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Abstract

The convergence of digital pathology and artificial intelligence could assist histopathol-
ogy image analysis by providing tools for rapid, automated morphological analysis. This
systematic review explores the use of artificial intelligence for histopathological image
analysis of digitised central nervous system (CNS) tumour slides. Comprehensive
searches were conducted across EMBASE, Medline and the Cochrane Library up to June
2023 using relevant keywords. Sixty-eight suitable studies were identified and qualita-
tively analysed. The risk of bias was evaluated using the Prediction model Risk of Bias
Assessment Tool (PROBAST) criteria. All the studies were retrospective and preclinical.
Gliomas were the most frequently analysed tumour type. The majority of studies used
convolutional neural networks or support vector machines, and the most common goal
of the model was for tumour classification and/or grading from haematoxylin and eosin-
stained slides. The majority of studies were conducted when legacy World Health Orga-
nisation (WHO) classifications were in place, which at the time relied predominantly on
histological (morphological) features but have since been superseded by molecular
advances. Overall, there was a high risk of bias in all studies analysed. Persistent issues
included inadequate transparency in reporting the number of patients and/or images

within the model development and testing cohorts, absence of external validation, and
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INTRODUCTION

Benign and malignant tumours of the central nervous system (CNS)
encompass over 100 distinct entities. CNS tumours (both malignant
and non-malignant) are the most common tumour site in children (0-
15 years), and the second most common tumour site in adolescents
and young adults (15-39 years).! The diagnostic pathway for CNS
tumours involves multidisciplinary input, with the integration of clini-
cal, demographic, imaging and pathological parameters. Pathological
assessment, in particular, is the gold standard for precise, evidence-
based classification of CNS tumours, with the 2021 World Health
Organisation (WHO) Classification of Tumours of the CNS acting as
the current reference for taxonomic classification.?

The emergence of artificial intelligence (Al) has the potential to
provide tools for automated, rapid analysis of medical data, improving
diagnostic workflow efficiency. Al refers to the use of machines (com-
puters) to solve complex tasks that typically require human cognition
and analysis. Within the diagnostic pathway for CNS tumours, the
application of Al to radiological image analysis has been reviewed,
with demonstrable benefits in predicting tumour grade and molecular
profile.® Similarly, DNA methylation profiling by Al-based classifiers
(machine learning algorithms) has become a well-established tool for
classification based on epigenetic parameters.* However, the poten-
tial benefits of Al in interpreting histopathological features on slides
of CNS tumour specimens remain unclear. In other solid organ
tumours, Al-based algorithms have successfully detected breast, pros-
tate and oesophageal cancer in histopathological image analysis; sub-
typed lung and kidney cancers; and classified cancers of unknown
origin.>~1® Advances have also been made in histopathological tasks
where interobserver variation exists, such as Gleason grading of pros-
tate cancer and in time-consuming tasks, such as determining and
counting mitotic figures in tumour cells.*!! Indeed, some of these
capabilities are available as FDA-approved products (e.g. Paige Al for
prostate cancer detection).}? Unique challenges, however, exist in
CNS tumour classification from slide image analysis algorithms,
namely the large number of tumour subtypes and the frequent over-
lap of morphological phenotypes across diagnostic entities, in particu-
lar in many low-grade glial and glioneuronal tumour types. It remains
unclear whether these unique challenges have been accounted for in
the existing literature.

A systematic analysis of Al-based histopathological image analysis
of CNS tumours is lacking despite a growing body of relevant litera-

ture. The objective of this study is to survey the scope of Al employed

insufficient recognition of batch effects in multi-institutional datasets. Based on these
findings, we outline practical recommendations for future work including a framework
for clinical implementation, in particular, better informing the artificial intelligence com-

munity of the needs of the neuropathologist.

artificial intelligence, central nervous system tumours, digital pathology, histopathology, medical

Key points

o This review explores the use of Al for image analysis of
central nervous system tumour slides.

e The field is at an early stage and poorly aligned with
current diagnostic challenges.

e Practical recommendations for future work are outlined.

in histopathological slide image analysis of CNS tumours, with the goal
of identifying future directions in this field.

METHODS

The review was conducted according to the Preferred Reporting Items
for Systematic Reviews and Meta-Analysis (PRISMA) guidelines and
prospectively registered with the International Prospective Register of
Systematic Reviews (PROSPERO) database of systematic reviews
(registration ID: CRD42023434059).1

We systematically interrogated the EMBASE, Medline and
Cochrane Library databases up to June 2023 to identify studies utilis-
ing Al in the histopathological image analysis of CNS tumour tissue. A
combination of MeSH terms and relevant keywords were used in the
search strategy, including Al, machine learning, deep learning, brain
neoplasms, pathology and computer-assisted image processing
(Table S1). We limited the scope of the review to include studies focus-
sing on conventional, clinically well-established histopathological image
analysis (i.e. haematoxylin and eosin (H&E) and/or immunohistochemi-
cally stained tissue) and excluding studies exploring experimental (cur-
rently unvalidated) techniques such as Raman spectroscopy. We
excluded studies not published as full-text articles in English.

Full-text articles meeting the inclusion criteria were indepen-
dently assessed by two investigators (MPJ and ZQ). Information
extracted from each study included the following: publication year;
study stage; purpose of the Al algorithm; tumour type studied; use of
H&E staining and/or immunohistochemical markers; characteristics
and source of the training and testing datasets; data pre-processing
techniques; details of internal and external validation; feature extrac-

tion and dimensionality reduction techniques; code availability;
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summary of the Al algorithm and model architecture; interpretability
considerations; and Al model outcome measures.

Risk of bias assessment was performed by two investigators (MPJ
and ZQ) using the Prediction model Risk of Bias Assessment Tool
(PROBAST).* A narrative synthesis was conducted to provide a com-
prehensive summary of the study characteristics, Al techniques
employed, and key findings.

RESULTS

The literature search identified 68 studies meeting the eligibility cri-
teria for inclusion (Figure 1).2°782 All studies were retrospective and
preclinical (Tables 1 and S2, and Figure 2). Studies were published
between 1995 and 2023, half of which were published from 2020
onwards (Table 1 and Figure 2).

CNS tumour types

Gliomas were the most frequently analysed tumour type (52 studies)

(Table 1 and Figure 2). Although glioblastoma was analysed in

33 studies, only eight out of 28 studies published post-2016 specified
isocitrate dehydrogenase (IDH) gene mutation status (as per recom-
mended classification systems).? Eight studies examined medulloblas-
toma in the paediatric population.2¢?7:2%:31.51-5373 Nine studies
investigated meningiomas,*¢-33-354146.58.61.62 Brain metastases from
the breast, lung or melanoma were analysed in four studies.3?43:58:60
Ependymomas (subtype not specified) were investigated in three
studies.>***>73 CNS lymphoma was investigated in one study.*® The

exact CNS tumour type studied was unclear in one study.®®

Dataset characteristics

One study utilised a mouse model of disseminated malignancy, and all
other studies utilised human tissue.®® The studies utilising human tis-
sue covered adult and paediatric populations, ranging in size from 4 to
1185 patients and 10-97,252 digitised images (Figure 2). All studies
were retrospective and cross-sectional (i.e. samples were analysed at
a single point in time; rather than over several points in time as in lon-
gitudinal analyses). The most commonly used dataset was derived
from The Cancer Genome Atlas, used in model development for

31 studies and external validation for two studies (Table 1 and

Identification of studies via databases and registers

Records removed due to
duplication
(n=70)

Records excluded
(n=914)

Exclusion by title
(n=462)
Exclusion by abstract
(n=452)

Records identified from databases
= (n=1072) Additional records
o identified through
'ﬁ EMBASE (n = 828) screening reference lists
= Medline (n = 242) (n=13)
€ Cochrane Library (n = 2)
b
4 4
Records screened (n = 1015)
[-T]
3
c
(7]
o
a
Records assessed for eligibility (n = 101)
2
© Full texts included for qualitative
% synthesis (n = 68)
c

FIGURE 1 Preferred reporting items for systematic reviews and meta-analysis (PRISMA) flow diagram outlining study selection process. The

Records excluded after full
text screening
(n=33)

primary search strategy yielded 1072 results, of which 68 studies were suitable for inclusion in the systematic review.
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TABLE 1

Purpose of the

Author and

artificial intelligence

framework

The clinical problem

Artificial intelligence algorithms employed

Data source for model development

Brain tumour type

publication year

Synthesise pathology images,

Deep learning (Generative Adversarial

Multi-centre (TCGA)

Low-grade glioma

Levine 20208°

Image generation

which may be used for

Networks)

education and quality assurance

purposes

Subtype meningiomas based on

Deep learning (Generative Adversarial

Multi-centre (TCGA)

Glioblastoma and low-grade

Ozyoruk 202281

histopathology images

Networks)

glioma

JOURNAL OF THE BRI ALSOCIETY

Figure 2). The number of cases ranged from 52 to 1185, whereas the
number of images varied from 200 to 3611. The Guwahati Neurologi-
cal Research Centre was another recurrently used dataset, albeit con-
strained by smaller sample sizes, with a maximum of 204 images or
20 patients included.?¢273151:52 Gy studies did not report the source
of their datasets.}?#6:°89:6365 One study used a dataset with a simu-
lated population derived from published literature.?® Only two studies
conducted exploratory analyses to examine the impact of sample size
on the predictive performance of the model, aiming to address the
challenge of requiring extensive labelled data for model training.
Among them, only one study discussed methodologies for sample-size

determination, employing inverse power law functions.*®

Al algorithm usage

Al algorithms can be classified into classical machine learning and deep
learning. Classical machine learning algorithms tend to be computation-
ally simpler and advantageous when dealing with structured data, such
as tabular data. Deep learning algorithms are computationally complex
and are suitable for analysing complex data such as images and natural
language. In Figure 3, we summarise key algorithm types used by
included studies, and whether they fall under the classical machine
learning or deep learning type. The most frequently employed classical
machine learning algorithms were support vector machines, which iden-
tify the best margin of separation between data points of different clas-
ses in high-dimensional space (Figure 3), featured in 21 studies. The
most frequently employed deep learning algorithms were convolutional
neural networks, which employ hierarchical operations to process data
and identify important features in an image (Figure 3), and featured in
30 studies. Classical machine learning algorithms dominated the land-
scape in earlier years, being the choice for 90% of studies published
before 2013 (Table 1 and Figure 2). In contrast, deep learning algorithms
were more frequently (67.2%) used in studies published after 2013.

Data pre-processing

Data pre-processing pipelines help render raw data suitable for training
Al models. Eighteen studies, especially those utilising publicly available
datasets, implemented quality control measures such as removing
images with inferior resolution or processing artefacts. Image augmen-
tation describes the technique of artificially expanding the training
dataset to enhance model generalisability and mitigate class imbal-
ances. This was implemented in 20 studies through a range of tech-
niques, including flipping, rotating and geometric transformations, with
some benefits for model performances.®®¢® Image normalisation, a pro-
cess whereby image pixel values are standardised to a common scale
to ensure model training efficiency, was described in 17 studies, using
a variety of methods including contrast adjustment, colour adjustment
and normalisation techniques to overcome inconsistencies in the stain-
ing process.+17:23:29:38.4245.4859.63,64.687276-80 Equr studies used pre-

developed, open-source image pre-processing pipelines, two of which
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FIGURE 2 Summary results of included studies, including study design, clinical and dataset characteristics, and artificial intelligence algorithm

type and goal.

used the Python Whole Slide Image (WSI) Pre-processing pipeline
from https://github.com/deroneriksson/python-wsi-preprocessing, which
performs a range of manoeuvres including colour correction, image til-
ing and tissue identification.3®¢*¢®78 Furthermore, dimensionality
reduction, the technique of reducing input features whilst retaining
essential information from the training data, was primarily utilised in
studies adopting classical machine learning algorithms. This was car-
ried out to enhance training efficiency and reduce the risk of overfit-
ting variables (whereby a model performs well on the training dataset
but this is not recapitulated on an independent external dataset). Deep
learning typically does not involve explicit dimensionality reduction
because of its intrinsic capacity to learn hierarchical features from raw
data. Therefore, dimensionality reduction was only performed in one
study utilising a deep learning algorithm.”®

Image analysis goal

The reviewed studies encompassed a range of image analysis goals
(Figure 2). For each goal, we describe the performance metrics used
and whether model interpretability was considered. Model interpret-
ability involves discerning the model’s primary contributing features
to comprehend the model’'s decision-making process. It is crucial for
trusted clinical integration, protecting against errors during model

training and potentially revealing new insights through the recognition
of previously undiscovered patterns.

GOAL 1: IMAGE GENERATION

Tissue image generation was the focus of two studies, aiming to
develop tools for dataset augmentation and education.®%8! Both stud-
ies adopted Turing tests (i.e. asking pathologists to assess whether the
images were artificially generated or real) to show that distinguishing
real from synthetic images was somewhat challenging (in both studies

just over half of the images were deemed ‘real’).

GOAL 2: MORPHOLOGY RECOGNITION

Eleven studies focussed on the identification and analysis of morpho-
logical features, particularly microvascularity quantification and necro-
sis detection in glioblastomas.>~2> Microvascular characteristics such
as vessel circularity and area were considered in one study; however,
determining whether vessels were normal or pathological was not
explicitly performed.*®

The area under the receiver operating characteristic curve (AUC)
was the most commonly used performance measure (see Figure 3 for
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Classical Machine Learning Algorithms
Involves algorithms designed to make predictions or
decisions based on structured input data.

Q
Decision Trees / \
A simple model that uses a tree-like ) O
structure to make decisions based e \/\\ \
on features of input data. (j/ 3 = O
Techniques such as pruning can ) o
reduce model overfitting. / \/\V/ </ \
(=
— nsance Random Forest
(= -
o . . —~ A decision tree-based ensemble
/ \ method that creates multiple

decision trees and combines their
_ outputs to improve predictive
Y accuracy and control overfitting.

Support Vector Machines

An algorithm that uses
mathematical operations to project
the input data into an optimal
dimension and finds the best margin
for separation between data classes.

Model Development and Tra

k-Nearest Neighbours

A non-parametric, supervised
classification algorithm that assigns
a class label to a data point based
on the majority class of its k closest
data points.

JOURNAL OF

Deep Learning Algorithms

A subset of machine learning that employs artificial neural
networks to detect patterns in large unstructured datasets.
They mirror structure of a human brain, comprising of input,
hidden, and output layers with connected neurons.

‘ »‘»‘»
Autoencoders

Unsupervised neural networks that
encode input data into a
compressed latent space and
decodes it back to its original form.
Autoencoders are useful for
representation learning and
dimensionality reduction.

»‘»l»

Generative Adversarial Networks
The generator and discriminator
networks are trained
simultaneously. The generator
attempts to create data that is
indistinguishable from the input
data, while the discriminator tries to
differentiate between real and
generated data.

| Neural ks
An algorithm that applies
convolutional operations to learn
hlerarchlcal features and are
particularly effective for image
processing tasks.

Graph Convolutional Networks
Designed to work with data
organised in graph structures. They
learn features from nodes and their
neighbours and are well-suited for
tasks like node classification and link
prediction in graph data.

P

k-Fold Cross Validation

— Leave-One-Out Cross Validation

Model is trained on all but one data point and tested
on the one left out. This process is repeated for each
data point and the results are averaged to assess the
model's overall performance.

Train-Test Split

Dataset is split into two parts: a training set to train
the model and a separate test set to evaluate its
performance on unseen data. Common split ratios
are 7:3, 8:2, or 9:1.

Training Set

Accuracy

The dataset is split into k subsets and the model is
trained k times, each time using k-1 folds for training
and one-fold for testing. This estimates how well the
model will generalise to unseen data.

Training Set

Iteration 1
Iteration 2

Iteration 3

Iteration k

J 1§

F1 Score

Proportion of correctly predicted
instances out of the total number of
instances in the dataset.

The harmonic mean of precision and
recall and is particularly useful when
dealing with class imbalanced

g Trai Set
raining Se
(0
[ Sensitivity and Specificity Area Under the Curve
Metrics describing the proportion of ~Quantifies the model's ability to
true negatives and true positives distinguish between positive and
7y correctly identified by the classifier,  negative classes across different
(4] respectively. thresholds.
‘=
4=
g
[N
Q
=
£
S
£
()]
a.

datasets (e.g., dataset with 99
glioblastomas and 1
oligodendroglioma).

TP FP

FN TN

Clinical Evaluation

FIGURE 3 Development pipeline for artificial intelligence in digital histopathology, with relevant definitions (not an exhaustive list; see

Goodfellow et al. 2016 for a detailed review).
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a detailed definition and graphic of AUC).15-1822-25 Ty studies did
not report performance measures.2”2° In one study, the Al model
performed similar to human observers, particularly in detecting
microvascular proliferation (AUC 0.994), geographic necrosis (AUC
0.994) and palisading necrosis (AUC 0.964).> However, given the
rapidity at which pathologists can screen slides for these features
and the relatively short time it takes to diagnose common CNS
tumours (such as glioblastoma, meningioma, and most instances of
ependymoma, astrocytoma and oligodendroglioma), the time- and
cost-benefit analysis of implementing Al for this purpose is debat-
able. Interpretability was investigated in five studies, most of which
involved direct visualisation of learned imagery features.?>-17:20.24
However, only two of these studies conducted comparisons with
human pathologist’s opinions.>2*

Features guiding the model were identified, including the obser-
vation that cells in IDH-mutant cases were larger and more circular
versus wild-type counterparts; however, the clinical relevance of
these features was not explored in the context of existing literature.?°

GOAL 3: IMMUNOHISTOCHEMISTRY
DETECTION AND QUANTIFICATION

Six studies focussed on Al-mediated quantification of immunohisto-
chemical staining.3>°7737¢162 Among them, five studies quantified
cellular proliferation hotspots using Ki67 immunohistochemistry and
performed grading as per the WHO 2007 classification sys-
tem 3528576162 |n one study, Al was used to quantify CD276 immu-
nohistochemically labelled cells, a putative glioblastoma stem cell
marker.>” The algorithm’s intricacy demanded a labour-intensive train-
ing process, involving the manual labelling of 31,947 cells across eight
WSiIs. Subsequent external validation using an independent cohort
revealed a quoted accuracy of 97.7%; however, the cohort was small
relative to the number of cells in the training process (12,211
CD27-stained cells only). As such, the clinical applicability (and general
utility) of the model is highly questionable, given the extensive human
labelling process required to capture sufficient variance in the data.
Model outputs were commonly compared with that of human
pathologists or conventional image analysis software, and concor-
dance was demonstrated using measures of correlation such as Spear-
man’s rho.*®>7¢1 The Al model was demonstrated to have less
variability compared to manual annotations between pathologists for
Ki67 quantification in only one of these studies.’® In this study, the
algorithm was adopted to align Ki67-stained WSIs to H&E staining,
facilitating automated region of interest selection and reducing inter-

observer variability for Ki67 quantification.>®

GOAL 4: NUCLEUS SEGMENTATION

Nucleus detection was performed in four studies.®®37¢° Sikpa and
others applied nucleus detection to quantify breast metastatic disease

in the brain using an animal model with disseminated cancer spread,

serving as an indicator of disease burden.®®© However, whether the
results would be translatable to humans is unclear; the model used
(representing hundreds of micrometastasis in the mouse brain) is not
representative of the typical human counterpart (a single large metas-
tasis). In Nalisnik et al., an Al nucleus detection model was employed
to quantitatively characterise glioma microvascular structures, such as
hypertrophy and hyperplasia.®* Increased hyperplasia was found to
be associated with higher grades within each molecular subtype
(IDH-wild-type astrocytoma, IDH-mutant astrocytoma and oligoden-
droglioma). A regression analysis model was trained using these phe-
notypes across 781 WSIs, revealing a concordance index of 0.76,
demonstrating some ability to rank patient survival based on these
phenotypes. However, this is unsurprising as these phenotypes are
those chosen by the WHO classification as prognostically relevant;
hence, the conclusions are somewhat circular. Generalisation to other
datasets was not performed and would be necessary for clinical vali-
dation. Meanwhile, Xing et al. proposed a generalisable model of
nucleus detection applicable across multiple staining and tissue prepa-
ration methods, in an attempt to address the problem of batch effect
in multicentre datasets.®

Model outputs for nucleus segmentation were generally in agree-
ment with manual annotations or simpler computational techniques,
as demonstrated through statistical analyses such as Pearson’s corre-
lations and false-positive area ratios.®®¢® Segmentation margins were

examined in all four studies to assess interpretability.

GOAL 5: TUMOUR CLASSIFICATION AND
GRADING

Thirty-two studies focussed on tumour classification or grading directly
from H&E-stained tissue sections. Eighteen of these studies focussed
on grading gliomas, the majority of which aimed to distinguish
glioblastoma from lower-grade counterparts.3%36:40:42:44:454849,54,5582
Several studies did not specify the subtype of tumour classified
(e.g. astrocytoma subtype unspecified, oligodendroglioma/astrocytoma
subtype unspecified), thus their inclusion criteria and therefore clinical
utility are questionable.

Most of the studies (12 studies) were published in or before 2021
and therefore classified gliomas according to the 2007 or 2016 edi-
tions of the WHO classification (before molecular classifications were
introduced in the 2021 edition)?1323440-4247-505455 Three studies
(all published in 2022 or 2023) adopted the latest WHO integrated
classification for gliomas as per new molecular markers.383743

Jose et al. successfully differentiated IDH wild-type glioblastoma
from IDH-mutant and 1p/19g-codeleted oligodendroglioma, and IDH-

mutant astrocytoma,®&83

whereas Jungo et al. distinguished IDH-
mutant astrocytomas from astrocytosis.>’ Both models relied solely
on H&E-stained WSIs and achieved accuracies of 91.7% and 96.7%,
respectively. However, neither study reported on the specific mor-
phological features enabling these predictions, preventing assessment
regarding whether the model could reveal subvisual features unappar-

ent to the pathologist.
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Ma et al., however, employed a two-step algorithm to categorise
tumours based on cell type and histological grading.** Subsequently,
molecular parameters were imputed to formulate an integrated diag-
nosis using a decision tree classification algorithm, a simple classical
machine learning method (see Figure 3). Although this approach
acknowledges the significance of both morphological characteristics
and molecular features, it did not exhibit discernible enhancements
when compared to the established pathology pipeline.

Five studies subtyped paediatric medulloblastoma into classic,
nodular, desmoplastic or large cell.2627315152 Two studies delin-
eated anaplastic from non-anaplastic medulloblastoma.?’>® How-
ever, given that molecular stratifications in medulloblastoma are
becoming increasingly important, the diagnostic value of such histo-
logical classification in the absence of integration with molecular
parameters is debatable.? Nonetheless, anaplasia in medulloblastoma
is still regarded as a high-risk feature, and whilst its significance is
diminishing in certain molecular subtypes, such an algorithm would
be helpful if clinically validated. Two studies focussed on tissue fea-
ture subtyping of meningiomas into meningothelial, fibroblastic,
transitional, or psammomatous.33#¢ Although this may demonstrate
the ability of image recognition algorithms to discern distinct fea-
tures, again the diagnostic value is limited as these subtypes are of
less importance and have been superseded by molecular stratifica-
tion algorithms.2* Three studies performed a broad classification of
CNS tumours, including meningioma, astrocytoma, ependymoma and
oligodendroglioma.283441 However, all of these classification models
were based on morphological categories with no clear demonstra-
tion of time-cost benefit relative to pathologist review nor compari-
son of accuracy relative to the final molecular diagnosis, making
unclear their ability to offer additional clinical and prognostic utility.
This is particularly relevant to tumour types, for example, meningio-
mas, in which current classifications are primarily at the genomic
and epigenomic level.2

The most commonly utilised performance metrics were accuracy,
sensitivity, specificity and F1 score (see Figure 3 for definitions of
these performance metrics). Studies reported variable accuracy rates
ranging from 85% to 100%; however, none conducted comparative
analyses against human pathologist assessment (indeed 85% would be
considered poor performance relative to the accuracy required in
clinical practice). Only eight studies investigated interpretabil-
jity.29:32:34.36.44.4547.48 This included the use of representation spaces
to illustrate morphological features learned during training, such as
edges, nuclear stains and cellular orientations, and visualisations with
limited apparent clinical utility.?>3? Other studies generated probabi-
listic heatmaps to highlight the model’s attention during the decision-
making process, which included tumour cell clusters, suggesting the

plausibility of the proposed models.>”4°

GOAL 6: MOLECULAR CHARACTERISATION

Four studies aimed to predict the molecular status of tumours

based on H&E-stained tissue sections.®4%? One study used nuclear

JOURNAL OF THE BRI ALSOCIETY

morphology to predict the transcriptional profile of glioblastoma:

1.6 However, this classi-

classical, proneural, neural and mesenchyma
fication has been superseded by other systems because of emerging
evidence, including the IDH status. Jungo et al. predicted the 1p19q
co-deletion status of IDH-mutant tumours, reporting an accuracy of
88.6%, arguably lower than that acceptable in clinical practice®” and
probably even inferior to the morphological examination by an
experienced neuropathologist. Another study sought to predict
mutational status in glioblastoma and scored AUC metrics over 0.7
in four genes of interest (IDH1, ATRX, TP53 and RB1).%° Lietchy
et al. and Liu et al. focussed on predicting IDH status from H&E
stained slides.®”%® Although Lietchy et al.’s model did not outper-
form human pathologists when assessed using the AUC metric
when combining decisions made by both humans and the Al model
within a man-machine hybrid framework, the model achieved
superior performance compared to the consensus of two expert
neuropathologists.®”

Two studies assessed interpretability.®®¢” For example, human-
recognisable features deterministic of IDH mutational status were
revealed using methods to make predictions understandable through
dimensionality reduction of complex datasets. These characteristics
included oligodendroglial cytomorphology and the extent of pleomor-
phism.®” However, during external validation, the model showed
reduced performance (accuracy 0.809 vs 0.936 at internal testing),
suggesting failure to generalise to independent datasets. The value of
Al-based prediction of molecular status needs to be justified where
relatively rapid cost-efficient methods already exist (e.g. widely uti-

lised immunohistochemical tests for IDH mutations).

GOAL 7: SURVIVAL AND OUTCOME
PREDICTION

Nine studies focussed on predicting patient prognosis directly from
histopathological images.”®"”? Most studies adopted a multi-modal
approach, integrating histological data with other modalities such as
radiological, genomic or clinical data. Patients were stratified into sur-
vival probability groups or derived survival predictions through regres-
sion analysis. Evaluation metrics involved accuracy, AUC and
concordance index. Al models improved performance when consider-
ing data from multiple modalities compared to histopathological data
alone.”?”777? No studies explicitly showed that histopathology
data alone performed better or similar to multimodal data.

Model interpretation was attempted in five studies.”®”37>-77.79
Factors such as the percentage of hypertriploid nuclei and small,
dense chromatin clump frequency were found to be relevant in strati-
fying anaplastic astrocytoma patients into prognostic outcomes.”®
Three studies considered interpretability by defining molecular path-
ways and genetic expression features linked to survival.”>”%”” How-
ever, the histopathological features associated with survival were
mainly demonstrated using representative images from the long and
short survival groups, without explicit evaluation of which morpholog-

ical features guided Al decision-making.
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Internal and external validation

Internal validation refers to reserving a proportion of the original
dataset to assess Al model reliability. Internal validation plays a cru-
cial role in selecting the optimal model among candidate models
and estimating whether the model will be able to generalise on
unseen data. Robust but computationally expensive methods such
as k-fold cross-validation were used in 37 studies, and leave-
one-out cross-validation was utilised in four studies.*®344182 Seven
studies relied solely on the train-test split approach, which is com-
putationally simple but less representative of the model’s true gen-
eralisability. 1192832646572 Nine studies did not provide details
about internal validation.3%39:45:5860.61.637881 gee Figure 3 for
detailed definitions of internal validation techniques employed.
External validation evaluates model performance using entirely
new and independent data that were not part of the model’s training
or validation process. It is essential in determining a model’s reproduc-
ibility and applicability in real-world clinical settings. Only seven stud-
ies conducted external validation.?828:3257:67.7481 Qply three studies
within this subset reported model performance on the corresponding
unseen datasets.’®%”74 See Figure 3 for detailed definitions of exter-

nal validation methods employed.

Risk of bias assessment

Using the PROBAST evaluation tool, a significant proportion of stud-
ies displayed high risks of bias (61 studies) and limited applicability
(66 studies) overall (Table S3 and Figure 4). In this context, risk of bias
refers to flaws in the study’s design, execution, or analysis that may
result in systematically skewed assessments of a model’s predictive
accuracy. Applicability refers to whether the model will be representa-
tive of the population to which it will ultimately be applied. Forty-six
studies scored a high risk of bias in the ‘Participants’ domain. This
was largely attributed to (39 studies) sourcing of participant data from
pre-existing datasets, where data are typically collected for a purpose
other than model development or validation and often without an
appropriate protocol.2* Six studies did not provide clear information
regarding the data source used.1?4¢:58:59:63.65 Concerning the ‘Predic-
tors’ domain, a high risk of bias was identified in 16 studies because
of the use of manual annotation for ground truth labelling. This can
result in inter-observer bias, as manual techniques may vary across
observers. Within the ‘Outcomes’ domain, although the risk of bias
was infrequent, a majority (56 studies) of studies demonstrated low
applicability because of a lack of accessible published source code.
The majority of studies (43 studies) scored a high risk of bias in the
‘Analysis’ domain. This was typically attributed to (37 studies) lack of
reporting of the number of patients and/or images within the
development and testing cohorts, impeding assessment of whether an
adequate number of participants with the investigated outcome
were included and whether the analysis covered all enrolled partici-
pants. Only two studies described methods for handling missing

data.”?”® Four studies did not provide any model performance

information.1?2%2228 Except for the seven studies that conducted
external validation, the risk of model overfitting on training data was

largely overlooked.

DISCUSSION
Summary of findings

This review highlights the status of Al-driven histopathology image
analysis in neuro-oncology. This is an evolving field, with half of the
68 reviewed studies published after 2020. The field is in its early
stage; all of the studies were in the preclinical phase, retrospective in
nature, and most failed to conduct direct comparisons with human
pathologist assessment and to validate their outcomes with molecular
tests. Moreover, all studies displayed a high risk of bias and/or limited
applicability and thus potential clinical utility. Persistent issues
included inadequate reporting of dataset characteristics (including the
number of patients and/or images used for model development/
validation and describing the methods for handling missing data),
absence of external validation, insufficient recognition of batch effects
in multi-institutional datasets or normalisation approaches for batch
effects, and lack of published source code. Together, such issues pre-
clude testing of model performance in independent patient cohorts by
different research groups, critical in judging a model’s safety, reliability
and generalisability.

Al-driven image analysis for CNS tumour histopathology lags
behind several other disciplines. For example, the capacity of Al-
driven histopathology image analysis to achieve diagnostic accuracies
on par with human pathologists has been prospectively demonstrated
in other cancer types, such as gastric and colonic cancer.8>8¢ The use
of Al in prostate cancer grading is already at clinical evaluation
stages.®” In the field of neuro-oncology, Al applied to radiomic and
tumour DNA methylation data is also at a more advanced stage. For
example, Al algorithms applied to magnetic resonance imaging (MRI)
images of pituitary neuroendocrine tumours to predict Kié7 prolifera-
tion indices have been tested in clinical settings.2®

Challenges facing Al-driven image analysis of CNS
tumours

This review reveals an absence of clinical integration of the Al image
analysis algorithms. Achieving accurate CNS tumour classification
through Al algorithms presents a multifaceted challenge. In contrast
to many somatic tumours, CNS tumours, particularly low-grade glio-
mas, encompass a broad spectrum of subtypes, with either consider-
able morphological heterogeneity even within a single tumour type or
considerable morphological overlap between distinct molecular sub-
types.®? There is often a poor correlation between morphological fea-
tures and molecular precision diagnosis, particularly in low-grade
gliomas and glioneuronal tumours. This presents challenges in curating

large-scale databases for model training, as it necessitates the
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FIGURE 4 Bar chart summary of risk
of bias and applicability assessment of
included studies according to the
PROBAST tool, and the key factors
contributing to poor scores in each
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inclusion of numerous tumour categories whilst ensuring sample size
comparability between classes. For instance, IDH-wild-type glioblas-
toma can comprise multiple histological variants, including giant cell,

epithelioid or sarcomatous types.? This complexity can make it chal-
lenging for computational models to perform effective representation
learning from histopathology images and derive accurate predictions.
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Furthermore, none of the studies conducted an assessment of the
time and financial cost-effectiveness of implementing Al models
within the existing pathological workflow (in particular, in scenarios
where digital images are not routinely generated), especially when
compared to the expertise of neuropathologists. Future studies should
delve into these aspects to provide convincing evidence for evaluation
in the clinical setting.

The scarcity of prospective validation trials raises concerns given
their pivotal role in evaluating clinical utility and safety of Al models.”
Such trials are essential because changes in data characteristics
between Al training and deployment stages can lead to performance
degradation, a phenomenon known as ‘data shift.** Creating appro-
priate clinical studies for Al-based analysis is subject to numerous
methodological challenges including lack of necessary expertise to
translate these tools into practice in clinical pathology diagnostics,
alongside the need to integrate human factors, estimate generalisabil-
ity across sites and populations, and account for user variability.”®
Moreover, our review highlights that within the field of neuropatho-
logical image analysis, the absence of prospective validation trials
likely relates to the lack of evidence that existing Al-based algorithms
match the accuracy of neuropathologists in preclinical models, along-
side limited comprehension of how such models may integrate into
clinical practice.

Over one third of studies failed to report the number of patients
evaluated and/or the number of images evaluated, with only one
study discussing sample-size determination methodologies and subse-
quently testing the effect of sample size on Al model performance. Al
studies with small test datasets risk overfitting of data and finding spu-
rious correlations between confounding variables (e.g. scanner type,
scanning settings, such as resolution and file compression parameters,
slide origin, staining and slide quality) and target variables (e.g. tumour
type).?? Conversely, excessively large test datasets may not result in
significant improvements in model accuracy despite increased time
and cost. Finding an optimal balance between these requirements is a
challenge for Al studies and merits greater exploration. Established cri-
teria for evaluating sample size in Al studies are lacking, but potential
methodologies are increasingly being proposed, including relatively

simple confidence interval-based sample size calculations.”?

Clinical recommendations

Currently, the literature appears skewed towards using Al to classify
gliomas into morphological subtypes which are no longer listed in the
2021 WHO Classification (and have been superseded by molecular
classifications), so it is unclear how they could assist current clinical
workflows. Indeed, genetic and epigenetic parameters have now
superseded the importance of histological subtyping in low-grade glio-
neuronal tumours, as they show considerable morphological overlap
which may not be addressed with histological image analysis alone.
The use of Al for image analysis in CNS tumour histopathology
requires application to tasks which could be more usefully integrated

into existing diagnostic workflows. For example, specific labour-

intensive tasks, including determining mitotic and Kié7 indices to
inform prognosis and stratify aggressive subtypes, have demonstrated
convincing performances when executed by Al algorithms compared
to human counterparts.”® These tasks require significant time invest-
ment and are prone to interobserver disagreement and human error.
Historically, these tasks have been difficult to automate (i.e. using
rule-based software which operates on a set of predefined rules) and
may benefit from Al assistance (which can iteratively improve by
learning from data and making predictions based on new data).”*%>
Al-guided image analysis may also help inform and/or streamline
requests for molecular testing based on a preliminary morphological
diagnosis, although again this would require demonstrable time-
and/or cost-benefit relative to neuropathologist review. Finally, Al
could be used to ‘mine’ histopathological imaging data for ‘subvisual’
morphological features useful in diagnosis/prognostication unappar-
ent to the pathologist. This may be particularly helpful in cases
deemed unsolvable after assessment by pathologist review and avail-
able molecular testing, including DNA methylation arrays and genome
sequencing.”® Relevant to prognostication, Al has been used to predict
the survival of breast cancer patients from H&E-stained slides, with
greater accuracy than standard pathologist grading, based on stromal
morphological structures previously unrecognised as prognostically

relevant.””

Similarly, Al models have been shown to extract prognostic
information and make molecular predictions from tissue morphology
in colorectal and bladder cancer, with greater accuracy than patholo-
gists.”®?? Improved communication between clinicians and engineers
is imperative to achieve these advancements given the unique chal-
lenges in developing Al models for image analysis of CNS tumours.

Moreover, an essential prerequisite for the implementation of any
Al algorithm on CNS tumour histopathology is the availability of a
clinically validated digital pathology workflow integrated within the
neuropathology department. This should include dedicated scanners
for routine real-time digitisation of WSlIs, image management soft-
ware, and real-time access of Al algorithms to digitised images. Whilst
the requirement for dedicated equipment imposes financial hurdles,
access to external image analysis systems to stored histology datasets
imposes data privacy and logistical hurdles.

Engineering recommendations

Studies to date are largely of low quality, with a high risk of bias and
limited applicability. Key issues include inadequate documentation of
dataset attributes and the handling of missing data. A critically small
number of studies are externally validated, which is essential for dem-
onstrating a model’s ability to generalise on unseen datasets. Only a
limited number of studies share their model source code, a practice
which enhances research reproducibility, facilitates collaboration
efforts and enables peer validation. Finally, Al model evaluation
should be evaluated using clinically relevant appropriate metrics
(e.g. relevant online tools).*®°

Several multi-centre datasets are utilised in the current literature,

but this can cause batch effects (non-biological factors that create
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Lack of demonstratable time and cost
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neuropathologists

2
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the assessment of model generalisability

Inadequate documentation of dataset
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Engineering
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relevant metrics and uncertainty
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pre-processing protocols
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Clinical

4

Integrate Al to automate labour-
intensive tasks
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Streamline molecular testing requests
guided by Al preliminary diagnoses
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features for diagnostic and prognostic
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published guidance as a framework,
such as DECIDE Al

o

FIGURE 5 Recommendations for the clinical and engineering communities to help bridge the gap between preclinical studies (the current
state of the field) and clinical implementation in the field of Al-driven histopathology image analysis of CNS tumours.

variation in the data) at various stages, from tissue collection to image
digitisation. This could cause Al models to focus on the unique WSI
signatures of individual sites, rather than inherent biological attri-
butes.’®! Recommendations have been made for studies utilising
multi-centre datasets, including reporting variations in outcomes
observed across sites and implementing various pre-processing steps,
including stain normalisation.’®! These steps are often omitted in the
reviewed studies and should be considered. Comprehensive, freely
available single-centre histopathology datasets (e.g. The Digital Brain
Tumour Atlas) could be exploited for Al analysis whilst overcoming

some of the issues associated with batch effects.'°?

Strengths and limitations

Through a systematic review of the literature, the present study offers
an up-to-date exploration of Al-driven applications for the analysis of

CNS tumour histopathology image analysis. The findings are critically

evaluated in the context of clinical utility, with the provision of practi-
cal recommendations (Figure 5). However, certain limitations should
be acknowledged. Although the identification of studies was compre-
hensive, it was constrained to the search strategies employed. Only
full-text articles in the English language were considered, which could
result in the omission of certain studies. Whilst an array of databases
in the biomedicine domain have been examined, future investigations
could encompass databases within computer science and related dis-

ciplines, including resources such as the IEEE Xplore Digital Library.

CONCLUSION

We present a systematic review of the literature concerning the use
of Al for the analysis of neuro-oncological histopathological images.
Despite a growing body of relevant literature, the field remains at an
early stage; all of the studies were retrospective and preclinical, and

poorly aligned with current diagnostic neuropathology workflows. A
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high risk of bias was identified across the majority of studies; persis-
tent issues identified included an absence of external validation and
inadequate reporting of study characteristics. Based on these findings,
we propose specific clinical and engineering recommendations, includ-
ing adopting up-to-date integrated classification systems, improved
reporting transparency of the number of patients and/or images
within the model training and testing cohorts, rigorous external
validations, and better considerations of model interpretability. We
suggest that implementations of such changes, alongside better cross-
disciplinary collaborations among clinicians, computer scientists,
image analysts and engineers, are needed for the creation of robust Al
models able to transition from preclinical models into clinical trials,
with structured evaluation as per published guidance (e.g. DECIDE Al,
CONSORT-AI).¢8:7°
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