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Abstract
Genomics allows the tracing of origin and evolution of cancer at molecular scale
and underpin modern cancer diagnosis and treatment systems. Yet, molecular
biomarker-guided clinical decision-making encounters major challenges in the
realm of individualized medicine, consisting of the invasiveness of procedures
and the sampling errors due to high tumor heterogeneity. By contrast, medi-
cal imaging enables noninvasive and global characterization of tumors at a low
cost. In recent years, radiomics has overcomes the limitations of human visual
evaluation by high-throughput quantitative analysis, enabling the comprehen-
sive utilization of the vast amount of information underlying radiological images.
The cross-scale integration of radiomics and genomics (hereafter radiogenomics)
has the enormous potential to enhance cancer decoding and act as a catalyst
for digital precision medicine. Herein, we provide a comprehensive overview
of the current framework and potential clinical applications of radiogenomics
in patient care. We also highlight recent research advances to illustrate how
radiogenomics can address common clinical problems in solid tumors such as
breast cancer, lung cancer, and glioma. Finally, we analyze existing literature to
outline challenges and propose solutions, while also identifying future research
pathways. We believe that the perspectives shared in this survey will provide a
valuable guide for researchers in the realm of radiogenomics aiming to advance
precision oncology.
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1 INTRODUCTION

In 2020, it is estimated that there were approximately
19.3 million new cancer cases and nearly 10.0 million
cancer-related deaths worldwide.1 Cancers can arise from
various cell types and organs in the human body. They are
characterized by uncontrolled cell proliferation, confirmed
to be caused by random somatic genomic abnormalities.
Through the accumulation of heritable genetic mutations,
and the interactions with the surrounding microenviron-
ment, as well as natural selection from cancer therapies,
advantageous mutations can accumulate over time, while
deleterious ones are eliminated.2 This evolutionary pro-
cess enables cancer to develop phenotypes that promote
survival and reproduction, leading to tumor progression,
metastasis, and treatment resistance.3,4
However, obtaining molecular information through

invasive tissue sampling not only carries the risk of com-
plications, posing dilemmas for pretreatment decision-
making and posttreatment patient monitoring, but is also
quite time consuming. Meanwhile, the spatial heterogene-
ity within tumors causes a challenge for targeted therapies
guided by regional sampling results. These therapies may
only be effective against a subset of cancer cells, leaving
other cancer subclones unaffected and potentially accel-
erating their growth, resulting in tumor evolution and
recurrence. Besides, the high cost of advanced sequenc-
ing technology has limited its widespread use in clinical
settings, making it particularly difficult for patients in
medically disadvantaged areas to access easily.
Medical imaging represents a distinct and highly acces-

sible method for acquiring tumor data compared with
tissue sequencing. It allows for a macroscopic mapping
of tumor cells, the microenvironment, and even the tis-
sue surrounding the tumor at the voxel level, using
noninvasive or minimally invasive multimodal imaging
techniques. In recent years, computer technology has
been integrated into medical imaging, enabling the high-
throughput extraction of quantitative features from med-
ical images. Advanced machine learning (ML) and deep
learning (DL) algorithms are then employed to analyze
these features, facilitating a more effective assessment of
large amounts of imaging data. In contrast to traditional
imaging assessment methods, radiomic features offer a
more objective and robust approach to capture tumor het-
erogeneity and reveal clinically significant higher-order
signatures that are not discernible to the human eye.5
Radiomics have been utilized to construct radiomic mod-
els, which have
Shown superior performance in noninvasive tumor

stratification and prognosis assessment.6 Radiomics has
emerged as a valuable addition to multiomics of cancer.
Radiogenomics, a new concept combines “radiomics”

and “genomics,” has gained increasing attentions.7,8 It

involves the integration of advanced medical image anal-
ysis and multiomics data of tumors. Its goal is to uncover
the relationship between radiomics and bio-omics to pin-
point relevant biomarkers and build elaborate markers of
disease and physiology and integrate multiple omics data
for tumor diagnosis, classification, treatment decision, and
prognosis.
In this review, we delineated the principal compo-

nents of radiomics and genomics in oncology at the
methodological level, elucidating their interconnections
and integration mechanisms within the framework of
radiogenomics with the aim of deconstructing the com-
prehensive landscape of radiogenomics. We also examine
recent advancements in the application of radiogenomics
to prevalent cancers such as glioma, lung cancer, and
breast cancer, demonstrating its significant potential to
address common clinical challenges. Finally, we highlight
the currentmethodological challenges and limitations and
discuss prospective directions for future research in the
field.

2 RADIOMICS IN ONCOLOGY

Radiomics is the high-throughput mining of quantita-
tive image features from standard-of-caremedical imaging
that enables data to be extracted and applied within
clinical-decision support systems to improve diagnostic,
prognostic, and predictive accuracy.5,6 In the following, we
present three perspectives to illustrate the types of tumoral
radiomic features obtained through various methods that
can be utilized in a radiogenomics framework (Figure 1).

2.1 Features frommultimodality images

Multimodality imaging technologies, such as digital radio-
graphy, computed tomography (CT), magnetic resonance
imaging (MRI), nuclearmedicine imaging such as positron
emission tomography (PET), and others have been evolv-
ing for more than a century. These technologies employ
different principles to capture various physical and chemi-
cal properties of tissues, offering a diverse range of imaging
sequences. The radiomic features extracted from these
multimodal images are often complementary, providing a
multidimensional representation of tumors biology.

2.2 Features frommultiscale of regions

Medical images acquired at different scales contain diverse
biological information. Tumor-level features, derived from
both intratumor and peritumor regions, have been exten-
sively utilized to characterize tumor heterogeneity. In
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F IGURE 1 Schematic diagram illustrates the comprehensive integration of radiomics with omics data for precise cancer care. The first
step involves collecting data resources, including imaging and biological samples. From these resources, various dimensions of radiomic
features and molecular signatures of cancers are extracted and refined. Ultimately, radiomics and omics data are interconnected and
integrated using advanced artificial intelligence algorithms to construct accurate clinical prediction models.

addition, Subregion segmentation of cancers allows for
multihabitat evaluation. However, it is important to note
that cancer is not solely a localized disease; its occur-
rence, progression, and prognosis are often linked to the
host organ or even the overall body condition. Radio-
genomic studies have recently started incorporating the
entire host organ, demonstrating predictive capabilities
beyond tumor-level profiling.9,10 Anatomical multiscale
radiomics enables a comprehensive assessment of cancer
as a complex disease.

2.3 Approaches for feature extraction

2.3.1 Classical radiomics

Classical radiomic features are widely utilized hand-
crafted features that are extracted from preprocessed
images using predefined programs and specifications
(such as pyradiomics) to describe radiographic aspects
of shape, intensity, and texture.11 These features are
derived from specific algorithms, which enhances their
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interpretability to some extent. Radiomic features are
able to capture intratumor heterogeneity more effectively
than the human eye, which is believed to explain the
superiority of radiomics over traditional image analysis
methods.

2.3.2 Deep learning

DL techniques were used to automatically learn fea-
ture representations from medical images, eliminating
the need for manual feature detection. DL methods
offer several advantages such as reducing the need for
preprocessing steps, enabling collaborative analysis of
large volumes of high-dimensional data, and provid-
ing superior problem-solving capabilities. DL also allows
for multitasking, including tumor segmentation, classi-
fication, and prognosis.12–14 Meanwhile, DL algorithms
continue to evolve quickly and drive DL-based radiomics
forward.

2.3.3 Priori hand-crafted radiomics

In recent studies, new hand-crafted radiomic features have
been extracted batchwise as biomarkers for cancers, such
as brain structure connectomics, tumor location, and the
tumor field effect.15–18 These features differ from classi-
cal ones in that they incorporate clinical prior knowledge,
enabling them to capture specific pathophysiological infor-
mation. Thismakes themadvantageous for specific clinical
tasks, particularly when dealing with limited amounts of
data during model training.

3 GENOMICS IN ONCOLOGY

Generally, genomics is the study of all genes and DNA
sequences of an organism. However, in the context of
radiogenomics, the term “genomics” is often broadened to
include the analysis of RNA, proteins, and other critical
biomarker data that can reflect the origin and progres-
sion of tumor cells at the molecular level.7 Genomics
should not be considered in isolation but rather in conjunc-
tion with transcriptomics, proteomics, metabolomics, and
other “omics” disciplines.19,20 Consequently, this review
aligns with the prevailing academic perspective by inte-
grating multiomics approaches within the framework of
cancer radiogenomics. This integration is essential for
radiogenomics to deliver a comprehensive biological and
imaging-based understanding of tumors.

3.1 Genomics from tumor tissue
sampling

Obtaining samples directly from tumor tissues, includ-
ing surgical resection, biopsy, and fine-needle aspiration,
is the most commonly used method of pathology sam-
pling for genomics.21 In recent years, molecular pathology
has played a pivotal role in facilitating precise diagnosis
and informed treatment decisions for cancer, leveraging
techniques such as immunohistochemical staining, in situ
hybridization, and gene sequencing.22,23 Furthermore, the
integrated analysis of multiomics data based on high-
throughput sequencing platforms, gene chips, and mass
spectrometry, enables a more comprehensive elucidation
of cancer mechanisms and aids in the discovery of novel
biomarkers for early cancer detection, prognosis assess-
ment, and the identification of therapeutic targets.19,24
Notably, the recently proposed spatial genomics tech-
nology holds the potential to unravel the intricacies of
tumor heterogeneity, promising to localize and define
tumor boundaries, subclones, and microenvironments at
the molecular level.25

3.2 Genomics from liquid biopsy

Liquid biopsy has recently emerged as a promising sam-
pling method for obtaining multiomics information from
tumors. It primarily relies on blood samples to capture
circulating tumor DNA, circulating tumor cells (CTCs),
and exosomes present in the bloodstream, and detect
the tumor-derived multiomics biological information they
carry. Liquid biopsy offers several advantages, including
being noninvasive, highly reproducible, enabling early
diagnosis, facilitating dynamic monitoring, and over-
coming tumor heterogeneity.26,27 Despite being in its
infancy, liquid biopsy holds promise for promoting radio-
genomics by furnishing highly time-critical and continu-
ously observable biomolecular data (Figure 1).

4 RADIOGENOMICS

4.1 Radiogenomics for precisive
oncological molecular prediction

Investigating the association between radiomics and
molecular biomarkers, with the aim of substituting inva-
sive biomarkers with noninvasive and timely imaging
markers for pre- and post-treatment clinical decision-
making, plays a crucial role in radiogenomics (Figure 2).
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F IGURE 2 Potential enhanced clinical workflow with radiogenomics interventions. Radiogenomics offers the potential to noninvasively
predict key molecular characteristics, including their temporal and spatial heterogeneity, at the initial diagnosis and posttreatment
monitoring stages of cancer. This can help in discovering therapeutic targets, enhancing cancer prognosis, and predicting treatment response.
Ultimately, radiogenomics can guide precision diagnosis and treatment of cancers, enhancing patient outcomes.

4.1.1 Prediction prior to treatment

Prior knowledge of tumor molecular subtypes before
treatment is crucial for improved decision-making in can-
cer care and is increasingly recognized as essential for
neoadjuvant therapy (NAT).28,29 Biopsy, the current gold
standard, is inevitably invasive and prone to sampling
errors due to tumor heterogeneity. Noninvasive Imag-
ing, particularly with the emergence of radiomics, has
demonstrated potential in predicting molecular subtypes
throughout the entire tumor landscape, can provide a criti-
cal foundation for precise cancer treatment. In addition, by
correlating with key biomolecules and pathways, biospe-
cific radiomics features are likely to be more efficient and

interpretable for determining tumor-targeted treatment
response and prognosis.

4.1.2 Spatial heterogeneity landscaping

The spatial heterogeneity of tumor molecules within
tumor subregions and among metastases has been exten-
sively documented.30,31 The accuracy of biopsy results
has been questioned due to the limited amount of tis-
sue sampled. While multipoint biopsies and Sequenc-
ing may address this limitation, they also increase risks
of complications. Predicting the spatial distribution of
key molecules in tumors through radiogenomics has
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potential to improve the reliability and representativeness
of tissue sampling, reduce associated risks, and even guide
precision radiotherapy.

4.1.3 Molecular monitoring after treatment

Adaptive changes in the tumor genome from anticancer
therapy are a key driver of treatment resistance.32 Real-
time monitoring of these changes could underpin timely
therapy adjustment and new targeted development. How-
ever, biopsy-based molecular monitoring is often delayed
and risky for repeated tests. Radiogenomic monitoring of
tumor genomes noninvasively shows promise for preci-
sion medicine’s timely implementation based on dynamic
genomic shifts.

4.2 Radiogenomics for risk
stratification and prognosis evaluation

Numbers of key biomarkers for tumor treatment and prog-
nosis have been identified and partially implemented into
clinical practice. However, even with the latest findings
it is difficult to predict tumors perfectly. Radiomics’ uni-
versality, noninvasiveness, and ability to observe biological
information at the tumor and even organ level make it a
powerful complement to currentmolecular typing systems
for cancer, which is expected to further facilitate precise
and individualized treatment (Figure 2).

4.2.1 Prognosis stratification

Cancer outcomes, such as remission, progression, compli-
cations, death, and altered quality of life, are of paramount
concern. Accurate prognosis stratification help to inform
patients about the future course of disease and to guide
doctors and patients in joint decisions on further treat-
ment, as well as to facilitate of clinical research to develop
new treatment options. The integration of multidimen-
sional biological information, such as radiogenomics,
promises a more comprehensive path to accurate
prognosis.

4.2.2 Prediction of response to therapy

Advances in radiochemotherapy, targeted therapy, and
immunotherapy has provided additional options for tumor
treatment. These treatments elicit diverse responseswithin
the patient population and are accompanied by varying
degrees of side effects. Tumor genomics and other inva-

sive biomarkers are utilized to stratify patients and select
appropriate candidates for therapy. However, the limita-
tions of regional biopsies hinder the accurate prediction of
treatment benefit based on molecular information. Radio-
genomics is expected to leverage the respective strengths
of molecular markers and imaging to facilitate precision
oncology decision making.

5 APPLICATION OF
RADIOGENOMICS TO CANCER CARE

To provide a comprehensive overview of the advancements
in radiogenomics acrossmultiple facets of cancer care, this
review focuses on the recent evidence from the past 5 years
in three highly researched cancer types: glioma, lung can-
cer, and breast cancer (Tables 1–3). We also briefly outlined
the recent evidence of radiogenomics in other cancers
(Table 4). Additionally, we discuss the current challenges
and future directions for further investigation.

5.1 Glioma

Gliomas are heterogeneous entities, which characterized
by specific gene alter.105 Although some gliomas are benign
and have a favorable prognosis, the majority, particularly
glioblastoma, are highly fatal.106 This is not only due
to the direct impact of the tumor on the structure and
function of the brain, but also because of the risk of seri-
ous complications during invasive procedures against the
lesion.107–109 Refining medical decisions with precision for
optimal outcomes at minimal cost is vital. Medical imag-
ing plays a pivotal role in assessing gliomas noninvasively.
Radiogenomics holds significant potential in predicting
the molecular subtypes of gliomas preoperatively and
stratifying patients’ prognosis.
Isocitrate dehydrogenase (IDH) mutation and 1p19q

chromosome codeletion serve as the key determinants for
the classification of adult diffuse glioma.105 These genetic
alterations not only indicate distinct prognoses but also
guide diverse treatment strategies. In several large-scale
studies,12,13,18,42 radiomic models have shown the ability to
predict IDH or 1p19q status either independently or within
a comprehensive framework for adult diffuse glioma. DL
models often exhibit superior performance than classi-
cal radiomics, even when applied to the same dataset.
In particular, Van et al.’s DL model achieved high accu-
racy in externally validating molecular predictions, while
also in performing multitask of tumor grading and seg-
mentation. This highlights the significant advantages of
high-performance and multitasking capabilities in DL,
especially when trained with ample data. Utilizing a single
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model to predict subtypes of IDH and 1p19q offers greater
accessibility compared with predicting them individually.
Cluceru et al.39 concluded that a three-class model for
subtyping has superior generalization capability compared
with a two-tiered approach. This may be attributed to
the significant reduction in training cases during the sec-
ond step of the two-tiered pattern, whereas the three-class
approach incorporates all data for model training.
Conventional MRI is superior in displaying anatomical

structures, while other advanced imaging techniques, such
as diffusion-weighted imaging and perfusion-weighted
imaging, have been developed to display or amplify
microenvironmental information, providing multidimen-
sional data for molecular prediction of tumors. Radio-
genomic studies have shown improved accuracy and
stability of the model, although further external vali-
dation data are still required.39,110,46,111,50 In addition to
tumor signal, features from tumor location, which have
been shown to correlate with IDH status and are less
influenced by image acquisition and measurement vari-
ability, as well as brain network connectome,112 which can
identify disrupted white matter tracts and reveal hidden
tumor invasion, have also been incorporated into radio-
genomic models to enhance accuracy and generalization
in predicting IDH status.15,18
Substitution of lysine 27 to methionine in histone H3

(H3K27M) characterizes a subset of highly malignant
pediatric gliomas that are unresectable and exhibit rapid
progression with a dismal prognosis.105 This has been
proven to be a significant prognostic factor for overall
survival, irrespective of age, tumor location, or histopatho-
logical grading in midline gliomas.113,114 Radiomic models
utilizing Conventional MRI have achieved area under
the receiver operating characteristixc curves (AUCs) rang-
ing from 0.78 to 0.85 in identifying H3K27M in midline
glioma.115,116 Moreover, the integration of brain struc-
tural connectomics or diffusion-weighted imaging has
shown the ability to further enhance the precision of the
models.16,40 Zhou et al.43 have recently demonstrated the
efficacy of radiomicmodels based on amide proton transfer
weighted MRI, an emerging functional imaging tech-
nique, in predicting H3K27M in pontine gliomas, with an
accuracy of 0.86 in an independent prospective cohort.43
Although current radiogenomic predictions for H3K27M
still lack multicenter external validation, these findings
hold great promise, particularly with the application of
multimodal imaging techniques.
O6-methylguanine-DNA-methyltransferase (MGMT)

promoter methylation serves as a significant molecular
marker for assessing the therapeutic efficacy of alkylating
agents like temozolomide, which is a first-line chemother-
apy drug for glioma.117 Despite numerous attempts to
construct radiogenomic models for the prediction of

MGMT status, either the results were far from satisfactory
or lacked adequate external validation.118 The most recent
systematic review indicates substantial heterogeneity in
the results of MRI radiomics models for predicting the
methylation status ofMGMT in grade IV gliomas, with low
performance observed in external validation.119 Two large-
scale external validations of previous research findings
published in 2022 and 2023 also demonstrate that these
MRI-based radiomics models are still insufficient in accu-
rately predicting MGMT in gliomas prior to surgery.120,38
A radiogenomic model based on PET indicated higher
accuracy (AUC = 0.80 in cross-validation) in predicting
MGMT status, but further validation was required.47
Nonetheless, it is worth exploring the use of multimodal
images based radiomics to enhance prediction accuracy.
Interestingly, the co-occurrence of IDH mutation and
MGMT methylation characterizes a subtype of gliomas
with a favorable prognosis and potential benefits from
temozolomide, and this can potentially be predicted using
radiomic models.37
Other molecular markers, such as alpha-thalassemia

mental retardation X-linked (ATRX), telomerase reverse
transcriptase (TERT), EGFR, tumor protein 53(TP53),
cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B),
proto-oncogene B-Raf and v-Raf murine sarcoma viral
oncogene homlog B (BRAF), cyclin D1 (CCND1), and
cyclin-dependent kinases 6 (CDK6), have also emerged
as crucial factors in glioma classification, prognosis, and
targeted therapy121,122 and have become focal points for
radiogenomic investigations.46,123,36,34,44,33,124–127,41 How-
ever, currently, there is insufficient evidence to support
the clinical application of radiogenomic models for these
markers. Notably, Zinn et al.51 developed a radiomics
model to predict the expression level of periostin in
glioblastoma, and importantly, they confirmed the causal
relationship between radiomics subtypes and molecu-
lar expression through simultaneous radiomics analysis
on orthotopic xenografts. As new molecular markers for
gliomas are gradually integrated into clinical practice,
further efforts are needed to establish substantial evi-
dence regarding the application of radiogenomics to these
relatively rare markers.
Thanks to microarray and next-generation sequenc-

ing technologies, oncology research has made significant
strides in comprehensively analyzing the molecular land-
scape of cancer cells and the tumor microenvironment,
which goes beyond merely detecting specific genetic alter-
ations. Several radiogenomic studies have revealed the
intense associations between radiomic phenotypes and
multiomics molecular subtypes and the tumor immune
microenvironment (TIME).71−73 Hu et al.128 attempted to
correlate radiomics with the genetic status of various sub-
regions of the tumor. They collected 48 image-guided
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biopsies from 13 glioblastomas and confirmed the spa-
tial heterogeneity of genetic subtypes within the tumor,
which correlated with radiomic features. Several studies
have found correlations betweenMR radiomics prognostic
phenotypes and specificmolecular signaling pathways and
intercellular communication in gliomas.129,52,48,53 Recent
studies have defined new phenotypic subtypes of gliomas
based on radiomics or radiogenomics and found signif-
icant differences in survival, immune infiltration, and
drug susceptibility among these subtypes, providing a bet-
ter understanding of the molecular basis of phenotypic
characterization of gliomas.130,55 These findings reveal the
underlying biological mechanisms behind radiomic mod-
els and may be used to identify potential therapeutic
targets for gliomas.53 In particular, Beig et al.45 investigated
the radiogenomic associations of MRI-based phenotypes
with transcriptomic data in male and female patients.
Their aim was to identify the signaling pathways that
drive sex-specific tumor biology and treatment response in
glioblastoma.
Radiomics is believed to capture tumor heterogene-

ity and provide additional biological information beyond
the tumor, making it a valuable complement to molecu-
lar biomarkers used in clinical practice.131,132 Whether in
low-grade gliomas, high-grade gliomas, or overall diffuse
gliomas, radiogenomic models showed superior perfor-
mance in stratifying patient prognosis compared with
classical radiomic or molecular-clinical models.9,52,133 By
integrating genetic data such as IDH and MGMT status
with radiomics, radiogenomicmodels canmore accurately
differentiate postoperative recurrence from pseudopro-
gression and assess the efficacy of chemotherapy.134,54

5.2 Lung cancer

Lung cancer is one of the most frequently diagnosed
cancers and the leading cause of cancer-related deaths
worldwide.135 While surgical resection remains the pre-
ferred treatment modality, advancements in chemoradio-
therapy, targeted therapy, and immunotherapy have sig-
nificantly enhanced patient outcomes and quality of life,
particularly in advanced non-small cell lung cancer.136–138
Furthermore, NAT has demonstrated its role in improv-
ing resectability, delaying recurrence and progression, and
prolonging survival in select lung cancer patients.139 How-
ever, the efficacy of these therapies varies across differ-
ent populations. Molecular characteristics offer valuable
insights into prognosis and therapeutic benefits,140 yet the
clinical application of these biomarkers obtained through
tissue biopsy is limited. Given the widespread use of chest
CT and PET/CT in the preoperative assessment of lung
cancer, radiogenomics holds promise in addressing the

limitations of molecular markers, enabling better patient
stratification, and facilitating treatment decision-making.
Epidermal growth factor receptor (EGFR) gene muta-

tions are the most prevalent targeted driver mutations
in lung cancer.141 Constant updates are being made to
EGFR-tyrosine kinase inhibitor (TKI) targeted therapy reg-
imens in order to combat drug resistance.142 The choice of
therapeutic agent has always relied on the accurate iden-
tification and subtyping of EGFR mutations.143 Radiomic
models have shown good to excellent performance in pre-
dicting EGFRmutations in lung cancer.144,145,68 DLmodels
appear to outperform classical radiomics,146,147 and their
combination may yield even better results.62 Notably, an
internationalmulticenter studywith a large cohort of cases
developed a DL model based on the entire lung, which
achieved an AUC of 0.812 in predicting EGFR status in
lung cancer and successfully stratified progression-free
survival in patients treated with EGFR-TKI. Furthermore,
correlationswere found between radiomic phenotypes and
multiple genotypes, as well as gene pathways associated
with drug resistance and cancer progression mechanisms,
providing compelling evidence for the use of radiomics
in predicting EGFR mutations.148 Taking it a step fur-
ther, Wang et al.62 developed a radiomics-DL joint model
to determine EGFR mutation subtypes, including 19Del,
L858R, and other mutations. Additionally, Yang et al.63
constructed a radiomic model may aid in predicting the
acquired drug-resistant mutation T790M following tar-
geted therapy for lung cancer, suggesting the potential
application of radiogenomic models in optimizing EGFR-
targeted therapy decisions.
ALK fusion is another key therapeutic target in lung

cancer,149 and Song et al.’s CT-based DL model yielded
an AUC of 0.85 in external validation. The model also
showed promising performance in predicting response to
ALK-TKI therapy, which was further validated.66 Regard-
ing Kirsten rat sarcoma viral oncogene homologue (KRAS)
mutation, radiomic models based on low-dose CT scan
and PET-CT have shown good predictive performance.
However, additional validation using external data is
necessary.60,150
Over the past decade, immunotherapy has emerged as

a pivotal breakthrough in the treatment of lung cancer,
revolutionizing the therapeutic landscape.151 Despite the
significant advancements made in targeting immune
checkpoints, particularly the programmed death receptor
1/programmed death ligand 1 (PD-1/PD-L1) axis, a sub-
stantial proportion of patients fail to derive benefits from
PD-1/PD-L1 inhibitors.151 Although CT-based radiomic
models have been developed to predict PD-L1 expression
in non-small cell lung cancer, with AUCs ranging from
0.66 to 0.95, their performance in external validation has
been suboptimal. Nonetheless, these models have
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demonstrated correlations with prognosis and
immunotherapy response.57,61,62,67 Mu et al.68 con-
structed PET/CT-based radiomic prediction models for
PD-L1 expression and EGFR mutation, and subsequently
established treatment decision guidelines based on these
models, along with Eastern Cooperative Oncology Group
performance status scores. The clinical utility of these
radiogenomic models was validated in external data,
showcasing their effectiveness in guiding the selection of
patients for TKIs and immune checkpoint inhibitors (ICIs)
therapy.68,152 In another study, a DL model was developed
to predict tumor mutational burden (TMB), achieving an
AUC of 0.8169 and was further validated in stratifying sur-
vival outcomes following immunotherapy. Additionally,
several studies have demonstrated associations between
radiomic subtypes and immunophenotypes, such as CD8
expression and cytolytic activity score, as well as response
to immunotherapy70,153
For some rare molecular alterations of lung cancer,

radiogenomic studies are restricted by data size. A few
studies tried to simultaneously predict multiple molecu-
lar subtypes through radiomics based on CT or PET/CT
to reflect more realistic clinical scenarios. However, exter-
nal data are still required for validation.59,154 Notably, for
the first time, one of these studies discovered that the
utilization of transformer algorithms, commonly used in
large language models (LLMs), for constructing radio-
genomic models outperformed those based on neural
networks. Furthermore, robust correlations have been
observed between radiomic features, genomic features,
and tumor recurrence as well as response to neoadjuvant
immunotherapy in lung cancer.58,65,64 A comprehensive
profiling of these radiogenomic associations contributes to
improved decision-making and the identification of novel
therapeutic targets.
Recently, some studies have attempted to establish

radiogenomics models to achieve better prognostic strat-
ification of lung cancer, by combining radiomics with
transcriptome, or CDK4 and TMB status.155,156 Besides,
Ju et al.71 investigated the interaction between genomic
and radiomic features and successfully achieved nonin-
vasive prediction of lymph node metastasis in NSCLC.
These studies show the clear potential of the integration
of complementary multiscale information from imaging
and genes in the stratification of prognosis and treat-
ment response in lung cancer. Notably, by liquid biopsy,
de Miguel-Perez et al.157 verified that dynamic expression
of plasma extracellular vesicle PD-L1 in the early stage
of treatment correlated with sustained response to ICIs,
and that radiogenomics modeling in conjunction with CT
radiomics could further enhance the specificity, sensitivity,
and accuracy of the model.

5.3 Breast cancer

Breast cancer is the most prevalent malignancy among
women worldwide, and the characterization of its molec-
ular markers has significantly contributed to the devel-
opment of increasingly sophisticated diagnostic and treat-
ment approaches.158 In particular, the utilization of NAT,
immunotherapies, and novel targeted therapeutic options
has underscored the importance of accessing tumor
biomarkers in a noninvasive manner.159 Radiogenomics,
which combines genetic and radiomic data, enhances
genomics by providing voxel-by-voxel biological informa-
tion for a heterogeneous tumor, enabling tailored ther-
apy. Specifically, multiple imaging modalities, including
mammography, ultrasound, MRI, CT, and PET/CT, are
employed for diagnosis and treatment, thereby offering
multidimensional data for accurate assessment of breast
cancer.160
Breast cancer is commonly classified into four sub-

types based on the expression of estrogen receptor (ER),
progesterone receptor (PR), human epidermal growth fac-
tor receptor 2 (HER2), and Ki-67, namely Luminal A,
Luminal B, HER2-enriched, and triple-negative breast
cancers (TNBC).159 Ultrasound-based DL models have
shown good performance in identifying these subtypes
and distinguishing between luminal and nonluminal
diseases.81,86 However, classical radiomic features have
shown limited predictive efficacy forHER2.161 On the other
hand, mammography-based radiomic models have shown
promising results in predicting the hormone receptor and
HER2 status of breast cancer.88,77,162 Zhang et al.87 devel-
oped a multimodal DL model using a large cohort that
combined ultrasound and mammogram data. This model
achieved an accuracy of 0.84 in the internal test set and an
AUC of 0.92 for predicting luminal disease from nonlumi-
nal disease, significantly outperforming clinicians.
MRI is also used in radiogenomics to differentiate

molecular subtypes; yet, there are few studies with large
cohorts and external validation.MRI-based radiomicmod-
els have been shown to successfully predict HER2 expres-
sion and pathologic complete response (PCR) of neoadju-
vant chemotherapy (NAC) and disease-free survival.163,72
Someother studies have reported that radiomicmodels can
identify ER, PR, Ki-67 expression, or differentiate luminal
A from other immunohistochemical subtypes, but all of
them have only been internally or cross-validated.75,76,79,164
However, it has been observed that transfer learning
can partially compensate for the lack of training data in
DL, and ML algorithms may outperform DL algorithms
when data are limited. Additionally, incorporating fea-
tures from the peritumor region and perfusion imagesmay
improve the predictive ability of the model. Jiang et al.74
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validated in an external dataset that MRI-based radiomic
models could identify TNBC and distinguish internal sub-
types of TNBC with favorable performance. Furthermore,
an association was found between peritumoral radiomic
features and immune suppression and upregulated fatty
acid synthesis. Fan et al.85 developed a radiomic model
based on multiple hemodynamic subregions by referenc-
ing the unsupervised segmentation of intra- and extratu-
mor regions on dynamic contrast-enhanced images, which
outperformed the simple whole-tumor radiomic model in
prediction of immunohistochemical subtypes, suggesting
additional benefits obtained by delving deeper into intra-
tumor heterogeneity from images. Interestingly, the new
DL algorithm generates adversarial networks can synthe-
size realistic breast MRI images for training of radiomics
models to predict breast cancer genotypes and mutational
states.165Hormone receptor and/or HER2 status discor-
dance after neoadjuvant treatment is a relatively common
phenomenon and may require adjustments in post-NAT
strategies.32 Liu et al.73 constructed a radiomic model
to predict post-NAT discordance based on multimodality
MRI. Although the sample size was small and external
validation data were lacking, the results suggest that radio-
genomics may provide guidance for retesting molecules
and posttreatment alterations in the biology of cancer.
PAM50 subtyping of breast cancer, as opposed to

immunohistochemical subtypes, offers superior stratifica-
tion for disease progression, prognosis, and therapeutic
resistance.166 However, the clinical application of genomic
assays is limited due to their high cost. To address this
issue, a cost-effective solution was proposed in the form
of a deep transfer learning model that utilizes dynamic
contrast-enhanced images to predict PAM50 subtypes.76
Additionally, Liang et al.167 attempted to establish complex
many-to-many associations between ultrasound radiomics
and genomic features to screen for key radiomic and
genomic features, providing clues for biological interpre-
tation of radiomics and targeted therapeutic decisions.
Gallivanone et al.168 conducted a study correlating the
MR radiomic phenotype of breast cancer withmicroRNAs,
mRNAs, and regulatory networks to develop a radiomir-
nomic map. They found that the radiogenomic model
provided better discrimination of breast cancer subtypes
compared with miRNA or radiomics alone.
TIME is a crucial element in the progression and metas-

tasis of breast cancer.169 PD-L1 and tumor-infiltrating
lymphocytes are strongly associated with immune eva-
sion by tumors and serve as vital biomarkers for the
effectiveness of ICIs.170 MRI-based radiomic models have
been shown to predict PD-L1 expression, tumor microen-
vironment phenotypes based on immune cell infiltration
and omics.83,80,78,82,171 Lv et al.84 screened for genome-
related imaging features to construct interpretable imaging

phenotypes that could predict different molecular fea-
tures, including hormone receptor, epithelial growth fac-
tor receptor, and immune checkpoint protein expression.
While still in the early stages, radiogenomics shows poten-
tial in enhancing noninvasive preoperative evaluation of
the TIME and supporting the clinical implementation of
immunotherapy.
Prediction of NAC response in breast cancer is a hot spot

in radiogenomics. The addition of baseline MRI radiomics
to molecular markers did not significantly improve the
prediction of PCR after NAC.172 However, radiomic mod-
els based on longitudinal MRI have shown improved
predictive performance in comparison with molecular
subtyping.173,174 Similarly, a radiogenomic model combin-
ing five variant allele frequency features of nonsynony-
mous mutation sites and baseline MRI was able to predict
PCR to NAC in TNBC patients, and a potential relation-
ship was found between two high-frequency mutations
and epidoxorubicin resistance.91 Huang et al.175 devel-
oped a radiogenomic model incorporating MRI features,
ER expression, and Ki-67, which achieved an AUC of
0.94 in predicting tumor shrinkage patterns after NAC
andmaintained good predictive performance across differ-
ent molecular subtypes. Recently, Radiogenomic models
that united radiomics and transcriptomics were demon-
strated to predict axillary lymph node metastasis as well
as and response to drug therapy, while gene pathway
enrichment analyses showed significant differences in sig-
naling pathway activation across risk groups.93 DCE-based
radiomics, reflecting intratumor and peritumor hemody-
namic heterogeneity, in conjunction with genomics to
constitutes a radiogenomics model also showed signif-
icant potential in predicting PCR and poor prognosis
in TNBC patients.92These studies demonstrated the sig-
nificant potential of radiogenomic models in predicting
treatment response. Furthermore, radiogenomic models
that incorporate CT, molecular subtyping, and clinical
features from multicenter cohorts have shown promise
in predicting immunotherapy response in breast cancer
patients.90

5.4 Other cancers

In recent years, significant advancements have been
achieved in the field of radiogenomics for various types
of cancers. For example, CT-based radiomic models have
been developed to predict specific gene mutations in
clear cell renal cell carcinoma (ccRCC), such as VHL,
Polybromo-1 mutation, and Loss 9p21.3.102,176 Radiomic
models have also been used to differentiate omics-based
lipid metabolism or TIME subtypes and correlate them
with patient survival.100,101Unsupervised clustering of
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radiomic and transcriptomic features of ccRCC allows
for the identification of intrinsic subtypes which exhibit
unique clinicopathological, prognostic, immunological,
and molecular features, and this is expected to facili-
tate personalized diagnostic and treatment decisions.177
Besides, It has been found that a radiogenomic model
provided more accurate predictions of overall survival in
kidney cancer compared with using radiomics alone.102
Additionally, CT-based DL models have been leveraged
to predict the mutation status of the RAS gene and DNA
mismatch repair in colorectal cancer.94,95 Furthermore, a
radiomic model based on PET images has shown promise
in predicting tumor mutation burden and its correlation
with prognosis.96 Zhong et al.99 showed that radiomic
features were associated with tumor genome subcloning,
and radiogenomic signatures could serve as independent
predictors of prognosis in patients with colorectal can-
cer. In the case of liver metastases commonly found in
colorectal cancer, radiomic scores have been used to deter-
mine RAS and BRAF mutation status, as well as CD73
expression.98,97 For thyroid cancer, CT radiomic models
could predict the status of cytokeratin 19, galectin 3, thy-
roperoxidase, and high-molecular-weight cytokeratin.178
Recent studies showed radiomics features of prostate can-
cer and its bone metastases correlate with liquid biopsy
monitoring of CTCs, free DNA, and genes related to apop-
tosis, hypoxia, and androgen receptor expression.103,104
The potential of radiogenomics in cancer diagnosis and
prognosis is immense; however, further works are war-
ranted to explore its full scope, applicability, and clinical
application.

6 CURRENT CHALLENGES AND
FUTURE DIRECTIONS

Despite the reported successes of radiogenomics, sev-
eral limitations and hurdles need to be addressed before
widespread clinical adoption.

6.1 Stability and repeatability

The stability and repeatability of radiogenomic models
is a key factor in their clinical translation. However,
radiomic features are prone to instability caused by various
factors, even though they sensitively characterize tumor
heterogeneity.179 Moreover, most of the results are based
on retrospective studies with small sample sizes, which
introduces bias in the data inclusion and analysis process.
This makes it difficult to apply the findings to other cen-
ters and actual clinical scenarios. To mitigate these issues,
standardization algorithms can be applied to reduce varia-

tions in medical images between machines and centers.180
Besides, selecting stable features for constructing radio-
genomic models is crucial.181 In addition, improving the
transparency and explainability of radiogenomics mod-
els helps to detect model hallucinations and biases and
make adjustments before they are put into complex clinical
scenarios.182
More importantly, training the model using representa-

tive heterogeneous data with rigorous external validation
rigorous external validation, especially inmulticenter real-
world settings. We also need to assessing the general
applicability of the model across different populations,
because potential variation may exist in the efficacy of
radiogenomic models due to differences in training data
or biological factors between populations, such as race
and gender.183 This variation can potentially lead to social
injustices. Therefore, it is important to effectively control
bias in the training data and adequately assess and spec-
ify the scope of model applicability.184 Finally, the open
source of radiogenomics modeling code and the sharing
of resources may facilitate the reproduction and further
validation of modeling results by other researchers.

6.2 Explainability and interpretability

Although there are arguments that explainability of arti-
ficial intelligence (AI) is impractical, while rigorous val-
idation of model efficacy and robustness is even more
important.185 However, we still believe that explainabil-
ity of medical AI is critical and worth working towards.
As radiogenomicsmodels have become progressively com-
plex to achieve greater predictive power, explainability
decreased. DL is considered a “black box,” causing concern
that it may make mistakes in complex clinical scenar-
ios that exceed expectations, which can have a significant
impact on medical decision-making. As a tool, it is impor-
tant for medical professionals to understand the scope of
its use, the mistakes it can make, and the corresponding
solutions.186 In radiogenomics, there are different ways
to achieve explainability and interpretability of models.
One is in the feature extraction stage, where algorithms
are used to extract features that reflect specific biolog-
ical information about the cancer, and the association
of this information with the prediction task is compre-
hensible, making the models constructed from features
carrying biological information highly interpretable. For
example, traditional radiomic features are used to quan-
tify tumor morphology, signal intensity, and heterogeneity
information,187 and brain network features reflect dam-
age to white matter fiber tracts.16 DL model construction
guided by biological information also has higher inter-
pretability than directmodels.188 Second, some researchers
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have evaluated the model results by feature attribution
(e.g., Shapley Additive Explanation), attention-based (e.g.,
Class ActivationMap), and example-basedmethods to ver-
ify whether the model has an understandable inference
mechanism.120,189 These initiatives allow researchers to
detect and control how radiogenomics models are per-
formed, ensuring that they are always aligned with our
clinical goals.

6.3 Data hunger

Radiogenomics increasingly craves for adequate matched
images and multiomics data support. Molecular data on
cancer are inherently limited due to its clinical importance,
acquisition costs, and patient affordability. Fortunately,
the availability of large-volume omics and image data
through increasing open datasets in recent years has
facilitated the development of radiogenomics.190 The Can-
cer Imaging Archive (TCIA) and The Cancer Genome
Atlas (TCGA) are leading the way. TCIA is an extensive
repository of medical images, including CT, MRI, and dig-
ital histopathology images, specifically curated for cancer
research,while TCGAhas cataloged genomic, epigenomic,
transcriptomic, and proteomic data from thousands of can-
cer patients across more than 30 different cancer types.
Importantly, their data are correlated. For many of the
patients included in TCGA, corresponding imaging data
are available in TCIA, allowing researchers to correlate
omics and other molecular profiles with radiomics. TCIA
and TCGA have supported numerous high-impact radio-
genomic studies that have led to new insights into cancer
biology, improved diagnostic techniques, and the devel-
opment of targeted therapies. Additionally, the privacy
and data protection efforts of both TCIA and TCGA are
exemplary for other data-sharing projects.191–193
Besides, cross-institutional and even international col-

laborations are also significant in providing sufficiently
heterogeneous data. Yet the distribution of costs and ben-
efits of research and concerns about privacy are major
obstacles. The establishment of equitable and mutually
beneficial cooperative agreements to share research data,
equipment and scientific findings facilitates reliable and
stable partnerships. By adopting data anonymization tech-
niques, such as differential privacy and federated learning,
potential risks related to patient privacy during data
sharing can be minimized.194–196
Additionally, evenwith widely used imagingmodalities,

imaging data can be incomplete due to inconsistent imag-
ing protocols or poor data management. Furthermore,
the imbalance in data exacerbates the impact of overall
insufficient data, making it challenging to train effective
predictivemodels. Data augmentation algorithms and gen-

erative AI can be used to generate high-quality synthetic
data to compensate for unbalanced or incomplete data,
enabling more effective model training.197,198 Moreover,
the utilization of DL algorithms such as transfer learning
and self-supervised learning holds the potential to fully
leverage pretrained base models or large amounts of unsu-
pervised data, resulting in high-quality predictive models
despite limited target samples.15,199,200

6.4 Spatiotemporal registration in
radiogenomics

The spatial and temporal genetic heterogeneity of can-
cers has been extensively studied and well documented.
While imaging has shown potential in identifying these
heterogeneities in some preliminary studies, there are still
significant challenges in the field of radiogenomics, par-
ticularly in obtaining sufficient spatially and temporally
based molecular data and aligning them with images.
The ability to perform virtual biopsies of multiple regions
or lesions and continuously monitor molecular changes
within tumors is still a major challenge in terms of exper-
imental design and execution. Fortunately, advances in
spatiotemporal omics and liquid biopsy technology hold
promise for the acquisition of spatiotemporal molecular
data of cancers, and may present significant opportunities
for decoding of spatiotemporal heterogeneity of cancers
using radiogenomics.

6.5 Diversity of radiology

The key to radiogenomics lies in identifying valuable
features that can accurately predict clinical outcomes.
Although DL models automatically learn representations
of image features and show superior results to classical
radiomics in various tasks, hand-crafted radiomics carry
advantages including less data dependency, the ability to
incorporate clinical prior knowledge, and higher inter-
pretability. By integrating DL with radiomics, we can fully
leverage the potential of imaging data. Furthermore, data
obtained frommultiple anatomical scales andmultimodal-
ities can providemultidimensional features that enable the
characterization of cancer molecules and prognosis, with
the potential to amplify the signals of specific molecules
and microenvironment components.
Medical images commonly used are typically designed

and generated for human visual interpretation. However,
when it comes to radiomics, it is important to consider the
differences between computer vision and human vision.
These traditional forms of inputmay not always be optimal
for achieving accurate and consistent outputs. A notable
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example is the need for quantization processing on medi-
cal images in classical radiomics, which is often performed
prior to feature extraction. In recent years, the emergence
of MR fingerprint technology has enabled the translation
of current visual and qualitative MRI diagnostic criteria
into a quantitative acquisition and analysis framework.201
Additionally, raw data obtained from imaging equipment
may contain biological information that can be utilized
for computer processing, as opposed to medical images
that have undergone graphical manipulations to enhance
readability.50 By altering the approach to image collection
and processing,making themmore suitable forML,we can
further advance the development of radiogenomics.

6.6 Multimodal AI

Finally, the integration and analysis of multiple types of
medical data are considered crucial for advancing pre-
cision oncology. It is necessary to introduce multimodal
ML algorithms capable of handling various data types
to replace the linear regression methods commonly used
for combining radiomic and molecular data. Additionally,
the medical community has been inspired by LLMs and
derived multimodal AI agents, which have gained signif-
icant attention.202,203 In recent studies, multimodal LLMs
can simultaneously interpret text and images to generate
reports, closely mimicking current diagnostic pathways in
radiology.204It is foreseeable that multimodal LLMs can
be integrated in a variety of real-world medical support
scenarios including preoperative biomarker profiling of
tumors with images, and postoperative clinical decision
making based on radiogenomics, in a natural language-
based interaction. This process can be based on specific
predictive capabilities obtained after targeted training, or
the ability to call appropriate validated radiogenomics
models autonomously, as possessed by the AI agent. In the
future, AI agents based onmedical foundationmodelsmay
represent an ideal form of efficient automated precision
medicine. These agents can assist in integrating patients’
medical data and invoking appropriate validated special-
ized models for tasks such as patient counseling, disease
classification, prognosis, and decision-making.205

7 CONCLUSIONS AND PROSPECTS

Recent high-quality studies provide compelling evidence
of its clinical utility by bridging fundamental research
findings with precision medicine applications. Although
there are still non-negligible problems to overcome in
radiogenomics. For example, themassive amounts of high-
quality imaging and biomolecular data for constructing

strong enough radiogenomics models are still insufficient.
Accurate matching of imaging genomics and multiomics
data in time and space still faces great challenges at the
technical level.
Nationally driven large-scale public databases and col-

laborative projects, as well as the development of gener-
ative AI for virtual data synthesis, are expected to greatly
facilitated development by consistently providing access to
heterogeneous imaging and genomic data at scale. Incor-
porating structural, functional, and molecular radiomic
at various anatomical scale levels and multiomics infor-
mation from tissue and liquid samples enables more
comprehensive and time-critical tumor characterization,
understanding, and prediction, providing determining
basis for precision oncology. Advances in AI algorithms,
such as attention mechanisms, transfer learning, and self-
supervised learning, are striving to utilize variable-quality
but highly accessible data to break through the limita-
tion of insufficient high-quality data. What is more, with
the help of multimodal LLMs, it is expected to facili-
tate the efficient implementation of the latest results of
radiogenomics into the existing clinical workflow.
Above all, standards for rigorous model evaluation are

essential to assess validity, generalizability and clinical
applicability. The promise of radiogenomics still warrants
more real-world validation and evaluation of its efficacy
in diverse populations to ensure that these technolo-
gies are equitably delivering benefits to patients. Only
through such evaluation can radiogenomic models be
reliably applied to improve patient outcomes. Continued
research efforts are moving the field closer to realizing
radiogenomics’ full potential for precision oncology.
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