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Abstract
Objective Most recurrent glioblastoma (rGBM) patients do not benefit from immune checkpoint inhibition, emphasizing the 
necessity for response biomarkers. This study evaluates whether tumor in situ fluid (TISF) circulating tumor DNA (ctDNA) 
could serve as a biomarker for response to low-dose bevacizumab (Bev) plus anti-PD-1 therapy in rGBM patients, aiming 
to enhance systemic responses to immunotherapy.
Methods In this phase II trial, 32 GBM patients with first recurrence after standard therapy were enrolled and then received 
tislelizumab plus low-dose Bev each cycle. TISF samples were analyzed for ctDNA using a 551-gene panel before each 
treatment.
Results The median progression-free survival (mPFS) and overall survival (mOS) were 8.2 months (95% CI, 5.2–11.1) and 
14.3 months (95% CI, 6.5–22.1), respectively. The 12-month OS was 43.8%, and the objective response rate was 56.3%. 
Patients with more than 20% reduction in the mutant allele fraction and tumor mutational burden after treatment were sig-
nificantly associated with better prognosis compared to baseline TISF-ctDNA. Among detectable gene mutations, patients 
with MUC16 mutation, EGFR mutation & amplification, SRSF2 amplification, and H3F3B amplification were significantly 
associated with worse prognosis.
Conclusions Low-dose Bev plus anti-PD-1 therapy significantly improves OS in rGBM patients, offering guiding significance 
for future individualized treatment strategies. TISF-ctDNA can monitor rGBM patients' response to combination therapy 
and guide treatment.
Clinical trial registration This trial is registered with ClinicalTrials.gov, NCT05540275.
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Introduction

Glioblastoma (GBM) is the most malignant primary brain 
tumor and is prone to recurrence. Despite multidisciplinary 
treatments including surgery, radiotherapy, chemotherapy, 
targeted therapy, and supportive care, the overall prognosis 
remains poor [1–4]. Updated guidelines for the management 
of gliomas still encourage clinical trials for rGBM due to the 
limited efficacy of available salvage therapies at the time of 
tumor recurrence, with a median survival of only 6–8 month 
[5]. The search for novel therapeutic options to improve the 
prognosis of rGBM patients is ongoing, with research focusing 
on combining antiangiogenic agents with immunotherapy to 
enhance antitumor immune responses [6, 7].

Preliminary results have shown that immune checkpoint 
inhibitors combined with anti-angiogenesis drugs have a 
good safety profile in treating rGBM [8, 9]. Non-clinical stud-
ies have demonstrated that bevacizumab, an antiangiogenic 
targeted agent, can inhibit vascular endothelial growth fac-
tor, promote tumor vascular normalization, increase T cell 

infiltration, and reduce immunosuppressive cell activity, 
thereby improving immunotherapy efficacy [10]. Although 
bevacizumab combined with immunotherapy has been feasi-
ble and safe in treating other solid tumors, it has not improved 
OS of rGBM patients [11]. A complete response to concurrent 
anti-PD-1 and low-dose anti-VEGF therapy was reported in 
one patient with rGBM [12]. Therefore, larger clinical trials 
are needed to investigate whether low-dose Bev can promote 
immunotherapy responses.

Biomarkers are critical to maximizing therapeutic efficacy 
and minimizing toxicity in rGBM treated with low-dose Bev 
plus anti-PD-1 therapy [13–16]. Analyzing circulating tumor 
DNA (ctDNA) as an emerging biomarker in solid tumors faces 
technical challenges due to the specificity of GBM's location 
[17, 18]. The collection of TISF for ctDNA analysis has been 
reported by our research group multiple times, yet there is lim-
ited literature on ctDNA changes in rGBM after immunother-
apy combined with low-dose Bev treatment [17–20]. Thus, the 
feasibility of ctDNA as a biomarker in rGBM patients needs 
further investigation.

Fig. 1  Treatment schema and patient characteristics. A, Schematic 
showing the timing of treatment and tumor in situ fluid (TISF) collec-
tion. TISF was collected for ctDNA analysis pre-treatment and prior 
to each cycle of immunotherapy. B, The KPS scores of 32 patients 

with recurrent glioblastoma treated with anti-PD-1 antibody com-
bined with low-dose bevacizumab were significantly higher than 
those before treatment
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Combining tislelizumab with low-dose Bev in treating 
rGBM, we hypothesized that low-dose Bev treatment might 
improve the immunotherapy response. To assess ctDNA's 
efficacy for monitoring rGBM patients' response to combina-
tion therapy, we collected TISF samples at baseline and each 
subsequent immunotherapy cycle.

Methods

Study design and participants

This open-label phase 2 study (Clinical Trials ID: NCT 
05540275) recruited rGBM patients at Zhengzhou Univer-
sity People's Hospital (Zhengzhou University). From March 
28, 2022, patients received tislelizumab (200 mg) and beva-
cizumab (3 mg/kg) intravenously every 3 weeks until disease 
progression or intolerance. Magnetic resonance imaging 
(MRI) was performed at baseline and every 4–8 weeks there-
after. Tumor volume measurement and RANO 2.0 assess-
ment were performed using 3D slicer software (National 
Institutes of Health, Bethesda, USA) [21].

Eligible patients were aged 18–75 years with confirmed 
rGBM, a Karnofsky Performance Status (KPS) ≥ 70, and 
had undergone ≥ 1 prior systemic GBM therapy. Exclusion 
criteria included systemic glucocorticoid or other immuno-
suppressive therapy within 7 days after enrollment, known 
or suspected active autoimmune disease, active hepatitis B 
or C, HIV infection, extracranial metastases, significant lep-
tomeningeal disease, or tumors primarily in the brain stem 
or spinal cord.

Treatment Regimens

Primary GBM: Patients received concurrent chemoradio-
therapy (TMZ 75 mg/m2/d for 42 days) 4 weeks after sur-
gery, followed by TMZ (150 mg/m2/d every 4 weeks for 
5 days, repeated every 28 days for 6 cycles).

Recurrent GBM: Surgery was recommended. Patients 
who refused surgery were given bevacizumab (5 mg/kg 
IV) combined with TMZ (150 mg/m2/d orally for 5 days, 
repeated every 21 days for 6 cycles), followed by beva-
cizumab (3 mg/kg) and tislelizumab (200 mg IV) every 
21 days for six cycles.

Sample collection, DNA extraction, and library 
preparation

Tumor in situ fluid (TISF) samples were collected as pre-
viously described [18–20, 22]. A small amount of TISF 
(0.5–2 ml) was obtained by syringe from the implanted 

reservoir sac every 4 to 8 weeks (Fig. 1A). TISF is the fluid 
present in the local surgical cavity. ctDNA profiles from 
tumor tissue and TISF samples can be used to assess the 
dynamic evolution of the tumor in real time, while 5 ml of 
blood is collected as a germline DNA control.

Genomic DNA (gDNA) and cell-free DNA (cfDNA) were 
extracted from fresh tissue, formalin-fixed, paraffin-embed-
ded (FFPE) tissue, leukocytes, and TISF using kits (Kai 
Shuo, Thermo), according to the manufacturer's instructions. 
DNA was quantified using the Qubit dsDNA HS Assay Kit 
(Thermo, Fisher) and its quality assessed using the Agilent 
4200 TapeStation (Agilent).

Table 1  Summary table of patient characteristics

Characteristic Median (range) 
or number (%)

Age, median (range), y 52.5(49–65)
Sex
Female 17(53.1)
Male 15(46.9)
Histology
Glioblastoma 32(100.0)
Tislelizumab + low-dose bevacizumab was discon-

tinued
22(68.6)

Disease progression 21(95.5)
Drug-related toxicity 1(4.5)
Radiotherapy completed 18 (56.3)
Temozolomide received 32(100.0)
Reoperation 3(9.4)
MGMT promoter methylation status
Methylated 12(37.5)
Unmethylated 12(37.5)
Not reported 8(25.0)
Time from initial diagnosis to recurrence
Median (range), mo 5.5(1.6–10.4)
 < 1 year 23(71.9)
 > 1 year 9(28.1)
Karnofsky Performance Status at study entry
100 10(31.3)
90 8(25.0)
80 8(25.0)
70 6 (18.7)
 < 70 0
Karnofsky Performance Status at study entry
100 24(75.0)
90 0
80 2(6.3)
70 6(18.7)
 < 70 0
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Library sequencing and bioinformatics analysis

Qualified DNA libraries were sequenced using the Illumina 
NovaSeq6000 platform (Illumina, San Diego, CA) to gener-
ate 150 bp paired-end reads. Adapter trimming and filter-
ing of low-quality bases were performed using the software 
fastp (v.2.20.0). Reads were aligned to the reference genome 
(hg19, GRCh37 of UCSC) using BWA-MEM (v.0.7.17). 
Duplicate reads were removed using Dedup and Error Cor-
rect. SNVs/indels were called and annotated using VarDict 
(v.1.5.7) and InterVar, respectively, and screened for com-
mon SNPs from public databases (1000 Genome Project, 
ExAC). CNVs were analyzed using CNVkit (dx1.1) and 
fusion genes using factera (v1.4.4).

TMB calculation

To calculate the TMB using the 551-solid cancer-gene tar-
geted next-generation sequencing (NGS) panel, all base sub-
stitutions and indels in the coding region of targeted genes 
were summed, excluding synonymous alterations, alterations 
with AF < 0.02, and alterations listed as known somatic 
alterations in COSMIC.

Statistical analysis

The primary outcome was overall survival (OS, defined 
as time from enrollment to death or last clinical follow-
up). Secondary outcomes included OS rate at 12 months, 
progression-free survival (PFS, defined as time from treat-
ment initiation to first disease progression, death, or last 
follow-up imaging), and the objective response rate (ORR, 
defined as complete response plus partial response). The 
mutant allele fraction (MAF) was defined as the sum of all 
mutations detectable in each sample. Exploratory endpoints 
included drug safety and toxicity (Common Terminology 
Criteria for Adverse Events, CTCAE 5.0). The functional 
status of tumor patients was assessed using the Karnofsky 
Performance Status (KPS) scoring criteria. PFS and OS 

were analyzed using the Kaplan–Meier method, and the 
stratified Cox proportional hazards model was employed to 
calculate the hazard ratio (HR) and 95% confidence inter-
val (CI). Clinical response was assessed using RANO 2.0 
criteria, classifying responses as complete response (CR), 
partial response (PR), stable disease (SD), or progressive 
disease (PD) [23]. The Wilcoxon rank-sum test compared 
continuous variables between two groups, while Spearman's 
rank correlation estimated the correlation between two con-
tinuous variables. P < 0.05 indicated statistical significance. 
Statistical analyses were conducted using Prism 9.5 or R, 
version 4.2.1.

Results

Patient characteristics

Between March 28, 2022, and December 31, 2023, 32 rGBM 
patients were enrolled (Fig. 1A). The median time from diag-
nosis to relapse was 5.5 months (range, 1.6–10.3 months), 
with a median age of 52.5 years (range, 49–65 years), and 
53.1% (n = 17) were female (Table 1). KPS scores were sig-
nificantly higher after treatment with tislelizumab and low-
dose bevacizumab than before treatment (P = 0.038, Table 1, 
Fig. 1B).

At the data cutoff (December 31, 2023), with a median 
follow-up of 11.0 months (95% CI, 9.0–16.2), 22 patients 
(68.8%) had discontinued study treatment, primarily due to 
disease progression (n = 21, 95.5%) and study drug-related 
toxic effects (n = 1, 4.5%) (Table 1). All patients received 
at least one cycle of combination therapy, with a median 
of 4.5 cycles completed, allowing efficacy evaluation using 
RANO 2.0 criteria.

Circulating tumor DNA analysis

Despite challenges posed by the COVID-19 pandemic, at 
least one TISF or tissue sample from 31 patients was ana-
lyzed by ctDNA, with 19 samples containing before-and-
after controls. High-throughput sequencing of TISF using 
a custom panel designed for solid tumors was performed 
(Fig. 2A). TERT emerged as the most prevalent genetic 
mutation, consistent with previous studies [24].

To explore ctDNA levels and tumor mutational burden's 
prognostic predictive value, we calculated the mutant allele 
fraction (MAF) and tumor mutation burden (TMB) for 
all detectable mutations in each sample. Baseline ctDNA 
was detected in 78% of patients (n = 25), and ctDNA was 
detected at least once in 97% of patients (n = 31) (Fig. 2B and 
C). TISF or tissue samples were collected from 19 patients 
before and after treatment, with ctDNA levels elevated in 
9 SD patients and decreased in 10 patients (1 PD patient, 9 

Fig. 2  Patient treatment events and ctDNA outcomes. A, Oncop-
lot depicting the genomic alteration of 32 recurrent GBM patients 
at different time points. Plot of tumor variants identified from 551-
panel sequencing and tracked using ctDNA analysis for each patient. 
The top panel shows the total number of single nucleotide variants 
(SNVs) and copy number alterations (CNAs) tracked, and the left 
panel shows the number of patients with mutations in each gene. 
Only the most frequently mutated genes are displayed. B, Event 
chart showing time points for low-dose Bev + anti-PD-1 treatment, 
treatment response assessed according to RANO2.0 criteria, and the 
results of ctDNA testing for each patient with at least one TISF sam-
ple or tissue-sample time point analyzed. C, Proportion of patients 
with ctDNA detected in at least one TISF sample time point. Treat-
ment efficacy (PD progressive disease; PR partial response; SD stable 
disease)

◂
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PR patients) (Fig. 3A). TISF-ctDNA dynamic changes sig-
nificantly correlated with treatment response (P = 0.0001, 
Fig. 3A, B). There was a significant correlation between 
baseline ctDNA levels and tumor volume burden measured 
on imaging (P = 0.03, Fig. 3C). The COX risk regression 
model showed that RANO 2.0 response assessment (PR vs. 
PD/SD) was significantly associated with PFS and OS (PFS: 
P < 0.0001, HR: 25.3; OS: P < 0.0001, HR: 14.4), while 
MAF and TMB of ctDNA at baseline and post-treatment did 
not significantly correlate with PFS and OS (Fig. 3D). Inter-
estingly, 2 patients with ctDNA negative  (ctDNA-) before or 
after treatment had better prognosis (P12: PFS 6.0 months, 
OS 14.3 months; P27: PFS 15.6 months, OS 16.5 months). 
Among the 12 patients with high baseline TISF-ctDNA lev-
els (MAF > 5%), prognosis improved when gene mutations 
in TISF-ctDNA significantly changed post-combination 
therapy (PFS: P = 0.0002, HR: 0.12; OS: P = 0.0002, HR: 
0.08, Fig. 3E).

We also analyzed whether MAF and TMB changes could 
predict prognosis. Patients were divided into ctDNA/TMB 
response and non-response groups based on whether post-
treatment MAF and TMB decreased by 20% compared to 
baseline. Post-grouping analysis revealed that patients in 
the ctDNA/TMB response group (≥ 20%) had significantly 
better PFS and OS (ctDNA: PFS P = 0.0009, HR = 0.16; OS 
P = 0.008, HR = 0.10; TMB: PFS P = 0.0005, HR = 0.18, OS 
P = 0.008, HR = 0.17; Fig. 4A).

Oncogenic alterations correlated with fewer 
benefits from low‑dose Bev + anti‑PD‑1 therapy

We applied COX regression models to evaluate whether 
gene mutations were associated with low-dose Bev + anti-
PD-1 efficacy. Stratified analysis of baseline TISF-ctDNA 

revealed that MUC16 mutation (PFS: P = 0.03, HR = 2.90; 
OS: P = 0.004, HR = 4.20), H3F3B amplification (PFS: 
P = 0.025, HR = 3.38; OS: P = 0.038, HR = 2.87), and SRSF2 
amplification (PFS: P = 0.18, HR = 2.25; OS: P = 0.043, 
HR = 3.37) were significantly associated with worse prog-
nosis (Fig. 4B). Post-combination therapy TISF-ctDNA 
showed only EGFR mutations and amplification signifi-
cantly associated with poorer OS and PFS (PFS: P < 0.0001, 
HR = 7.64; OS: P = 0.001, HR = 5.41; Fig. 4B). Interest-
ingly, none of the eight samples with primary tumor tissue 
or pre-recurrent TISF had detectable H3F3B amplification 
(Fig. 4C), suggesting H3F3B amplification emerged dur-
ing the period of standard therapy and was associated with 
resistance and relapse.

Two patients demonstrated H3F3B amplification's abil-
ity to track combination therapy response. Patient 21 had 
a near-complete imaging response at 6.4 months but pro-
gressed after being lost to follow-up for 3.1 months due 
to the COVID-19 pandemic (Fig. 5A). Patient 11 consist-
ently had H3F3B amplification detected during follow-up 
and progressed 1.7 months after starting therapy (Fig. 5B). 
These results suggest H3F3B amplification may lead to drug 
resistance by altering the tumor immune microenvironment, 
and ctDNA has potential to monitor combination therapy 
response in rGBM patients.

Finally, 8 patients experienced a second relapse after 
combination therapy, all from the ctDNA/TMB non-
response group. KEGG pathway enrichment analysis 
revealed significant increases in mutated genes associated 
with cell cycle and transcriptional misregulation pathways 
in ctDNA at second recurrence and significant decreases 
in genes associated with microRNAs in cancer pathways 
(Fig. 5C). More cohort studies are needed to verify these 
changes in detail, revealing the related mechanisms of low-
dose Bev + anti-PD-1 therapy and acquired resistance.

Patient outcomes and safety

Among all patients, 18 (56.3%) had PR, 9 (28.1%) had 
SD, and 5 (15.6%) had PD, with an ORR of 56.3%. The 
12-month OS was 43.8%. Patients who achieved PR had 
a median response duration of 13.4  months (95% CI, 
7.0–19.9). Median PFS and OS were 8.2 months (95% CI, 
5.2–11.1) and 14.3 months (95% CI, 6.5–22.1), respectively 
(Fig. 5D).

Observed toxicities included anemia (50.0%), fatigue 
(34.1%), hypokalemia (31.3%), increased alanine ami-
notransferase (31.3%), and decreased white blood cell count 
(25.0%). One patient experienced grade 4 acute pancreatitis, 
and another had tertiary toxicity with elevated ALT levels. 
No grade 5 adverse events occurred (Table 2).

Fig. 3  Analysis of ctDNA in patients treated with low-dose 
Bev + anti-PD-1. A, Spider plot of ctDNA levels before and after 
treatment with low-dose Bev + anti-PD-1 treatment. Patients are 
colored by RANO2.0 response, and the ctDNA allele fraction at each 
time point was divided by the pre-treatment allele fraction. In the one 
patient with ctDNA not detected prior to treatment, the pre-treatment 
limit of detection was used for normalization based on the number 
of mutations tracked and average sequencing depth as described in 
the methods. B, Fisher precise test analysis showed that changes in 
ctDNA levels were significantly correlated with treatment response. 
C, Correlation between baseline tumor burden measured by 3D slicer 
and baseline ctDNA mutant allele fraction (MAF). D, Forest plot 
depicting progression-free survival (PFS) and overall survival (OS) 
improvements for each variable in patients treated with low-dose 
Bev + anti-PD-1 therapy. The HRs and statistical significance of the 
difference were computed using the Cox proportional hazards model 
and Wald test. E, Kaplan–Meier curves showed that patients in the 
TISF-ctDNA significant changes group had significantly improved 
PFS and OS after receiving low-dose Bev plus anti-PD-1 therapy. 
Spearman's correlation coefficient, 95% confidence interval, and 
P-value are displayed on the graph

◂
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Fig. 4  Oncogenic alterations correlated with fewer benefits from low-
dose Bev + anti-PD-1 therapy. A, Kaplan–Meier curves showed that 
patients in the ctDNA response group had significantly improved 
PFS and OS after receiving low-dose Bev plus anti-PD-1 therapy. B, 

Kaplan–Meier curves depict PFS and OS improvements in patients 
with partial gene wild-type mutations on low-dose Bev + anti-PD-1 
therapy. C, Copy number changes in H3F3B amplification in 8 rGBM 
patients throughout treatment
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Discussion

In this study, 32 rGBM patients received tislelizumab plus 
low-dose Bev, hypothesizing that low-dose bevacizumab 
would normalize vascular conditions and facilitate immu-
notherapy, using TISF-ctDNA as a biomarker to track treat-
ment response and gene evolution [8, 9]. The observed ORR 
of 56.3% significantly benefited patients, exceeding the 7.8% 
ORR for GBM with nivolumab in the CheckMate 143 trial 
[13]. This study is the first to perform biomarker analysis in 
rGBM patients treated with this combination therapy.

Standard-dose bevacizumab combined with anti-PD-1 has 
been confirmed effective in other solid tumors [28–31], but 
efficacy in rGBM is poor [32]. Bevacizumab, a humanized 
monoclonal antibody inhibiting VEGF, enhances tumor-
specific immune response by promoting immunosuppressive 
tumor microenvironment, normalizing vascular structure, 
increasing T cell infiltration, and activating local immune 
microenvironment [12, 33–36]. The 2021 ASCO Annual 
Meeting reported no benefit of low-dose Bev + anti-PD-1 
compared with standard Bev for rGBM, and standard Bev 
can help older rather than younger patients [32]. Therefore, 
it is essential to find suitable biomarkers that guarantee to 
maximize the therapeutic effect [37]. However, TMB and 
PD-L1 expression has not predicted anti-PD-1 monother-
apy efficacy in rGBM [38–41]. Although single time-point 
MAF and TMB expression did not correlate with response 
to low-dose Bev plus anti-PD-1, dynamic changes predicted 
response. Two patients with ctDNA negative  (ctDNA-) 
before or after treatment had better prognosis, and patients 
with high baseline ctDNA levels (MAF > 5%) had better 
prognosis with significant post-treatment TISF-ctDNA gene 
mutation changes. This facilitates screening high-risk recur-
rence patients and timely treatment regimen adjustments.

CtDNA is a promising biomarker in solid tumors (lung, 
breast, prostate, colorectal, melanoma, glioma) [17, 42, 43], 
used for early cancer detection, treatment selection, MRD 
detection, recurrence surveillance, and treatment response 
monitoring [44], used for early cancer detection, treatment 
selection, MRD detection, recurrence surveillance, and treat-
ment response monitoring [44, 45]. Based on this research, 
early treatment of high-risk postoperative recurrence GBM 
patients (i.e., ctDNA recurrence) is planned.

Specific oncogenic alterations can disrupt the cancer 
immune cycle and influence immunotherapy efficacy [46, 
47]. We identified various oncogenic alterations posing 
higher risk and reducing low-dose Bev + anti-PD-1 therapy 
benefits, including MUC16 mutation, EGFR mutation, 
H3F3B amplification, and SRSF2 amplification. MUC16 
mutations confer immune evasion and resistance to immuno-
therapy in tumors [25, 48, 49]. SRSF2 expression correlates 

with cancer progression in malignant ovarian tissues [27]. 
Histone H3.3 point mutations are frequently observed in 
pediatric high-grade glioma (pHGG) [50–53]. But associ-
ated copy number variation in glioblastomas has not been 
reported. Amplification of H3F3B associated with aortic 
dissection disease may explain resistance to low-dose beva-
cizumab + anti-PD-1 treatment [26, 54]. EGFR mutation 
and amplification are poor prognostic markers for glioma 
[4]. EGFR signaling pathway plays crucial roles in cancer 
immune evasion [55], with SEC61G as an EGFR-coampli-
fied gene promoting GBM immune evasion [56]. Even with 
low-dose Bev combined with anti-PD-1, these oncogenic 
alterations hinder immunotherapy effectiveness. MUC16 
mutations, EGFR mutation, SRSF2 amplification, and 
H3F3B amplification accounted for 24, 20, 12, and 40% of 
patients, respectively, providing practical value for patient 
selection.

This study's limitations include the limited data size and 
all participants were Chinese. Future genomic data from 
cohorts with low-dose bevacizumab plus anti-PD-1 therapy 
are needed to validate identified biomarkers. Validation 
using a combination therapy dataset could demonstrate 
intrinsic associations between biomarkers and antitumor 
immunity, affirming their predictive value for immunostim-
ulatory chemotherapy and anti-PD-1 therapy benefits. 
Technological advancements are needed to reduce genome 
sequencing costs and ensure speedy analysis for clinical 
application.

By performing high-throughput sequencing on samples 
from 97% of patients, we identified four oncogenic risk 
alterations as reliable biomarkers for low-dose bevacizumab 
plus anti-PD-1 therapy outcomes in rGBM patients. These 
findings provide a basis for individualized treatment and 
future biological studies of its immuno-oncology character-
istics, inspiring biomarker exploration of low-dose bevaci-
zumab + anti-PD-1 in other cancer types.

Conclusions

Anti-PD-1 antibody combined with low-dose bevacizumab 
can significantly prolong PFS and OS in rGBM patients 
without significant adverse reactions, improving quality 
of life and providing a new effective treatment for rGBM. 
TISF-ctDNA dynamic changes can predict the treatment 
response, identify drug resistance mechanisms, monitor 
high-risk recurrence (ctDNA molecular recurrence) popu-
lations, and provide a basis for early intervention decision 
making. TISF-ctDNA characterizes in vivo gene evolution 
in rGBM patients treated with anti-PD-1 antibody combined 
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with low-dose bevacizumab, providing molecular informa-
tion for drug resistance mechanism studies in rGBM.
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