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Abstract: Pediatric low-grade gliomas (PLGGs) comprise a heterogeneous set of low-grade glial
and glioneuronal tumors, collectively representing the most frequent CNS tumors of childhood and
adolescence. Despite excellent overall survival rates, the chronic nature of the disease bears a high risk
of long-term disease- and therapy-related morbidity in affected patients. Recent in-depth molecular
profiling and studies of the genetic landscape of PLGGs led to the discovery of the paramount role of
frequent upregulation of RAS/MAPK and mTOR signaling in tumorigenesis and progression of these
tumors. Beyond, the subsequent unveiling of RAS/MAPK-driven oncogene-induced senescence in
these tumors may shape the understanding of the molecular mechanisms determining the versatile
progression patterns of PLGGs, potentially providing a promising target for novel therapies. Recent
in vitro and in vivo studies moreover indicate a strong dependence of PLGG formation and growth
on the tumor microenvironment. In this work, we provide an overview of the current understanding
of the multilayered cellular mechanisms and clinical factors determining the natural progression
patterns and the characteristic biological behavior of these tumors, aiming to provide a foundation for
advanced stratification for the management of these tumors within a multimodal treatment approach.

Keywords: pediatric low-grade glioma; pilocytic astrocytoma; RAS/MAPK pathway; oncogene-
induced senescence; tumor microenvironment

1. Pediatric Low-Grade Glioma: Epidemiology, Classification and Contemporary
Treatment Patterns

Pediatric low-grade gliomas (PLGGs) comprise several brain tumor entities of glial
and glioneuronal histology assigned to WHO CNS grade 1 and 2 [1–3]. These tumors
collectively represent the most common CNS tumors of the pediatric population, comprising
approximately 30% to 40% of newly diagnosed brain tumor cases in children and adolescents.
In Western populations, the cross-entity incidence rate is currently estimated at 2–3 per
100,000 children [4,5]. Occurring in all age groups from infancy to adolescence, PLGGs show
a peak incidence in children 5 to 9 years of age [6]. In the current WHO classification of
central nervous system tumors published in 2021, PLGGs are categorized into six categories
under the umbrella term “glioma, glioneuronal and neuronal tumors” [1–3]. Common
histological entities include pilocytic astrocytoma and pleomorphic xanthoastrocytoma, which
are characterized as circumscribed astrocytic gliomas, alongside several entities categorized
as pediatric-type diffuse low-grade gliomas, including the less common MAPK pathway-
altered diffuse low-grade glioma or MYB-/MYBL1-altered diffuse astrocytoma [1–3]. Among
glioneural and neuronal tumors, gangliogliomas and dysembryoplastic neuroepithelial tumors
(DNETs) are also considered PLGGs [1–3]. PLGGs occur at all sites within the central nervous
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system, while predominant regions include the cerebellum and the supratentorial midline
structures, and entity-specific distribution of predominant tumor locations is observed [6].

A key characteristic of PLGGs is their frequent association with tumor predisposition
syndromes including neurofibromatosis type 1 (NF1) and tuberous sclerosis complex
(TSC) [7]. In particular, tumors of the visual pathway are associated with NF1 and occur in
approximately 20% of these patients within the first decade of life, while almost exclusively
pilocytic astrocytomas are found [8–10]. Conversely, NF1 can be detected in about 40%
of all patients with OPG [10]. Although these patients, specifically in the case of tumors
involving the chiasmatic/hypothalamic region, showed superior progression-free survival
rates compared to their non-NF1 counterparts, they often present a significant challenge
for their caregivers due to increased toxicity to most conventional treatments [11,12].

Despite promising recent advances in the implementation of molecular targeted thera-
pies, surgery remains the mainstay of therapy of PLGGs. The progression-free survival (PFS)
is substantially determined by the extent of surgical resection [11,13–17]. In many cases,
however, resectability can be severely compromised by surrounding highly eloquent brain
tissue, and extensive resection may cause substantial morbidity. Recent population-based
cohort studies consistently report high rates of incomplete resection (IR) ranging between
65% and 73%, despite recent advancements in neurosurgical technology [11,14,17,18]. In
cases where resection is not feasible, surgical biopsy is recommended, whereas in patients
with confirmed NF1 and characteristic MRI findings of an optic pathway glioma, this is not
considered obligatory [19].

In the case of limited resectability and progressive disease, chemotherapy has been
considered the treatment of choice in recent years. Approximately four decades ago, initial
chemotherapy protocols for pediatric low-grade gliomas (PLGGs) were introduced and
assessed, with the purpose of postponing radiotherapy and offering an effective substitute
treatment for NF1 patients, who inherently face a notably elevated risk of secondary
malignancies following radiation therapy [20]. Currently applied chemotherapy regimens
include either carboplatin and vincristine, vinblastine monotherapy, or a combination of
thioguanine, procarbazine, CCNU, and vincristine [21–24]. Further second-line protocols
include irinotecan and bevacizumab [25]. Notably, however, 5-year PFS rates of established
first-line chemotherapy protocols of approximately 50% have been reported, and response
rates of subsequent second-line treatments in most cases significantly decrease, causing
significant long-term morbidity in affected patients [22–24,26].

Given its efficacy in tumor control, radiation therapy has been the primary choice for
salvage treatment in PLGGs in previous decades [20]. Considering the substantial age-
related long-term sequelae such as cognitive decline, endocrine disorders, and secondary
malignancies, conventional photon radiation should currently be reserved for a certain
subset of older non-NF1 patients following careful consideration [20,27,28]. This shift has
prompted the advancement of alternative radiation applications, including proton beam
therapy and stereotactic radiation, as these methods aim to enhance local tumor control
while reducing the risk of long-term side effects [20,29].

In recent years, in-depth molecular profiling and incremental decoding of the molecu-
lar mechanisms of tumorigenesis in PLGGs has led to clinical evaluation of the efficacy of
molecular therapies targeting the RAS/MAPK and mTOR pathways of these tumors [21,30].
In previous phase I/II studies, several agents, including MEK inhibitors (selumetinib, tram-
etinib, and binimetinib), a pan-RAF inhibitor (tovorafenib), first-generation BRAF inhibitors
(vemurafenib and dabrafenib), an mTOR inhibitor (everolimus), and an FGFR inhibitor
(erdafitinib), have shown promising results, leading to the implementation of random-
ized controlled studies comparing several agents, including selumetinib, trametinib, and
tovorafenib, to the first-line chemotherapy regimen in newly diagnosed, previously un-
treated PLGGs [31–37]. It was recently shown that a combination therapy of trametinib
and dabrafenib achieved significantly higher response rates compared to carboplatin and
vincristine in PLGGs bearing a BRAF V600E mutation and therefore is currently being
considered the first-line treatment in these patients [38]. Crucial questions, however, which
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include the optimal duration of treatment, have not yet been addressed in studies and are
the subject of current debate. In a significant subset of patients, rapid rebound growth
after discontinuation of therapy has been observed, while potential risk factors have not
yet been identified [39]. Remarkably, renewed response to subsequent treatment periods
indicates an insignificant role of acquired resistance in these therapies. Significant data
regarding potential long-term toxicities, especially in the pediatric demographic, are as
yet missing [30]. Apart from MEK inhibitors, other molecular therapies targeting the
RAS/MAPK pathway are currently not used in NF1 patients due to concerns involving
therapy-related paradoxical ERK activation due to RAF homodimerization, which has
previously been observed in vivo and in vitro [40,41].

Recurrent progressions and the necessity for multiple different lines of therapies
in many cases emphasize the chronic nature of this disease, which bears a high risk of
long-term disease- and therapy-related morbidity in affected patients.

2. Multi-Layered Clinical Factors Determine the Natural Progression Patterns of PLGGs

The clinical course of pediatric low-grade gliomas is commonly characterized by an
indolent growth behavior. In a previously reported cohort, it was shown that almost half
of patients diagnosed with PLGG exhibited symptoms related to their disease more than
six months prior to diagnosis. Again, this emphasizes the indolent growth patterns of these
tumors [14]. After incomplete resection, growth deceleration and senescence are frequently
observed, as long-term progression-free survival (PFS) rates of approximately 50% were
correspondingly reported from previous population-based cohort studies [11,14,42]. Both
spontaneous regression as well as regrowth of senescent tumors up to 12 years after initial
diagnosis and malignant transformation to secondary high-grade lesions have occasionally
been reported [7,14,43–50]. The versatile postoperative progression patterns of pediatric
low-grade gliomas after incomplete resection (IR) is illustrated in Figure 1 based on five
cases of distinct histological entities and tumor locations.

While the growth behavior and progression patterns of PLGGs are repeatedly de-
scribed as mostly unpredictable at first glance, the results of a multi-state analysis dissecting
the natural course of the disease indicate that future progressiveness may be predicted
by the tumor growth behavior during the first two years after initial diagnosis [51]. The
comprehensive analysis of more than 1500 patients during multiple disease states identified
various levels of disease progressiveness, which were determined by age, tumor location,
and histologic grade [51]. Previous population-based cohort studies have identified several
risk factors potentially determining progression patterns of these tumors, mainly including
the extent of surgical resection, tumor location, age at diagnosis, and histological and
molecular features [11,13–15,18,51,52].

2.1. Extent of Resection

The extent of surgical resection has emerged as the predominant predictor of the pro-
gression patterns throughout previous population-based cohort studies of PLGG [11,13–17].
Five- and 10-year PFS rates of completely resected PLGGs have been reported to be around 94
and 85%, respectively [11,14]. In incompletely resected PLGGs, progression-free survival was
substantially determined by the extent of surgical resection, as 10-year PFS rates of 48% after
near-total resection, 18% after partial resection, and 16% after biopsy were reported. Above, a
recently published analysis of the pre- and postoperative tumor growth velocity of a cohort of
171 pediatric low-grade gliomas reported a persistent growth deceleration of incompletely
resected tumors, while a clear linear negative correlation of percentual extent of resection and
postoperative tumor growth velocity was shown [42]. The same study also identified a resid-
ual cut-off tumor volume >2.0 cm3 associated with a higher risk of radiologically detectable
progression post incomplete resection, while the residual tumor mass after initial surgical
resection was moreover reported as a risk factor for progression by a further study [23,42].
These data indicate the crucial role of surgical treatment as the mainstay of therapy alongside
emerging targeted molecular therapy approaches.
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Figure 1. Illustration of the versatile postoperative progression patterns of pediatric low-grade gli-
omas after incomplete resection (IR). (A–D) Diffuse astrocytoma WHO grade 2 of the posterior cor-
pus callosum in a 15-year-old girl. (A) Preoperative MRI image, (B) postoperative MRI image after 
IR, (C) follow-up MRI image 9 years after IR, showing stable tumor remnants. (D) H&E stain of the 
tumor, 200× magnification. (E–H) Pilocytic astrocytoma (PA) WHO grade 1 of the chiasm and hypo-
thalamus in a 7-year-old girl. (E) Preoperative image, (F) postoperative image after IR, (G) follow-
up MRI image 7 years after IR, showing tumor progression under adjuvant treatment. (H) H&E 
stain of the tumor, 200× magnification. (E–H) Pilocytic astrocytoma (PA) WHO grade 1 of the chiasm 
and hypothalamus in a 3-year-old girl. (E) Preoperative MRI image, (F) postoperative MRI image 
after IR, (G) follow-up MRI image 7 years after IR, showing tumor progression under adjuvant treat-
ment. (H) H&E stain of the tumor, 200× magnification. (I–L) Pilocytic astrocytoma (PA) WHO grade 
1 of the medulla oblongata in a 4-year-old boy. (I) Preoperative MRI image, (J) postoperative MRI 
image after IR, (K) follow-up MRI image 2 years after IR, showing stable tumor remnants. (L) H&E 
stain of the hypocellular tumor showing a predominantly fibrillary matrix, 200× magnification. (M–
P) Pilocytic astrocytoma (PA) WHO grade 1 of the cerebellum in a 7-year-old boy. (I) Preoperative 
MRI image, (O) postoperative MRI image after IR, (N) follow-up MRI image 6 years after IR show-
ing tumor progression. (P) H&E stain of the tumor, 200× magnification. (Q–T) Pilocytic astrocytoma 
(PA) WHO grade 1 of the cerebellum in a 2-year-old boy. (Q) Preoperative MRI image, (R) 

Figure 1. Illustration of the versatile postoperative progression patterns of pediatric low-grade
gliomas after incomplete resection (IR). (A–D) Diffuse astrocytoma WHO grade 2 of the posterior
corpus callosum in a 15-year-old girl. (A) Preoperative MRI image, (B) postoperative MRI image
after IR, (C) follow-up MRI image 9 years after IR, showing stable tumor remnants. (D) H&E stain of
the tumor, 200× magnification. (E–H) Pilocytic astrocytoma (PA) WHO grade 1 of the chiasm and
hypothalamus in a 7-year-old girl. (E) Preoperative image, (F) postoperative image after IR, (G) follow-
up MRI image 7 years after IR, showing tumor progression under adjuvant treatment. (H) H&E stain
of the tumor, 200× magnification. (E–H) Pilocytic astrocytoma (PA) WHO grade 1 of the chiasm and
hypothalamus in a 3-year-old girl. (E) Preoperative MRI image, (F) postoperative MRI image after
IR, (G) follow-up MRI image 7 years after IR, showing tumor progression under adjuvant treatment.
(H) H&E stain of the tumor, 200× magnification. (I–L) Pilocytic astrocytoma (PA) WHO grade 1 of the
medulla oblongata in a 4-year-old boy. (I) Preoperative MRI image, (J) postoperative MRI image after
IR, (K) follow-up MRI image 2 years after IR, showing stable tumor remnants. (L) H&E stain of the
hypocellular tumor showing a predominantly fibrillary matrix, 200× magnification. (M–P) Pilocytic
astrocytoma (PA) WHO grade 1 of the cerebellum in a 7-year-old boy. (I) Preoperative MRI image,
(O) postoperative MRI image after IR, (N) follow-up MRI image 6 years after IR showing tumor
progression. (P) H&E stain of the tumor, 200× magnification. (Q–T) Pilocytic astrocytoma (PA) WHO
grade 1 of the cerebellum in a 2-year-old boy. (Q) Preoperative MRI image, (R) postoperative MRI
image after IR, (S) follow-up MRI image 4 years after IR, showing stable tumor remnants. (T) H&E
stain of the solid tumor portions resembling a diffuse growth pattern, 200× magnification.
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2.2. Tumor Localization

The influence of tumor localization on the progression behavior of these tumors has
repeatedly been described. Multiple tumor sites or extensive tumor spread at time of diag-
nosis bearing a significantly higher risk of tumor progression during various disease states
have been identified by previous population-based cohort studies. In contrast, supratento-
rial midline location has been found to be the most prominent tumor site associated with
highly progressive disease and disease-related morbidity [11,14,51]. Further tumor loca-
tions associated with a higher risk of tumor progression involve the brainstem, spinal cord,
and diencephalon [13]. The impact of the tumor location as a prognostic factor, however,
may naturally be confounded with the extent of resection of these tumors, as resectability
can be severely compromised by surrounding highly eloquent brain tissue, where extensive
resection may cause substantial morbidity. In a large multi-institutional analysis involving
798 patients, hypothalamic/chiasmatic tumors demonstrated the most sustained tendency
to progress, while a multivariate analysis did not confirm tumor site as an independent risk
factor for highly progressive disease, and a strong correlation of tumor site and resection
extent was shown [14]. Consistent with these findings, an analysis of the preoperative
tumor growth velocity revealed no significant differences comparing tumor growth rates
in PLGGs at various tumor locations, while mean postoperative tumor growth rates were
highest in PLGGs located in the supratentorial midline, where the lowest mean resection
extent was achieved [42]. In contrast, however, a prospective multivariate analysis of two
large population-based cohorts involving 1031 patients identified supratentorial midline
location as an independent risk factor for highly progressive disease [15]. Comparing
the outcome of supra- and infratentorial PLGGs, it should be considered, however, that a
reasonable proportion of circumscribed glial and glioneuronal tumors at distinct locations
bear additional histone H3 mutations or overexpression of EZHIP, which had not been
assessed earlier yet potentially may have influenced the reported outcomes of previously
published series [53,54].

2.3. Age at Diagnosis

Earlier reports demonstrate a substantial dependence of the clinical progression patterns
of PLGGs on the patient’s age at diagnosis. While younger patients are at a higher risk of
recurrent treatment progression and inferior treatment outcome, treatment-related sequelae,
and tumor-related death, the highest risk of progression has correspondingly been observed in
patients < 1 year of age [14,15,18,52,55–59]. Although occasional preselecting treatment studies
may point in various directions, age dependency of progression patterns has consistently
been reported from major population-based cohort analyses [11,14,15,18,55–61]. Considering
a further distinct predominance of distinct tumor locations among different age groups,
various age-dependent progression patterns are currently considered an expression of
an evolving tumor microenvironment and probably also some sort of maturation of glial
cells across early stages of childhood, promoting differential risks of tumorigenesis and
progression of these tumors [11,62]. The underlying mechanistic causes, however, are
barely understood, and further investigations are hampered by difficulties in generating
representative preclinical models of PLGG, as mentioned above.

2.4. Histology

Moreover, previous reports indicate that histology may independently predict progres-
sion, as nonpilocytic and diffuse PLGGs have repeatedly been associated with a higher risk
of highly progressive disease. Several studies and population-based analyses indicate a
significantly higher progression rate in nonpilocytic tumors, diffuse fibrillary histology, and
low-grade gliomas assigned to WHO grade 2 [6,11,14,15,58,63–66]. While distinct tumor
location-specific distributions of various histological types of PLGG have been shown,
the impact of tumor histology on PFS, however, may be confounded with differences in
resectability. It was shown that patients with pilocytic astrocytoma had higher chances of fi-
nal complete resection [67]. Nonetheless, several large population-based studies confirmed
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diffuse fibrillary histology as an independent risk factor for a worse PFS in multivariate
analyses [11,14,15].

3. Aberrant RAS/MAPK Pathway Signaling Drives Tumorigenesis and Tumor
Progression in PLGGs

Within the past two decades, in-depth molecular profiling and studies of the genetic
landscape of PLGGs identified underlying genetic alterations leading to a frequent acti-
vation of the RAS–mitogen-activated protein kinase (RAS/MAPK) pathway as a nearly
universal biological feature of these tumors. PLGGs are therefore often referred to as a
“single-pathway disease” [68–73]. The RAS/MAPK pathway represents one of the best
characterized signaling pathways in cell biology. It is involved in regulating essential
mechanisms of cell cycle control, cell migration, and angiogenesis, which play a crucial role
in tumorigenesis and tumor progression in several malignancies [74–77]. MAPK/mTOR
signaling and its downstream activation of transcriptional factors resulting in tumorigene-
sis and oncogene-induced senescence (OIS) is illustrated in Figure 2. The first indications
of the crucial role of the RAS/MAPK pathway in PLGGs were found in patients with
neurofibromatosis type I (NF1). In these patients, germline mutations involving the NF1
tumor suppressor gene cause a loss of function of neurofibromin, a GTPase-activating
protein functioning as a negative regulator of RAS [78,79]. This alteration consecutively
leads to the development of low-grade gliomas, mainly involving the optic pathway, in
up to 20% of cases during childhood [80,81]. Distinct alterations in non-NF1 patients all
converging on consecutive RAS/MAPK activation were subsequently discovered. Key
mutations driving these tumors include the KIAA1549-BRAF fusion, prevalent in pilo-
cytic astrocytoma (approx. 70%) and rosette-forming glioneural tumors (approx. 30%) in
non-NF1 patients, as well as BRAF V600E mutations, commonly found in pleomorphic
xanthoastrocytoma (approx. 80%), ganglioglioma (approx. 45%), and pediatric-type diffuse
low-grade gliomas (approx. 40%) [69,70,79,82–84]. Other less frequent mutations activating
the RAS/MAPK pathway include FGFR1/2 alterations, ALK fusions, KRAS mutations,
and less frequent mutation or fusions of BRAF with the removal of BRAF’s N-regulatory
domain [68,69,79,85,86]. Less common types of PLGGs contain recurrent genetic alter-
ations, including NTRK and the MYB family of transcription factors and fusions involving
RAF1 [68,69,87,88]. Protooncogenes of the MYB family are known for their crucial role as
transcriptional regulators of proliferation and differentiation, while oncogenic alterations
are repeatedly found in PLGGs with diffuse histological features, including angiocentric
gliomas [69,79,87,89]. Notably, IDH1/2 mutations, frequently seen in adult gliomas, are
rare occurrences in PLGGs and cluster among adolescent patients [90]. Previous observa-
tions indicate similar clinical characteristics and progression patterns of IDH1/2-mutant
glioma in pediatric and adolescent patients compared to those in adults [90]. Therefore,
astrocytoma, IDH-mutant and oligodendroglioma, and IDH-mutant and 1p/19q co-deleted
are not covered in this review. An illustration of the frequent and less common genomic
alterations of distinct histological types of PLGG is provided in Supplementary Table S1.
Beyond contributing to a more profound understanding of tumorigenesis and the driving
forces of tumor progression in PLGGs, dissecting the molecular landscape of PLGGs facili-
tated precise diagnosis and advanced molecular stratification, while also representing a
promising avenue for emerging molecular therapies [91].
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Figure 2. Illustration of MAPK/mTOR signaling and its downstream activation of transcriptional
factors resulting in tumorigenesis OIS. Promising molecular therapeutics and their target points in
the mTOR/MAPK pathway are additionally illustrated. Created with BioRender.com (accessed on 8
July 2024).

4. OIS as a Potent Tumor-Suppressive Mechanism in RAS/MAPK-Driven Cancers

After first being described in vivo more than 25 years ago, the discovery of a potential
induction of cellular senescence by a constitutive activation of oncogenic pathways has
shaped an increasingly profound understanding of cellular protective mechanisms against
tumorigenesis, beyond potentially providing a promising target for novel combination
therapies for various cancers [92,93]. Within the past two decades, similar mechanisms
of cell cycle arrest, potentially resulting in growth deceleration and senescence, have
been described in several cancers driven by activation of the RAS–RAF–mitogen-activated
protein kinase (MAPK) pathway, MYC activation, hyperactivated WNT-β-catenin signaling,
activation of the INK4A-RB pathway, or loss of PTEN [93–99]. In most cases, OIS is
characterized by the accumulation of p53 and/or p16INK4a following the activation of
oncogenic pathways, whereas inactivation of p53 or p16INK4a following additional genetic
lesions has been associated with an escape of senescence and malignant transformation of
premalignant lesions in several cancers [93,100–104].

OIS in RAS/MAPK-activated neoplasms was among the first to be discovered, and its
incremental unravelling has led to an increasing understanding of cellular mechanisms of
intrinsic tumor suppression following oncogenic genetic alterations [92,100]. While aberrant
RAS/MAPK pathway signaling is attributed a critical role in oncogenesis, cancer cell
survival, dissemination, and drug resistance in a variety of human cancers, in vitro studies
have repeatedly shown an induction of cell cycle arrest in G1 due to the accumulation of
cell cycle inhibitors p53 and p16INK4a and a decreased expression of cyclin A following
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persistent oncogenic RAS/MAPK signaling in murine and human cells [92,100,105–111].
Previous in vitro analyses implicate a dependency of RAS/MAPK-driven tumorigenesis
on additional genetic alterations, resulting in an inactivation of p53 or p16INK4a rendering
senescence escape [100,112]. Further investigations of cellular responses to oncogenic RAS
signaling in human fibroblasts, however, suggest a correlation of senescence response to
the intensity of MAPK activation without dependency on additional genetic lesions, while
moderate MAPK activation promoted cell growth, and hyperactivation induced senescence
via p16INK4a expression [109].

OIS following MAPK signaling has been associated with various mutations in KRAS
and BRAF or upstream growth factor receptors as EGFR and have been translated to
multiple cancerogenesis models involving hematologic malignancies, melanoma, and lung
cancer [113–117]. Patient-derived cellular PLGG models replicating OIS are therefore useful
for further studies in the transcriptional role of the MAPK pathway [31,118].

5. Regulation of OIS and in PLGGs: Recent Discoveries and Current Understanding

In pediatric low-grade glial tumors, the pivotal role of OIS has previously been studied
in various preclinical MAPK-activated pilocytic astrocytoma models. It was shown that the
insertion of a constitutively active BRAFV600E allele into human neural stem cells promoted
clonogenic growth, albeit followed by subsequent proliferation arrest and expression of
markers of OIS, including acidic β-galactosidase and p16INK4a [119]. Similar observations
were reported from BRAF wild-type and mutant astrocytic cell lines characterized by
aberrant MAPK signaling, whereas abrogation of OIS could be induced by additional loss
of p16INK4a [120].

OIS and the resulting growth arrest due to constitutive upregulation of MAPK signal-
ing has previously moreover been described as the underlying cause of difficulties in the
establishment of representative low-grade glioma models, including primary cultures and
patient-derived xenograft (PDX) models [119–123]. SV40 large T antigen workflows are
usually applied to circumvent OIS in such models [123].

Variable inactivation of OIS, however, enabled the establishment of representative
in vitro models for further investigation of OIS in pilocytic astrocytoma. In a patient-
derived KIAA1549::BRAF fusion positive pilocytic astrocytoma model, a doxycycline-
inducible switching between a proliferative state and OIS by doxycycline-inducible in-
hibition of TP53/CDKN1A and CDKN2A/RB1 pathways was implemented, while the
induction of CDKN1A and an accumulation of TP53 with subsequent G1 growth arrest was
shown during a senescent state [122,124].

Similar to preclinical models of pilocytic astrocytoma, enhanced expression of hall-
marks of senescence including p16INK4a and acidic β-galactosidase, as well as a signifi-
cantly upregulated mRNA expression of senescence-associated secretory phenotype (SASP)
factors, was shown in human pilocytic astrocytoma samples, possibly indicating the sig-
nificance and translational potential of the observations in preclinical in vitro models to
clinical routine [120,122].

Consequently, the indolent growth behavior and versatile progression pattern of
pediatric low-grade gliomas has repeatedly been linked with RAS/MAPK-driven OIS in
pilocytic astrocytoma by previous authors [122,125,126]. This hypothesis is supported by
the observation of Buhl et al. indicating a clear dependency of progression-free survival
on SASP factor mRNA expression, which showed a favorable outcome of patients with
higher SASP expression in a multi-institutional ICGC PedBrain pilocytic astrocytoma cohort
including 110 patients [122]. Other potentially interfering factors, including the extent of
resection and postoperative radiotherapy, were excluded in a multivariate analysis.

As the accumulation of p53 or p16INK4a following the activation of the MAPK path-
way plays a paramount role in MAPK-driven OIS, additional CDKN2A alterations are
described to facilitate a senescence escape, potentially defining a particularly high-risk,
low-grade glioma phenotype [79,119,120]. CDKN2A is known for its endogenous function
in G1 cell cycle regulation [79,127,128]. The prognostic impact of a concomitant loss of
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CDKN2A, which is described in a frequency range of 6–20% in PLGGs, has previously
been studied in several pediatric low-grade glioma cohorts [79,83,129–131]. It was shown
that additional homozygous CDKN2A deletion in MAPK-activated BRAF V600E mutant
PLGGs contributed independently to poor outcome, therefore constituting a distinct entity
with a significantly worse prognosis [83,130,131]. Moreover, the interplay between these co-
founding alterations has been shown to foster progression to secondary high-grade glioma
(sHGG) in pediatric patients, as a comprehensive molecular analysis of a population-based
sHGG cohort showed a significant enrichment of MAPK-activating BRAF mutations and
a homozygous loss of CDKN2A in these tumors [132,133]. Notably, as a retrospective
longitudinal assessment revealed, these alterations could be traced back to their PLGG
counterparts before malignant transformation [132]. Notably, co-occurrence of BRAF V600E
mutation and CDKN2A co-deletion moreover showed a significant enrichment in pleo-
morphic xanthoastrocytoma, a PLGG type known for an increased tendency of malignant
transformation to sHGG [69,134,135]. Another example is the recently discovered entity
of high-grade glioma with piloid features (HGAP) [136]. Such cases may occur in the
setting of NF1, and these tumors frequently harbor co-occurring CDKN2A/B homozygous
deletion and/or ATRX stop gain mutations [137]. A significant number of cases show a
low-grade precursor lesion originating from the PLGG spectrum [138]. Beyond providing
significant aspects for risk stratification, these data moreover support the transferability of
the mechanistic model of MAPK-driven PLGGs to clinical practice.

In contrast, additional TP53 mutations appear to play a minor role in the context of
OIS escape in the treatment of PLGGs. These DNA repair pathway mutations show a
significant accumulation in pediatric high-grade gliomas, particularly in H3K27-altered
diffuse midline gliomas, and have shown a notable enrichment in pediatric HGG of the
cerebellum in a recently published series [139,140]. Previous data suggest a negative impact
of this mutation on the prognosis of pediatric HGGs [141]. However, in PLGGs, TP53
mutations have only been sporadically described, and their detection failed to show a
negative prognostic value in a previously published series, indicating that the observation
of their crucial impact on OIS escape in preclinical models does not seem to reflect in clinical
practice [6,58].

The identification of mediating factors of OIS in pediatric low-grade gliomas was
the subject of a previous work by Buhl et al., who analyzed gene and protein expression
during a state of proliferation and senescence in a previously mentioned patient-derived
KIAA1549::BRAF fusion positive pilocytic astrocytoma (PA) model, which allows for
doxycycline-inducible switching between a proliferative state and OIS [122,124]. It was
shown that SASP factors, including the pro-inflammatory cytokines IL1B and IL6, were
upregulated in pilocytic astrocytoma cells during OIS. This furthermore led to the tran-
scription of SASP factors in an autocrine manner due to downstream activation of NFκB,
therefore sustaining the senescent state and resulting a reduced growth of PA cells [122].
Incubation with the anti-inflammatory agent dexamethasone conversely induced regrowth
of senescent cells and inhibited the SASP [122]. A schematic illustration of OIS fostering
the SASP in PLGGs is provided in Figure 3. These findings may indicate a paramount
impact of inflammation on OIS and therefore the growth behavior of these tumors. Con-
sidering recently published data of an analysis of pre- and postoperative tumor growth
velocity of PLGGs, showing a significant radiologically detectable growth deceleration after
subtotal resection, it may be hypothesized that a local inflammatory response to surgical
therapy may foster OIS and therefore growth deceleration in residual tumor tissue [42].
Moreover, the in vitro observation of a regrowth of senescent PA cells and suppression
of OIS following the incubation with dexamethasone raises the question regarding the
safety of the use of anti-inflammatory agents such as dexamethasone in PLGGs, which are
frequently applied for symptom control in brain tumor patients with raised intracranial
pressure [142]. A retrospective analysis, however, did not show any significant impact of
short-term dexamethasone use on tumor growth velocity or PFS in a PLGG cohort [142].
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Notably, previous studies of OIS in pediatric low-grade gliomas are confined to pre-
clinical models and tumor samples of pilocytic astrocytoma, while correspondent analyses
in distinct histological types of low-grade gliomas are yet missing. Unrestrained translation
to distinct histological LGG types should be challenged, paying regard to biological and
molecular differences.

6. OIS Represents a Promising Target for Senolytic Treatment in PLGGs

The intratumoral heterogeneity with a significantly increased, varying population of
senescent cells in pediatric low-grade gliomas may not only serve as an explanation for the
indolent growth behavior of these tumors but moreover bears the challenge of potential
resistance of senescent compartments to conventional chemotherapy-based treatment
regimens [66,125]. In this setting, the potential implementation of senolytic agents may
appear as a promising complementary treatment approach.

The evaluation of the therapeutic potential of clearing senescent cells by senolytic
drugs through the induction of apoptosis has been the subject of basic research and clinical
investigations in a variety of cancers [143–147]. In glial tumors, the potential of Bcl-2
inhibition in overcoming therapy resistance and the clearance of senescent tumor stem
cells has previously been demonstrated in vitro and in vivo in glioblastoma [148–151]. Evi-
dence of increased Bcl-xL levels in pilocytic astrocytoma, indicating a significant fraction
of senescent cells and providing a potential target for senolytic BH3-mimetics, underline
the potential of this treatment approach in pediatric low-grade gliomas [152]. In a com-
prehensive in vitro analysis including several patient-derived MAPK-activated pilocytic
astrocytoma cell lines, including KIAA1549-BRAF fusions or a BRAF V600E mutation, Selt
et al. demonstrated the upregulation of Bcl-xL during a state of cellular senescence, while
inhibition of BCL-xL induced mitochondrial apoptosis [152]. These significant findings
highlight the potential of BCL-xL inhibition as a promising treatment approach in targeting
the senescent compartment in low-grade gliomas, which may be difficult to treat with
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conventional anti-proliferative agents. While upfront clinical trials are required, limited
penetration of the blood–brain barrier, resulting in relatively low plasma:CSF ratios in
clinically available BCL-2 inhibitors, provides a challenge that may potentially affect the
translation of these promising findings into clinical practice [153].

7. The Role of the Tumor Microenvironment in PLGG Tumor Formation and Growth

The crucial role of the tumor microenvironment (TME) as a sophisticated ecosystem in
oncogenesis, potential evasion of immune surveillance, and tumor advancement has been
studied extensively in a variety of tumor entities and carcinogenesis models within the
past decades [154–159]. In pediatric CNS tumors—in particular, PLGGs—major questions
involving the interaction between the TME and tumor cells, as well the spatial distribution
and impact of various infiltrating immune cells on senescence and tumor progression
patterns, mostly remain unanswered [160].

The composition of infiltrating immune cells in pediatric gliomas has been the subject
of previous analyses using a variety of methods ranging from basic immunohistochemistry
to single-cell RNA sequencing. It was shown that primary immune cells found in pedi-
atric gliomas include macrophages, microglia, and T cells, while MAPK-driven low-grade
gliomas showed a significantly stronger immune cell infiltration in contrast to their high-
grade counterparts, and the composition of infiltrating immune cells showed significant dif-
ferences to distinct brain tumor entities [160–162]. Several previous studies have identified
microglia and T cells as the predominant infiltrating cell type in PLGGs, while a significant
proportion of resident microglial tumor-associated macrophages (TAMs) has moreover
been identified [161–163]. More detailed analyses have observed a notably variable extent
of infiltrating T cells, with the density of infiltrating T cells being described as highest in gan-
glioglioma, pleomorphic xanthoastrocytoma, and hypermutated tumors [164]. However,
a more recent study describes the detection of a more immunogenic, immune-activating
infiltrating cell population in pilocytic astrocytoma compared to ganglioglioma. [165]. The
underlying MAPK-activating genetic alteration has been shown to impact the composition
of infiltrating immune cells, as a stronger immune infiltration including a higher proportion
of pro-inflammatory, activated macrophages and microglia was shown in KIAA1549::BRAF
fusion positive compared to BRAF wild-type PLGGs [166,167]. Another study using spatial
transcriptomics that has not yet been published found a higher concentration of immune
cell-mobilizing chemokines in KIAA1549::BRAF fusion-driven tumors compared to BRAF
V600E-mutated tumors [165]. Across various types of pediatric gliomas, previous data
suggest a correlation between a strong immune infiltration and significantly prolonged
overall survival [168]. Albeit the composition and grade of immune cell infiltration has
shown significant variability in pediatric low-grade gliomas, data addressing its prognostic
utility and a possible impact on progression patterns are missing [164,169].

While the potential modulation of immunosurveillance by RAS/MAPK-driven OIS in
PLGGs has not yet been the subject of detailed investigation, there are clear indications de-
rived from preclinical models of distinct tumor entities that MAPK-driven OIS significantly
affects the TME and could thus influence immunological clearance. In a mosaic mouse
model of liver carcinoma, it was shown that the secretion of inflammatory cytokines in a
senescence state triggered an innate immune response and fostered tumor clearance [170].
In contrast, in a fibroblast model of OIS, it was shown that the expression of inhibitory
immune checkpoint molecules such as PD-L1 correlates with gene expression signatures
of SASP [171]. In liver tumors, it was shown that senescent tumor cells can alter their
surface proteome to evade clearance by the immune system [172]. A previously published
work examined the expression of ligands for PD1 (PD-L1 and PD-L2) and CTLA4 (CD80
and CD86), which could potentially influence T-cell-mediated immune clearance, on cells
of pilocytic astrocytoma. This study showed a very low expression of these proteins on
tumor cells, although a robust expression of MHC class 1 antigens (HLA-A, HLA-B, HLA-
C) suggests intact antigen expression. Although there have been no dedicated studies
on the modulation of cellular immune response and clearance by the SASP in PLGGs,
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there are indications that MAPK activation in PLGGs has a crucial impact on immune
infiltration. For instance, it has been shown that the likelihood of responding to MAPK
inhibitor therapy correlates with the extent of immune infiltration, and rebound growth
after MAPK inhibitor withdrawal is associated with the secretion of microglia-recruiting
cytokines [39,169]. The potentially crucial interaction of RAS/MAP-driven OIS and im-
munosurveillance is characterized by many open questions and represents the subject of
current research [173].

Remarkably, previous data derived from murine models of PLGGs indicate a strong
dependence of tumorigenesis and tumor progression on infiltrating immune cells in these
tumors. In a previously published work investigating the impact of BRAF fusion-expressing
neural stem cells and microglia in mice, it was shown that increased microglia infiltra-
tion induced glioma-like formation of BRAF fusion-expressing neural stem cells, while
intercepting chemokine receptor type 2 (CCR2)-mediated microglia recruitment prevented
tumor formation [174]. In a genetically engineered neurofibromatosis 1 mouse model,
multi-potent low-grade glioma stem cells failed to generate glioma-like lesions in athymic
mice lacking T cells or chemotactic receptors such as CCR2 and chemokine c-motif ligand 5
(CCL5), which mediate the interaction of T cells and microglia and moreover were shown
to promote low-grade glioma growth [175,176]. It was also shown that various patterns of
chemokine expression of both low-grade glioma stem cells and infiltrating immune cells
resulted in various growth patterns of these tumors [177,178].

However, both the translation of these findings and further mechanistic studies pursu-
ing a deeper understanding of the impact of the TME on oncogenesis, potential evasion
of immune surveillance, and tumor advancement in humanized models of pediatric low-
grade gliomas require the development of preclinical in vivo models containing humanized
immune systems, as current preclinical models involving xenotransplantation are com-
monly characterized by impaired immunity [121]. While the multi-faceted mechanisms of
interaction between the tumor microenvironment and tumor cells remain mostly unknown,
further investigations may crucially impact the future understanding of tumor formation
and progression in these tumors.

8. Spontaneous Regression and Malignant Transformation in PLGGs: Characteristics of
Two Rare Phenomena

Malignant transformation of low-grade gliomas is observed habitually in adult patients,
showing a prevalence of up to 72% in previously reported adult LGG cohorts [168,179,180].
In the pediatric demographic, transformation towards high-grade lesions is a rare phe-
nomenon, with reported incidences ranging around 5% [46–50]. This observation moreover
underscores the vast biological differences between pediatric and adult LGGs [7]. While
the molecular and biological basis has not yet been deciphered, individual factors as-
sociated with malignant transformation of PLGGs could be identified. As previously
mentioned, a co-occurrence of BRAF V600E mutation and CDKN2A co-deletion has been
associated with progression to sHGG, as a significant enrichment in a cohort of sHGG
was shown, and these mutations could be traced back to the PLGG counterparts of sHGG
bearing these molecular alterations [132]. Notably, co-occurrence of BRAF V600E muta-
tion and CDKN2A co-deletion moreover showed a significant enrichment in pleomorphic
xanthoastrocytoma, a PLGG type known for an increased tendency towards malignant
transformation [69,134,181–183]. Moreover, previous administration of radiotherapy and
older age have been suggested as risk factors for a progression towards sHGG, while
the latter has shown no statistical significance due to the small sample size in a series of
sHGG [16,46,63,184].

Beyond its characteristically indolent growth behavior and a tendency towards growth
deceleration and senescence after incomplete resection, occasional spontaneous regression
of these tumors is observed in childhood LGGs, representing another distinguishing feature
as compared to adult LGGs [7,43–45]. Occasional series of incompletely resected cerebellar
pilocytic astrocytoma, including long-term follow-up periods of up to 18 years, report high
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rates of spontaneous regression in 14% to 38% of cases, while solely the extent of surgical
resection could be identified as a significant prognostic factor [185–187]. Comparable
studies including distinct histological types of PLGGs and a comprehensive molecular
characterization of tumors showing spontaneous regression are lacking.

9. Conclusions and Outlook

Recent in-depth molecular profiling and studies of the genetic landscape of pediatric
low-grade gliomas led to the discovery of the paramount role of frequent upregulation of
RAS/MAPK and mTOR signaling in the tumorigenesis and progression of PLGGs. The sub-
sequent clinical evaluation of molecular therapies targeting these pathways shows promis-
ing results, partly indicating superior response rates compared to established chemotherapy
regimens in randomized controlled trials [38]. Rapid implementation into the multimodal
treatment approach of these tumors may substantially improve quality of life, particularly
in patients suffering from unresectable tumors, multiple progressions, and a high risk of
disease-related morbidity and treatment sequelae. A comprehensive understanding of the
multilayered clinical and molecular factors determining the natural progression patterns of
these tumors may form the foundation for advanced stratification and provide guidance
for the management of these tumors within a multimodal treatment approach.

The discovery of the significant role of RAS/MAPK-driven OIS in these tumors may
provide an in-depth look into the molecular mechanisms of the indolent growth behavior,
versatile progression patterns, and a potential resistance of senescent compartments to
conventional chemotherapy-based treatment regimens. In this setting, the potential im-
plementation of senolytic agents may appear as a promising complementary treatment
approach. A recently published comprehensive analysis provides proof of principle for the
induction of apoptosis in senescent pilocytic astrocytoma cells by Bcl-xL inhibition [152].

The incremental discovery of the multi-layered cellular mechanisms, including molec-
ular alterations promoting aberrant RAS/MAPK and mTOR signaling, reversible complexly
regulated OIS, and a bidirectional dependence of these tumors on their tumor microenvi-
ronment, will shape an integrated mechanistic model of the underlying biology of these
tumors. This model needs to be incorporated into in vivo and in vitro models for preclinical
drug development and future studies of the biology of PLGGs.
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//www.mdpi.com/article/10.3390/cells13141215/s1, Table S1: Illustration of the frequent and less
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treatment based on the current European standard clinical practice recommendations for primary
pediatric low-grade gliomas. Reference [188] is cited in Supplementary Materials.
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