, 
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functional status, etc)14. Patients from the group with the exposure (awake craniotomy) were 

matched with the patients from the group without the exposure (asleep resection) based on their 

propensity score (their individual set of covariates). This method acts as a countermeasure for 

confounding bias, a bias caused by the prognostic imbalance in the patient’s covariates (e.g., if 

awake brain surgery is found to be associated with longer survival, but in particular younger patients 

undergo awake brain surgery: it is now unknown if the longer survival should be attributed to the 

intervention [awake brain surgery] or the confounding covariate [age]). It is good practice to show in 

appendix tables the outcome of the matching procedure, i.e., the propensity scores for the 

unmatched and matched cohorts. It should be noted that propensity score matching has two major 

drawbacks: it only addresses known confounders, and it affects the statistical power because the 

available sample size is decreased after matching. 

After maximizing homogeneity within and between subgroups, the second step is regression 

modelling. Regression models can be used for predictive or etiological analyses. Predictive analyses 

look for potential predictors in the dataset, e.g., which baseline factors are predictive for a certain 

postoperative outcome. These analyses should be performed on unmatched cohorts to allow for 

optimum identification of the predictors in the “raw” data. Etiological analyses (also called 

inferential analyses) aim to determine causal relationships between covariates and outcomes, e.g., 

which baseline factors are associated with a certain postoperative outcome. Therefore, these 

analyses should be performed on the matched cohorts to adequately counteract confounding bias. 

Further adjustment might be needed if certain variables were unstable in the matching procedure: 

these can be included in the subsequent regression to adjust for them adequately (sensitivity 

analysis). For example, in the GLIOMAP study the molecular factors (MGMT methylation status, IDH 

mutation status) proved to be unstable in the matching procedure due to missing data14. We 

therefore included these factors in the regression analyses as a sensitivity analysis to adjust for 

them. It is considered good practice to present the regression analyses without and without these 

factors for reliable interpretation of the results. 
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Conclusions 

The surgical and nonsurgical treatment options for neuro-oncological patients are rapidly expanding. 

The neuro-oncological community is working together on a number of promising studies to try to 

improve the care for individual brain tumor patients. In this current era of personalized neuro-

oncology, subgroup analyses are necessary to determine the optimum surgical treatment strategy 

for individual patients, especially given the fact that truly randomized studies, even unblinded, are 

challenging to conduct when dealing with surgical questions. However, subgroup analyses must be 

used with consideration and care because they have important potential risks. We aimed to give the 

reader for the first time a complete overview of the practical and statistical considerations regarding 

these analyses in neuro-oncology studies. We examined the pearls and pitfalls and evaluated the 

special considerations that are unique to surgical neuro-oncological studies. This paper can be used 

for other medical fields as well, even though the examples given were pertinent to neuro-oncology. 

The goal of this comprehensive guide was to assist with practical examples how to design, use, and 

interpret subgroup analyses. 
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Figure 1: Comparison of study designs in surgical neuro-oncology 

Legend: #No equipoise which causes high heterogeneity in indication setting and procedure 

NB: green color indicates favorable criteria (n = 11 for observational, n = 8 for RCT), while orange-red 

color indicates unfavorable criteria (n = 4 for observational, n = 7 for RCT). 

Figure 2A: Subgroup analysis methods 

Figure 2b: Multiplicity correction methods 

Figure 3: Pearls and pitfalls for two common subgroup analysis methods in surgical neuro-oncology 

Figure 4: Recommendations for subbroup analyses in surgical neuro-oncology studies 
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Table 1: Design and protocol of prospective key studies on resection for newly diagnosed gliomas. 

 

Pubmed was searched for prospective cohorts of patients with newly diagnosed glioblastoma, astrocytoma grade 2-4, or oligodendroglioma 

grade 2-3. Only papers published after 2005 (following the introduction of the EORTC 26981/22981-protocol for concomitant 

radiochemotherapy in glioblastoma) with data on extent of resection were included. Database closure was January 1, 2024. Study names, 

design, key intervention, key findings, relevant subgroups analyzed, and pre-specified statistics are indicated. 95%-confidence intervals as 

measures of uncertainty are given within ‘key results’.  

Abbreviations: 5-ALA - 5-aminolevulinic acid, CE – contrast enhancing, CI – confidence interval, EOR - extent of resection, FLAIR - fluid-

attenuated inversion recovery, HR - hazard ratio, ioMRI - intraoperative magnetic resonance imaging, KPS - Karnofsky Performance Score, 

MGMT - 06-methylguanine-DNA-methyltransferase, NCE - non-contrast enhancing, OR - odds ratio, OS - overall survival, p – p-value, PFS – 

progression-free survival, RPA - recursive partitioning analysis, RTOG - Radiation Therapy Oncology Group, SD – standard deviation, STR – 

subtotal resection, WHO – world health organization.  
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Study Study design 

Key 

intervention  

analyzed 

Key surgical findings Relevant subgroups analyzed Pre-specified statistics 

Glioblastoma 

NCT02379572 

- 

Roder et al. in 

J Clin Oncol, 

2023 

Non-randomized, 

parallel cohort 

controlled trial 

(glioblastoma: n = 277) 

ioMRI-guided 

resection 

versus 5-ALA-

guided 

resection 

 No difference in complete resection rate (81% versus 78%; 

OR 1·09, CI: 0·57-2·08; p = 0·79) or OS (HR 1·00, CI: 

0·64-1·55; p = 0·99) between ioMRI versus 5-ALA 

 OS and PFS stratified for different 

amount of residual CE tumor volume 

 OS stratified for residual tumor volumes 

in subgroups defined by MGMT 

promotor status 

 Applied statistical tests pre-

defined 

 Sample size calculation a priori 

done 

 No pre-defined protocol for 

subgroup analysis 

RESECT 

(NCT01811121) 

- 

Picart et al. in  

J Neurosurg, 

2023 

Randomized, single-

blinded, controlled 

phase III trial 

(glioblastoma: n=171) 

5-ALA-guided 

versus 

conventional 

white-light 

guided 

resection 

 Higher rate of complete resection of the contrast 

enhancement using 5-ALA: 79% vs. 48% (absolute 

difference 29%, CI: 17-40; p < 0·0001). 

 Complete resection was associated with higher OS (HR 

0·65, 0·42-1·01; p = 0·05) 

No subgroup analysis done 

 Unclear whether statistical tests 

pre-defined 

 Sample size calculation a priori 

done 

 No pre-defined protocol for 

subgroup analysis 

GGN 

(no NCT 

available) 

- 

Kreth et al. in  

Ann Oncol, 2013 

Prospective longitudinal 

cohort study 

(glioblastoma: n = 273) 

Complete 

versus subtotal 

resection 

versus biopsy  

 Complete resection was associated with higher median OS: 

17·1, CI: 12·6-21·5 versus 11·7, CI: 10·0-13·5 months (p = 

0·001) 

 No differences in OS between subtotal resection and 

biopsy (p = 0·1) 

Outcome stratified for extent of resection in 

following subgroups: 

 Treatment regimens 

 MGMT promotor status 

 No pre-defined statistical 

protocol 

 No sample size calculation  

 No pre-defined protocol for 

subgroup analysis 

NCT01394692 

- 

Senft et al. in 

Lancet Oncol, 

Randomized, open-

label, controlled trial 

(glioblastoma: n = 46; 

anaplastic astrocytoma: 

n = 1, anaplastic 

oligodendroglioma: n = 

ioMRI-guided 

versus 

conventional 

white-light 

guided 

resection 

 Complete resection more frequent with ioMRI guided 

resection as compared to conventional resection: 96% 

versus 68%, p = 0·023 

 Higher 6-month PFS with ioMRI guided resection as 

compared to conventional resection (67% versus 34%; OR 

0·28, CI: 0·09-0·91; p = 0·046) 

 Rate of complete resections compared 

in junior versus senior neurosurgeons 

 Rate of residual tumor depending on 

the use of neuronavigation 

 Outcome stratified for extent of 

resection in the overall cohort and in 

newly diagnosed grade IV tumors only  

 Unclear whether statistical tests 

pre-defined 

 Sample size calculation a priori 

done 

 No pre-defined protocol for 

subgroup analysis 
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2011 1) 

NCT00241670 

- 

Stummer et al. in   

Neurosurgery, 

2008 

Post-hoc analysis of the 

trial by Stummer et al. 

(glioblastoma: n = 243 

from per-protocol 

cohort) 

Complete 

versus subtotal 

resection  

 Complete resection was associated with higher median OS: 

16·7, CI: 13·4-19·0 versus 11.8, CI: 10·4-13·7 months (p < 

0.0001; HR 1·75, CI: 1·26-2·44; p = 0·0004) 

Outcome stratified for extent of resection in 

the following subgroups: 

 5-ALA (versus white-light) 

 Eloquent (versus non-eloquent) 

 >60 years of age (versus <60 

years) 

 No pre-defined statistical 

protocol for post-hoc analysis 

 Post-hoc analysis: rested upon 

available cohort from 

NCT00241670 

 No pre-defined protocol for 

post-hoc subgroup analysis 

NCT00241670 

- 

Pichlmeier et al. 

in  

Neuro Oncol, 

2008 

Post-hoc analysis of the 

trial by Stummer et al. 

(glioblastoma: n = 243 

from per-protocol 

cohort) 

Complete 

versus subtotal 

resection  

 Overall cohort: complete resection was associated with 

higher median OS: 16·7, CI: 14·3-19·0 versus 11·8, CI: 

10·4-13·7 months (p < 0·0001) 

 Subgroup analysis: complete resection associated with 

higher median OS in the RTOG-RPA class IV and V (IV: 

17·7, CI: 14·3-22·5 versus 12·9, CI: 10·3-14·7; V: 13·7; CI: 

8·3-17·6 versus 10·4, CI: 8·1-11·; p = 0·0007). 

Outcome stratified for extent of resection in 

the subgroups determined per RTOG RPA 

(class III-V) 

 No pre-defined statistical 

protocol for post-hoc analysis 

 Post-hoc analysis: rested upon 

available cohort from 

NCT00241670 

 No pre-defined protocol for 

post-hoc subgroup analysis 

NCT00241670 

- 

Stummer et al. in   

Lancet Oncol, 

2006 

Randomized, controlled 

trial 

(grade III/IV: n = 270 in 

full-analysis cohort, 

including n = 137 

glioblastomas) 

5-ALA-guided 

versus 

conventional 

white-light 

guided 

resection 

 Higher rate of complete resection of the contrast 

enhancement in the 5-ALA arm: 65% versus 36% (absolute 

difference 29%, CI: 17-40, p < 0·0001) 

 6-months PFS higher in 5-ALA arm: 41·0%, CI: 32·8-49·2 

versus 21.1%, CI: 14·0-28·2 with an absolute difference of 

19·9%, CI: 9·1-30·7; p = 0·0003 

Outcome as well as frequency of and time to 

re-resection stratified for type of surgery in 

the following subgroups: 

 Eloquent (versus non-eloquent) 

 >55 years of age (versus <50 

years) 

 KPS >80 (versus 70-80) 

Outcome stratified per residual tumor volume 

 Applied statistical tests pre-

defined 

 Sample size calculation a priori 

done 

 Subgroup analyses based on 

factors used for randomisation 

Astrocytoma and oligodendroglioma 

Shaw et al. in  

J Neurosurg, 

2008 

Prospective longitudinal 

cohort study 

(astrocytoma grade II: n 

= 61, 

oligodendroglioma 

grade 2: n = 50) 

Complete 

versus subtotal 

resection  

 Residual tumor volume ≥1 cm predictive for PFS (HR 3·54, 

CI: 1·83-6·84; p = 0·0002) 

Outcome stratified per residual tumor 

volumes in the following subgroups: 

 Astrocytomas 

 Oligoastrocytomas 

 Oligodendrogliomas 

 Unclear whether statistical tests 

pre-defined 

 No sample size calculation  

 Unclear whether pre-defined 

protocol for subgroup analysis 
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