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Abstract

The convergence of digital pathology and artificial intelligence could assist histopathol-

ogy image analysis by providing tools for rapid, automated morphological analysis. This

systematic review explores the use of artificial intelligence for histopathological image

analysis of digitised central nervous system (CNS) tumour slides. Comprehensive

searches were conducted across EMBASE, Medline and the Cochrane Library up to June

2023 using relevant keywords. Sixty-eight suitable studies were identified and qualita-

tively analysed. The risk of bias was evaluated using the Prediction model Risk of Bias

Assessment Tool (PROBAST) criteria. All the studies were retrospective and preclinical.

Gliomas were the most frequently analysed tumour type. The majority of studies used

convolutional neural networks or support vector machines, and the most common goal

of the model was for tumour classification and/or grading from haematoxylin and eosin-

stained slides. The majority of studies were conducted when legacy World Health Orga-

nisation (WHO) classifications were in place, which at the time relied predominantly on

histological (morphological) features but have since been superseded by molecular

advances. Overall, there was a high risk of bias in all studies analysed. Persistent issues

included inadequate transparency in reporting the number of patients and/or images

within the model development and testing cohorts, absence of external validation, and
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insufficient recognition of batch effects in multi-institutional datasets. Based on these

findings, we outline practical recommendations for future work including a framework

for clinical implementation, in particular, better informing the artificial intelligence com-

munity of the needs of the neuropathologist.

K E YWORD S

artificial intelligence, central nervous system tumours, digital pathology, histopathology, medical
image analysis

INTRODUCTION

Benign and malignant tumours of the central nervous system (CNS)

encompass over 100 distinct entities. CNS tumours (both malignant

and non-malignant) are the most common tumour site in children (0–

15 years), and the second most common tumour site in adolescents

and young adults (15–39 years).1 The diagnostic pathway for CNS

tumours involves multidisciplinary input, with the integration of clini-

cal, demographic, imaging and pathological parameters. Pathological

assessment, in particular, is the gold standard for precise, evidence-

based classification of CNS tumours, with the 2021 World Health

Organisation (WHO) Classification of Tumours of the CNS acting as

the current reference for taxonomic classification.2

The emergence of artificial intelligence (AI) has the potential to

provide tools for automated, rapid analysis of medical data, improving

diagnostic workflow efficiency. AI refers to the use of machines (com-

puters) to solve complex tasks that typically require human cognition

and analysis. Within the diagnostic pathway for CNS tumours, the

application of AI to radiological image analysis has been reviewed,

with demonstrable benefits in predicting tumour grade and molecular

profile.3 Similarly, DNA methylation profiling by AI-based classifiers

(machine learning algorithms) has become a well-established tool for

classification based on epigenetic parameters.2,4 However, the poten-

tial benefits of AI in interpreting histopathological features on slides

of CNS tumour specimens remain unclear. In other solid organ

tumours, AI-based algorithms have successfully detected breast, pros-

tate and oesophageal cancer in histopathological image analysis; sub-

typed lung and kidney cancers; and classified cancers of unknown

origin.5–10 Advances have also been made in histopathological tasks

where interobserver variation exists, such as Gleason grading of pros-

tate cancer and in time-consuming tasks, such as determining and

counting mitotic figures in tumour cells.6,11 Indeed, some of these

capabilities are available as FDA-approved products (e.g. Paige AI for

prostate cancer detection).12 Unique challenges, however, exist in

CNS tumour classification from slide image analysis algorithms,

namely the large number of tumour subtypes and the frequent over-

lap of morphological phenotypes across diagnostic entities, in particu-

lar in many low-grade glial and glioneuronal tumour types. It remains

unclear whether these unique challenges have been accounted for in

the existing literature.

A systematic analysis of AI-based histopathological image analysis

of CNS tumours is lacking despite a growing body of relevant litera-

ture. The objective of this study is to survey the scope of AI employed

in histopathological slide image analysis of CNS tumours, with the goal

of identifying future directions in this field.

METHODS

The review was conducted according to the Preferred Reporting Items

for Systematic Reviews and Meta-Analysis (PRISMA) guidelines and

prospectively registered with the International Prospective Register of

Systematic Reviews (PROSPERO) database of systematic reviews

(registration ID: CRD42023434059).13

We systematically interrogated the EMBASE, Medline and

Cochrane Library databases up to June 2023 to identify studies utilis-

ing AI in the histopathological image analysis of CNS tumour tissue. A

combination of MeSH terms and relevant keywords were used in the

search strategy, including AI, machine learning, deep learning, brain

neoplasms, pathology and computer-assisted image processing

(Table S1). We limited the scope of the review to include studies focus-

sing on conventional, clinically well-established histopathological image

analysis (i.e. haematoxylin and eosin (H&E) and/or immunohistochemi-

cally stained tissue) and excluding studies exploring experimental (cur-

rently unvalidated) techniques such as Raman spectroscopy. We

excluded studies not published as full-text articles in English.

Full-text articles meeting the inclusion criteria were indepen-

dently assessed by two investigators (MPJ and ZQ). Information

extracted from each study included the following: publication year;

study stage; purpose of the AI algorithm; tumour type studied; use of

H&E staining and/or immunohistochemical markers; characteristics

and source of the training and testing datasets; data pre-processing

techniques; details of internal and external validation; feature extrac-

tion and dimensionality reduction techniques; code availability;

Key points

• This review explores the use of AI for image analysis of

central nervous system tumour slides.

• The field is at an early stage and poorly aligned with

current diagnostic challenges.

• Practical recommendations for future work are outlined.
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summary of the AI algorithm and model architecture; interpretability

considerations; and AI model outcome measures.

Risk of bias assessment was performed by two investigators (MPJ

and ZQ) using the Prediction model Risk of Bias Assessment Tool

(PROBAST).14 A narrative synthesis was conducted to provide a com-

prehensive summary of the study characteristics, AI techniques

employed, and key findings.

RESULTS

The literature search identified 68 studies meeting the eligibility cri-

teria for inclusion (Figure 1).15–82 All studies were retrospective and

preclinical (Tables 1 and S2, and Figure 2). Studies were published

between 1995 and 2023, half of which were published from 2020

onwards (Table 1 and Figure 2).

CNS tumour types

Gliomas were the most frequently analysed tumour type (52 studies)

(Table 1 and Figure 2). Although glioblastoma was analysed in

33 studies, only eight out of 28 studies published post-2016 specified

isocitrate dehydrogenase (IDH) gene mutation status (as per recom-

mended classification systems).2 Eight studies examined medulloblas-

toma in the paediatric population.26,27,29,31,51–53,73 Nine studies

investigated meningiomas.16,33–35,41,46,58,61,62 Brain metastases from

the breast, lung or melanoma were analysed in four studies.39,43,58,60

Ependymomas (subtype not specified) were investigated in three

studies.34,43,73 CNS lymphoma was investigated in one study.43 The

exact CNS tumour type studied was unclear in one study.65

Dataset characteristics

One study utilised a mouse model of disseminated malignancy, and all

other studies utilised human tissue.60 The studies utilising human tis-

sue covered adult and paediatric populations, ranging in size from 4 to

1185 patients and 10–97,252 digitised images (Figure 2). All studies

were retrospective and cross-sectional (i.e. samples were analysed at

a single point in time; rather than over several points in time as in lon-

gitudinal analyses). The most commonly used dataset was derived

from The Cancer Genome Atlas, used in model development for

31 studies and external validation for two studies (Table 1 and

F I GU R E 1 Preferred reporting items for systematic reviews and meta-analysis (PRISMA) flow diagram outlining study selection process. The
primary search strategy yielded 1072 results, of which 68 studies were suitable for inclusion in the systematic review.
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Figure 2). The number of cases ranged from 52 to 1185, whereas the

number of images varied from 200 to 3611. The Guwahati Neurologi-

cal Research Centre was another recurrently used dataset, albeit con-

strained by smaller sample sizes, with a maximum of 204 images or

20 patients included.26,27,31,51,52 Six studies did not report the source

of their datasets.19,46,58,59,63,65 One study used a dataset with a simu-

lated population derived from published literature.28 Only two studies

conducted exploratory analyses to examine the impact of sample size

on the predictive performance of the model, aiming to address the

challenge of requiring extensive labelled data for model training.

Among them, only one study discussed methodologies for sample-size

determination, employing inverse power law functions.36

AI algorithm usage

AI algorithms can be classified into classical machine learning and deep

learning. Classical machine learning algorithms tend to be computation-

ally simpler and advantageous when dealing with structured data, such

as tabular data. Deep learning algorithms are computationally complex

and are suitable for analysing complex data such as images and natural

language. In Figure 3, we summarise key algorithm types used by

included studies, and whether they fall under the classical machine

learning or deep learning type. The most frequently employed classical

machine learning algorithms were support vector machines, which iden-

tify the best margin of separation between data points of different clas-

ses in high-dimensional space (Figure 3), featured in 21 studies. The

most frequently employed deep learning algorithms were convolutional

neural networks, which employ hierarchical operations to process data

and identify important features in an image (Figure 3), and featured in

30 studies. Classical machine learning algorithms dominated the land-

scape in earlier years, being the choice for 90% of studies published

before 2013 (Table 1 and Figure 2). In contrast, deep learning algorithms

were more frequently (67.2%) used in studies published after 2013.

Data pre-processing

Data pre-processing pipelines help render raw data suitable for training

AI models. Eighteen studies, especially those utilising publicly available

datasets, implemented quality control measures such as removing

images with inferior resolution or processing artefacts. Image augmen-

tation describes the technique of artificially expanding the training

dataset to enhance model generalisability and mitigate class imbal-

ances. This was implemented in 20 studies through a range of tech-

niques, including flipping, rotating and geometric transformations, with

some benefits for model performances.38,68 Image normalisation, a pro-

cess whereby image pixel values are standardised to a common scale

to ensure model training efficiency, was described in 17 studies, using

a variety of methods including contrast adjustment, colour adjustment

and normalisation techniques to overcome inconsistencies in the stain-

ing process.4,17,23,29,38,42,45,48,59,63,64,68,72,76–80 Four studies used pre-

developed, open-source image pre-processing pipelines, two of whichT
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used the Python Whole Slide Image (WSI) Pre-processing pipeline

from https://github.com/deroneriksson/python-wsi-preprocessing, which

performs a range of manoeuvres including colour correction, image til-

ing and tissue identification.38,64,68,78 Furthermore, dimensionality

reduction, the technique of reducing input features whilst retaining

essential information from the training data, was primarily utilised in

studies adopting classical machine learning algorithms. This was car-

ried out to enhance training efficiency and reduce the risk of overfit-

ting variables (whereby a model performs well on the training dataset

but this is not recapitulated on an independent external dataset). Deep

learning typically does not involve explicit dimensionality reduction

because of its intrinsic capacity to learn hierarchical features from raw

data. Therefore, dimensionality reduction was only performed in one

study utilising a deep learning algorithm.78

Image analysis goal

The reviewed studies encompassed a range of image analysis goals

(Figure 2). For each goal, we describe the performance metrics used

and whether model interpretability was considered. Model interpret-

ability involves discerning the model’s primary contributing features

to comprehend the model’s decision-making process. It is crucial for

trusted clinical integration, protecting against errors during model

training and potentially revealing new insights through the recognition

of previously undiscovered patterns.

GOAL 1: IMAGE GENERATION

Tissue image generation was the focus of two studies, aiming to

develop tools for dataset augmentation and education.80,81 Both stud-

ies adopted Turing tests (i.e. asking pathologists to assess whether the

images were artificially generated or real) to show that distinguishing

real from synthetic images was somewhat challenging (in both studies

just over half of the images were deemed ‘real’).

GOAL 2: MORPHOLOGY RECOGNITION

Eleven studies focussed on the identification and analysis of morpho-

logical features, particularly microvascularity quantification and necro-

sis detection in glioblastomas.15–25 Microvascular characteristics such

as vessel circularity and area were considered in one study; however,

determining whether vessels were normal or pathological was not

explicitly performed.18

The area under the receiver operating characteristic curve (AUC)

was the most commonly used performance measure (see Figure 3 for

F I GU R E 2 Summary results of included studies, including study design, clinical and dataset characteristics, and artificial intelligence algorithm
type and goal.
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https://github.com/deroneriksson/python-wsi-preprocessing


F I GU R E 3 Development pipeline for artificial intelligence in digital histopathology, with relevant definitions (not an exhaustive list; see
Goodfellow et al. 2016 for a detailed review).
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a detailed definition and graphic of AUC).15–18,22–25 Two studies did

not report performance measures.19,20 In one study, the AI model

performed similar to human observers, particularly in detecting

microvascular proliferation (AUC 0.994), geographic necrosis (AUC

0.994) and palisading necrosis (AUC 0.964).15 However, given the

rapidity at which pathologists can screen slides for these features

and the relatively short time it takes to diagnose common CNS

tumours (such as glioblastoma, meningioma, and most instances of

ependymoma, astrocytoma and oligodendroglioma), the time- and

cost-benefit analysis of implementing AI for this purpose is debat-

able. Interpretability was investigated in five studies, most of which

involved direct visualisation of learned imagery features.15–17,20,24

However, only two of these studies conducted comparisons with

human pathologist’s opinions.15,24

Features guiding the model were identified, including the obser-

vation that cells in IDH-mutant cases were larger and more circular

versus wild-type counterparts; however, the clinical relevance of

these features was not explored in the context of existing literature.20

GOAL 3: IMMUNOHISTOCHEMISTRY
DETECTION AND QUANTIFICATION

Six studies focussed on AI-mediated quantification of immunohisto-

chemical staining.35,57–59,61,62 Among them, five studies quantified

cellular proliferation hotspots using Ki67 immunohistochemistry and

performed grading as per the WHO 2007 classification sys-

tem.35,58,59,61,62 In one study, AI was used to quantify CD276 immu-

nohistochemically labelled cells, a putative glioblastoma stem cell

marker.57 The algorithm’s intricacy demanded a labour-intensive train-

ing process, involving the manual labelling of 31,947 cells across eight

WSIs. Subsequent external validation using an independent cohort

revealed a quoted accuracy of 97.7%; however, the cohort was small

relative to the number of cells in the training process (12,211

CD27-stained cells only). As such, the clinical applicability (and general

utility) of the model is highly questionable, given the extensive human

labelling process required to capture sufficient variance in the data.

Model outputs were commonly compared with that of human

pathologists or conventional image analysis software, and concor-

dance was demonstrated using measures of correlation such as Spear-

man’s rho.58,59,61 The AI model was demonstrated to have less

variability compared to manual annotations between pathologists for

Ki67 quantification in only one of these studies.58 In this study, the

algorithm was adopted to align Ki67-stained WSIs to H&E staining,

facilitating automated region of interest selection and reducing inter-

observer variability for Ki67 quantification.58

GOAL 4: NUCLEUS SEGMENTATION

Nucleus detection was performed in four studies.60,63–65 Sikpa and

others applied nucleus detection to quantify breast metastatic disease

in the brain using an animal model with disseminated cancer spread,

serving as an indicator of disease burden.60 However, whether the

results would be translatable to humans is unclear; the model used

(representing hundreds of micrometastasis in the mouse brain) is not

representative of the typical human counterpart (a single large metas-

tasis). In Nalisnik et al., an AI nucleus detection model was employed

to quantitatively characterise glioma microvascular structures, such as

hypertrophy and hyperplasia.64 Increased hyperplasia was found to

be associated with higher grades within each molecular subtype

(IDH-wild-type astrocytoma, IDH-mutant astrocytoma and oligoden-

droglioma). A regression analysis model was trained using these phe-

notypes across 781 WSIs, revealing a concordance index of 0.76,

demonstrating some ability to rank patient survival based on these

phenotypes. However, this is unsurprising as these phenotypes are

those chosen by the WHO classification as prognostically relevant;

hence, the conclusions are somewhat circular. Generalisation to other

datasets was not performed and would be necessary for clinical vali-

dation. Meanwhile, Xing et al. proposed a generalisable model of

nucleus detection applicable across multiple staining and tissue prepa-

ration methods, in an attempt to address the problem of batch effect

in multicentre datasets.65

Model outputs for nucleus segmentation were generally in agree-

ment with manual annotations or simpler computational techniques,

as demonstrated through statistical analyses such as Pearson’s corre-

lations and false-positive area ratios.60,63 Segmentation margins were

examined in all four studies to assess interpretability.

GOAL 5: TUMOUR CLASSIFICATION AND
GRADING

Thirty-two studies focussed on tumour classification or grading directly

from H&E-stained tissue sections. Eighteen of these studies focussed

on grading gliomas, the majority of which aimed to distinguish

glioblastoma from lower-grade counterparts.32,36,40,42,44,45,48,49,54,55,82

Several studies did not specify the subtype of tumour classified

(e.g. astrocytoma subtype unspecified, oligodendroglioma/astrocytoma

subtype unspecified), thus their inclusion criteria and therefore clinical

utility are questionable.

Most of the studies (12 studies) were published in or before 2021

and therefore classified gliomas according to the 2007 or 2016 edi-

tions of the WHO classification (before molecular classifications were

introduced in the 2021 edition).21,32,34,40–42,47–50,54,55 Three studies

(all published in 2022 or 2023) adopted the latest WHO integrated

classification for gliomas as per new molecular markers.38,39,43

Jose et al. successfully differentiated IDH wild-type glioblastoma

from IDH-mutant and 1p/19q-codeleted oligodendroglioma, and IDH-

mutant astrocytoma,38,83 whereas Jungo et al. distinguished IDH-

mutant astrocytomas from astrocytosis.39 Both models relied solely

on H&E-stained WSIs and achieved accuracies of 91.7% and 96.7%,

respectively. However, neither study reported on the specific mor-

phological features enabling these predictions, preventing assessment

regarding whether the model could reveal subvisual features unappar-

ent to the pathologist.
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Ma et al., however, employed a two-step algorithm to categorise

tumours based on cell type and histological grading.43 Subsequently,

molecular parameters were imputed to formulate an integrated diag-

nosis using a decision tree classification algorithm, a simple classical

machine learning method (see Figure 3). Although this approach

acknowledges the significance of both morphological characteristics

and molecular features, it did not exhibit discernible enhancements

when compared to the established pathology pipeline.

Five studies subtyped paediatric medulloblastoma into classic,

nodular, desmoplastic or large cell.26,27,31,51,52 Two studies delin-

eated anaplastic from non-anaplastic medulloblastoma.29,53 How-

ever, given that molecular stratifications in medulloblastoma are

becoming increasingly important, the diagnostic value of such histo-

logical classification in the absence of integration with molecular

parameters is debatable.2 Nonetheless, anaplasia in medulloblastoma

is still regarded as a high-risk feature, and whilst its significance is

diminishing in certain molecular subtypes, such an algorithm would

be helpful if clinically validated. Two studies focussed on tissue fea-

ture subtyping of meningiomas into meningothelial, fibroblastic,

transitional, or psammomatous.33,46 Although this may demonstrate

the ability of image recognition algorithms to discern distinct fea-

tures, again the diagnostic value is limited as these subtypes are of

less importance and have been superseded by molecular stratifica-

tion algorithms.84 Three studies performed a broad classification of

CNS tumours, including meningioma, astrocytoma, ependymoma and

oligodendroglioma.28,34,41 However, all of these classification models

were based on morphological categories with no clear demonstra-

tion of time–cost benefit relative to pathologist review nor compari-

son of accuracy relative to the final molecular diagnosis, making

unclear their ability to offer additional clinical and prognostic utility.

This is particularly relevant to tumour types, for example, meningio-

mas, in which current classifications are primarily at the genomic

and epigenomic level.2

The most commonly utilised performance metrics were accuracy,

sensitivity, specificity and F1 score (see Figure 3 for definitions of

these performance metrics). Studies reported variable accuracy rates

ranging from 85% to 100%; however, none conducted comparative

analyses against human pathologist assessment (indeed 85% would be

considered poor performance relative to the accuracy required in

clinical practice). Only eight studies investigated interpretabil-

ity.29,32,34,36,44,45,47,48 This included the use of representation spaces

to illustrate morphological features learned during training, such as

edges, nuclear stains and cellular orientations, and visualisations with

limited apparent clinical utility.29,32 Other studies generated probabi-

listic heatmaps to highlight the model’s attention during the decision-

making process, which included tumour cell clusters, suggesting the

plausibility of the proposed models.37,45

GOAL 6: MOLECULAR CHARACTERISATION

Four studies aimed to predict the molecular status of tumours

based on H&E-stained tissue sections.66–69 One study used nuclear

morphology to predict the transcriptional profile of glioblastoma:

classical, proneural, neural and mesenchymal.66 However, this classi-

fication has been superseded by other systems because of emerging

evidence, including the IDH status. Jungo et al. predicted the 1p19q

co-deletion status of IDH-mutant tumours, reporting an accuracy of

88.6%, arguably lower than that acceptable in clinical practice39 and

probably even inferior to the morphological examination by an

experienced neuropathologist. Another study sought to predict

mutational status in glioblastoma and scored AUC metrics over 0.7

in four genes of interest (IDH1, ATRX, TP53 and RB1).69 Lietchy

et al. and Liu et al. focussed on predicting IDH status from H&E

stained slides.67,68 Although Lietchy et al.’s model did not outper-

form human pathologists when assessed using the AUC metric

when combining decisions made by both humans and the AI model

within a man–machine hybrid framework, the model achieved

superior performance compared to the consensus of two expert

neuropathologists.67

Two studies assessed interpretability.66,67 For example, human-

recognisable features deterministic of IDH mutational status were

revealed using methods to make predictions understandable through

dimensionality reduction of complex datasets. These characteristics

included oligodendroglial cytomorphology and the extent of pleomor-

phism.67 However, during external validation, the model showed

reduced performance (accuracy 0.809 vs 0.936 at internal testing),

suggesting failure to generalise to independent datasets. The value of

AI-based prediction of molecular status needs to be justified where

relatively rapid cost-efficient methods already exist (e.g. widely uti-

lised immunohistochemical tests for IDH mutations).

GOAL 7: SURVIVAL AND OUTCOME
PREDICTION

Nine studies focussed on predicting patient prognosis directly from

histopathological images.70–79 Most studies adopted a multi-modal

approach, integrating histological data with other modalities such as

radiological, genomic or clinical data. Patients were stratified into sur-

vival probability groups or derived survival predictions through regres-

sion analysis. Evaluation metrics involved accuracy, AUC and

concordance index. AI models improved performance when consider-

ing data from multiple modalities compared to histopathological data

alone.72,77–79 No studies explicitly showed that histopathology

data alone performed better or similar to multimodal data.

Model interpretation was attempted in five studies.70,73,75–77,79

Factors such as the percentage of hypertriploid nuclei and small,

dense chromatin clump frequency were found to be relevant in strati-

fying anaplastic astrocytoma patients into prognostic outcomes.70

Three studies considered interpretability by defining molecular path-

ways and genetic expression features linked to survival.73,76,77 How-

ever, the histopathological features associated with survival were

mainly demonstrated using representative images from the long and

short survival groups, without explicit evaluation of which morpholog-

ical features guided AI decision-making.
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Internal and external validation

Internal validation refers to reserving a proportion of the original

dataset to assess AI model reliability. Internal validation plays a cru-

cial role in selecting the optimal model among candidate models

and estimating whether the model will be able to generalise on

unseen data. Robust but computationally expensive methods such

as k-fold cross-validation were used in 37 studies, and leave-

one-out cross-validation was utilised in four studies.16,34,41,82 Seven

studies relied solely on the train-test split approach, which is com-

putationally simple but less representative of the model’s true gen-

eralisability.18,19,28,32,64,65,72 Nine studies did not provide details

about internal validation.35,39,45,58,60,61,63,78,81 See Figure 3 for

detailed definitions of internal validation techniques employed.

External validation evaluates model performance using entirely

new and independent data that were not part of the model’s training

or validation process. It is essential in determining a model’s reproduc-

ibility and applicability in real-world clinical settings. Only seven stud-

ies conducted external validation.18,28,32,57,67,74,81 Only three studies

within this subset reported model performance on the corresponding

unseen datasets.18,67,74 See Figure 3 for detailed definitions of exter-

nal validation methods employed.

Risk of bias assessment

Using the PROBAST evaluation tool, a significant proportion of stud-

ies displayed high risks of bias (61 studies) and limited applicability

(66 studies) overall (Table S3 and Figure 4). In this context, risk of bias

refers to flaws in the study’s design, execution, or analysis that may

result in systematically skewed assessments of a model’s predictive

accuracy. Applicability refers to whether the model will be representa-

tive of the population to which it will ultimately be applied. Forty-six

studies scored a high risk of bias in the ‘Participants’ domain. This

was largely attributed to (39 studies) sourcing of participant data from

pre-existing datasets, where data are typically collected for a purpose

other than model development or validation and often without an

appropriate protocol.14 Six studies did not provide clear information

regarding the data source used.19,46,58,59,63,65 Concerning the ‘Predic-
tors’ domain, a high risk of bias was identified in 16 studies because

of the use of manual annotation for ground truth labelling. This can

result in inter-observer bias, as manual techniques may vary across

observers. Within the ‘Outcomes’ domain, although the risk of bias

was infrequent, a majority (56 studies) of studies demonstrated low

applicability because of a lack of accessible published source code.

The majority of studies (43 studies) scored a high risk of bias in the

‘Analysis’ domain. This was typically attributed to (37 studies) lack of

reporting of the number of patients and/or images within the

development and testing cohorts, impeding assessment of whether an

adequate number of participants with the investigated outcome

were included and whether the analysis covered all enrolled partici-

pants. Only two studies described methods for handling missing

data.72,76 Four studies did not provide any model performance

information.19,20,22,28 Except for the seven studies that conducted

external validation, the risk of model overfitting on training data was

largely overlooked.

DISCUSSION

Summary of findings

This review highlights the status of AI-driven histopathology image

analysis in neuro-oncology. This is an evolving field, with half of the

68 reviewed studies published after 2020. The field is in its early

stage; all of the studies were in the preclinical phase, retrospective in

nature, and most failed to conduct direct comparisons with human

pathologist assessment and to validate their outcomes with molecular

tests. Moreover, all studies displayed a high risk of bias and/or limited

applicability and thus potential clinical utility. Persistent issues

included inadequate reporting of dataset characteristics (including the

number of patients and/or images used for model development/

validation and describing the methods for handling missing data),

absence of external validation, insufficient recognition of batch effects

in multi-institutional datasets or normalisation approaches for batch

effects, and lack of published source code. Together, such issues pre-

clude testing of model performance in independent patient cohorts by

different research groups, critical in judging a model’s safety, reliability

and generalisability.

AI-driven image analysis for CNS tumour histopathology lags

behind several other disciplines. For example, the capacity of AI-

driven histopathology image analysis to achieve diagnostic accuracies

on par with human pathologists has been prospectively demonstrated

in other cancer types, such as gastric and colonic cancer.85,86 The use

of AI in prostate cancer grading is already at clinical evaluation

stages.87 In the field of neuro-oncology, AI applied to radiomic and

tumour DNA methylation data is also at a more advanced stage. For

example, AI algorithms applied to magnetic resonance imaging (MRI)

images of pituitary neuroendocrine tumours to predict Ki67 prolifera-

tion indices have been tested in clinical settings.88

Challenges facing AI-driven image analysis of CNS
tumours

This review reveals an absence of clinical integration of the AI image

analysis algorithms. Achieving accurate CNS tumour classification

through AI algorithms presents a multifaceted challenge. In contrast

to many somatic tumours, CNS tumours, particularly low-grade glio-

mas, encompass a broad spectrum of subtypes, with either consider-

able morphological heterogeneity even within a single tumour type or

considerable morphological overlap between distinct molecular sub-

types.89 There is often a poor correlation between morphological fea-

tures and molecular precision diagnosis, particularly in low-grade

gliomas and glioneuronal tumours. This presents challenges in curating

large-scale databases for model training, as it necessitates the
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inclusion of numerous tumour categories whilst ensuring sample size

comparability between classes. For instance, IDH-wild-type glioblas-

toma can comprise multiple histological variants, including giant cell,

epithelioid or sarcomatous types.2 This complexity can make it chal-

lenging for computational models to perform effective representation

learning from histopathology images and derive accurate predictions.

F I GU R E 4 Bar chart summary of risk
of bias and applicability assessment of
included studies according to the
PROBAST tool, and the key factors
contributing to poor scores in each
domain. Any study rated as a high risk of
bias/concerns regarding applicability in
one domain (analysis/outcomes/
predictor/participants) is rated as a high
risk of bias/concerns regarding
applicability overall. The majority of
studies (61 studies) displayed a high risk
of bias, frequently attributed to
(in 39 studies) sourcing of participant data
from pre-existing datasets, where data
are collected for a purpose other than for
model development or validation.
Virtually, all studies (66 studies) displayed
high concerns regarding applicability,
largely attributed to (in 56 studies) lack of
accessible published source code (leading
to a high concern regarding applicability
score in the ‘outcomes’ domain).14

PROBAST, Prediction model Risk of Bias
Assessment Tool.
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Furthermore, none of the studies conducted an assessment of the

time and financial cost-effectiveness of implementing AI models

within the existing pathological workflow (in particular, in scenarios

where digital images are not routinely generated), especially when

compared to the expertise of neuropathologists. Future studies should

delve into these aspects to provide convincing evidence for evaluation

in the clinical setting.

The scarcity of prospective validation trials raises concerns given

their pivotal role in evaluating clinical utility and safety of AI models.90

Such trials are essential because changes in data characteristics

between AI training and deployment stages can lead to performance

degradation, a phenomenon known as ‘data shift.’91 Creating appro-

priate clinical studies for AI-based analysis is subject to numerous

methodological challenges including lack of necessary expertise to

translate these tools into practice in clinical pathology diagnostics,

alongside the need to integrate human factors, estimate generalisabil-

ity across sites and populations, and account for user variability.90

Moreover, our review highlights that within the field of neuropatho-

logical image analysis, the absence of prospective validation trials

likely relates to the lack of evidence that existing AI-based algorithms

match the accuracy of neuropathologists in preclinical models, along-

side limited comprehension of how such models may integrate into

clinical practice.

Over one third of studies failed to report the number of patients

evaluated and/or the number of images evaluated, with only one

study discussing sample-size determination methodologies and subse-

quently testing the effect of sample size on AI model performance. AI

studies with small test datasets risk overfitting of data and finding spu-

rious correlations between confounding variables (e.g. scanner type,

scanning settings, such as resolution and file compression parameters,

slide origin, staining and slide quality) and target variables (e.g. tumour

type).92 Conversely, excessively large test datasets may not result in

significant improvements in model accuracy despite increased time

and cost. Finding an optimal balance between these requirements is a

challenge for AI studies and merits greater exploration. Established cri-

teria for evaluating sample size in AI studies are lacking, but potential

methodologies are increasingly being proposed, including relatively

simple confidence interval-based sample size calculations.92

Clinical recommendations

Currently, the literature appears skewed towards using AI to classify

gliomas into morphological subtypes which are no longer listed in the

2021 WHO Classification (and have been superseded by molecular

classifications), so it is unclear how they could assist current clinical

workflows. Indeed, genetic and epigenetic parameters have now

superseded the importance of histological subtyping in low-grade glio-

neuronal tumours, as they show considerable morphological overlap

which may not be addressed with histological image analysis alone.

The use of AI for image analysis in CNS tumour histopathology

requires application to tasks which could be more usefully integrated

into existing diagnostic workflows. For example, specific labour-

intensive tasks, including determining mitotic and Ki67 indices to

inform prognosis and stratify aggressive subtypes, have demonstrated

convincing performances when executed by AI algorithms compared

to human counterparts.93 These tasks require significant time invest-

ment and are prone to interobserver disagreement and human error.

Historically, these tasks have been difficult to automate (i.e. using

rule-based software which operates on a set of predefined rules) and

may benefit from AI assistance (which can iteratively improve by

learning from data and making predictions based on new data).94,95

AI-guided image analysis may also help inform and/or streamline

requests for molecular testing based on a preliminary morphological

diagnosis, although again this would require demonstrable time-

and/or cost-benefit relative to neuropathologist review. Finally, AI

could be used to ‘mine’ histopathological imaging data for ‘subvisual’
morphological features useful in diagnosis/prognostication unappar-

ent to the pathologist. This may be particularly helpful in cases

deemed unsolvable after assessment by pathologist review and avail-

able molecular testing, including DNA methylation arrays and genome

sequencing.96 Relevant to prognostication, AI has been used to predict

the survival of breast cancer patients from H&E-stained slides, with

greater accuracy than standard pathologist grading, based on stromal

morphological structures previously unrecognised as prognostically

relevant.97 Similarly, AI models have been shown to extract prognostic

information and make molecular predictions from tissue morphology

in colorectal and bladder cancer, with greater accuracy than patholo-

gists.98,99 Improved communication between clinicians and engineers

is imperative to achieve these advancements given the unique chal-

lenges in developing AI models for image analysis of CNS tumours.

Moreover, an essential prerequisite for the implementation of any

AI algorithm on CNS tumour histopathology is the availability of a

clinically validated digital pathology workflow integrated within the

neuropathology department. This should include dedicated scanners

for routine real-time digitisation of WSIs, image management soft-

ware, and real-time access of AI algorithms to digitised images. Whilst

the requirement for dedicated equipment imposes financial hurdles,

access to external image analysis systems to stored histology datasets

imposes data privacy and logistical hurdles.

Engineering recommendations

Studies to date are largely of low quality, with a high risk of bias and

limited applicability. Key issues include inadequate documentation of

dataset attributes and the handling of missing data. A critically small

number of studies are externally validated, which is essential for dem-

onstrating a model’s ability to generalise on unseen datasets. Only a

limited number of studies share their model source code, a practice

which enhances research reproducibility, facilitates collaboration

efforts and enables peer validation. Finally, AI model evaluation

should be evaluated using clinically relevant appropriate metrics

(e.g. relevant online tools).100

Several multi-centre datasets are utilised in the current literature,

but this can cause batch effects (non-biological factors that create
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variation in the data) at various stages, from tissue collection to image

digitisation. This could cause AI models to focus on the unique WSI

signatures of individual sites, rather than inherent biological attri-

butes.101 Recommendations have been made for studies utilising

multi-centre datasets, including reporting variations in outcomes

observed across sites and implementing various pre-processing steps,

including stain normalisation.101 These steps are often omitted in the

reviewed studies and should be considered. Comprehensive, freely

available single-centre histopathology datasets (e.g. The Digital Brain

Tumour Atlas) could be exploited for AI analysis whilst overcoming

some of the issues associated with batch effects.102

Strengths and limitations

Through a systematic review of the literature, the present study offers

an up-to-date exploration of AI-driven applications for the analysis of

CNS tumour histopathology image analysis. The findings are critically

evaluated in the context of clinical utility, with the provision of practi-

cal recommendations (Figure 5). However, certain limitations should

be acknowledged. Although the identification of studies was compre-

hensive, it was constrained to the search strategies employed. Only

full-text articles in the English language were considered, which could

result in the omission of certain studies. Whilst an array of databases

in the biomedicine domain have been examined, future investigations

could encompass databases within computer science and related dis-

ciplines, including resources such as the IEEE Xplore Digital Library.

CONCLUSION

We present a systematic review of the literature concerning the use

of AI for the analysis of neuro-oncological histopathological images.

Despite a growing body of relevant literature, the field remains at an

early stage; all of the studies were retrospective and preclinical, and

poorly aligned with current diagnostic neuropathology workflows. A

F I GU R E 5 Recommendations for the clinical and engineering communities to help bridge the gap between preclinical studies (the current
state of the field) and clinical implementation in the field of AI-driven histopathology image analysis of CNS tumours.
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high risk of bias was identified across the majority of studies; persis-

tent issues identified included an absence of external validation and

inadequate reporting of study characteristics. Based on these findings,

we propose specific clinical and engineering recommendations, includ-

ing adopting up-to-date integrated classification systems, improved

reporting transparency of the number of patients and/or images

within the model training and testing cohorts, rigorous external

validations, and better considerations of model interpretability. We

suggest that implementations of such changes, alongside better cross-

disciplinary collaborations among clinicians, computer scientists,

image analysts and engineers, are needed for the creation of robust AI

models able to transition from preclinical models into clinical trials,

with structured evaluation as per published guidance (e.g. DECIDE AI,

CONSORT-AI).68,90
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