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Background

The H3F3A gene mutation was first discovered in pediatric 
glioblastoma in 2012 [1]. Subsequent research found that 
H3K27M mutations are frequently observed in pediatric 
diffuse pontine gliomas and non-brainstem glioblastomas 
[2–3]. Gliomas with midline structures accompanied by 
H3K27M mutations were introduced as a new independent 
tumor subtype in the 4th edition of the WHO classifica-
tion of central nervous system tumors in 2016, and were 
defined as WHO grade 4 DMG(Diffuse midline glioma) [4]. 
In 2018, cIMPACT-NOW [5] provided an interpretation of 
the definition of DMG with H3K27M mutations and pro-
posed strict diagnostic criteria, stating that the tumor must 
exhibit diffuse growth (i.e., infiltrative), midline structures 
(thalamus, brainstem, spinal cord, etc.), histological mor-
phology, and gliomas with H3K27M mutations. The 5th 
edition of the WHO classification of central nervous system 
(CNS) tumors in 2021 defined this malignant tumor as “dif-
fuse midline glioma, H3K27 altered” (reflecting a variety 
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Abstract
Purpose  This study retrospectively analyzes cases of diffuse midline glioma treated with radiotherapy, with the aim of inves-
tigating the prognosis of the tumor and its influencing factors.
Methods  From January 2018 to November 2022, we treated 64 patients who were pathologically diagnosed with diffuse 
midline glioma. Among them, 41 underwent surgical resection, and 23 underwent biopsy procedures. All patients received 
postoperative radiotherapy. We followed up with the patients to determine the overall survival rate and conducted univariate 
and multivariate analyses on relevant indicators.
Results  The median survival time for the entire patient group was 33.3 months, with overall survival rates of 92.9%, 75.4%, 
and 45.0% at 1 year, 2 years, and 3 years, respectively. Univariate and multivariate analyses indicated that older patients had 
a better prognosis.
Conclusion  Patient age is an independent prognostic factor for patients with diffuse midline glioma undergoing radiation 
therapy.
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of potential molecular and epigenetic changes) [6]. Patients 
with DMG accompanied by H3K27M alterations exhibit 
differences in disease progression, treatment, and prognosis. 
This study explores the age, histopathological grade, and 
site of onset characteristics and prognosis-related factors of 
patients with DMG accompanied by H3K27M alterations, 
aiming to provide more data references for the standardized 
and individualized precision treatment of such patients.

Materials and methods

Patients

Imaging studies indicated that the lesions were located in 
midline structures, including the thalamus, brainstem, cere-
bellum, and spinal cord. All patients in the cohort underwent 
radiotherapy. Histopathological examination revealed glio-
mas, and immunohistochemistry showed positive expression 
of H3K27M. The study included 64 patients, none of whom 
had severe cardiovascular or cerebrovascular diseases, nor 
any other malignancies. Hematological assessments showed 
hemoglobin levels ≥ 110  g/L, white blood cell (WBC) 
counts ≥ 4.0 × 10^9/L, platelet counts ≥ 100 × 10^9/L, ala-
nine aminotransferase (ALT) ≤ 40 U/L, aspartate amino-
transferase (AST) ≤ 40 U/L, and levels of urea, creatinine, 
and total bilirubin were less than 1.5 times the upper limit 
of normal.

The study population consisted of 38 males and 26 
females, aged between 6 and 56 years, with a median age 
of 32 years. The disease was located in the spinal cord in 
19 cases and intracranially in 45 cases. Of these, 41 patients 
underwent surgery, 23 underwent biopsy, 35 received con-
current oral temozolomide chemotherapy during radiation 
therapy, and 29 underwent radiation therapy alone.

Radiotherapy and chemotherapy

The patient’s position was fixed using a thermoplastic 
film or vacuum cushion, followed by CT scan simulation 
positioning. The radiotherapy planning system was used 
for digital transmission and three-dimensional reconstruc-
tion of images. The visible tumour lesions in the images 
were delineated, based on MRI T1 enhanced images, T2 
weighted images, and FLAIR images to determine the 
range of the tumour lesion (Gross target volume, GTV). 
The potential clinical areas that might be invaded were con-
sidered as the treatment target area (Clinical target volume, 
CTV, the median total dose of radiotherapy was 54 Gy. In 
the concurrent chemotherapy group, temozolomide was 
orally administered at a dose of 75 mg/m2/day during radio-
therapy. Regular monitoring of the patient’s blood routine 
and liver and kidney function was maintained until the end 
of radiotherapy.

Statistical analysis

A database was established using SPSS 17.0 statistical soft-
ware. Univariate analysis was performed using the Kaplan-
Meier method, and significant differences were tested using 
the two-tailed Logrank test. A stepwise regression multivar-
iate analysis was conducted using the Cox regression model 
to evaluate independent prognostic factors.

Results

The follow-up of this study was concluded in February 
2023, with a median survival time of 33.3 months among 
the entire patient group. The overall survival rates for 
the first, second, and third years were 92.9%, 75.4%, and 
45.0%, respectively, as shown in Fig. 1. Stratified analysis 
was performed on the entire patient group according to dif-
ferent factors. Numerical variables were grouped based on 
the median, such as age grouped by the median age of 32 
years, Ki67 index grouped by the median of 27, and histo-
pathology grouped by grade 4 and below.

Univariate analysis

Univariate analysis showed that the prognostic factor affect-
ing the post-radiation treatment of DMG patients was the 
patient’s age, with younger patients having a worse progno-
sis, as shown in Fig. 2. The histopathological grading and the 
level of Ki67 index were statistically significant, as shown 
in Fig. 3. However, factors such as gender, surgical method, 
and whether concurrent temozolomide chemotherapy was 

Fig. 1  Survival curve for the entire patient group
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used did not show statistically significant effects, as shown 
in Table 1.

Cox proportional hazards regression multivariate 
analysis

The univariate analysis was conducted on statistically sig-
nificant factors and those nearing statistical significance, as 
well as factors that may have a clinical impact on progno-
sis. These were then incorporated into the regression model. 
The results indicated that age is an independent prognostic 
factor in patients undergoing radiation therapy for DMG. 
Younger patients had a poorer prognosis. Please refer to 
Table 2 for details.

Discussion

Diffuse midline glioma (DMG) is the sole tumor type for 
which grading is determined through a combination of 
molecular profiling and histopathological alterations. These 
tumors are commonly located in midline structures such 
as the thalamus, brainstem, and spinal cord [6]. Less com-
mon sites include the third ventricle, hypothalamus, pineal 
region, and cerebellar hemispheres [7].The patients in this 
study were primarily located in the thalamus, brainstem, and 
spinal cord, consistent with the literature reports. The clini-
cal manifestations of DMG primarily depend on the loca-
tion of the tumor. The clinical manifestations of the patients 
in this study included blurred vision, limb weakness, stra-
bismus, headache, and dizziness, which are consistent with 
the literature reports [8].

In the diagnosis of the patient cohort under study, the 
criteria included radiological evidence of diffuse infiltrative 
growth centered on midline structures. The determination 
of H3K27M mutation status was conducted using immuno-
histochemistry (IHC), which facilitates the identification of 
mutations, particularly in the diagnosis of H3K27M-mutant 
diffuse midline gliomas. Multiple studies have reported 
a significant correlation between the expression of the 
H3K27M protein and the presence of H3K27M mutations 
[9]. The histopathological spectrum of DMG with H3K27M 
alterations is broad, primarily characterized by astrocytic 
differentiation. It can manifest in any form ranging from 
WHO grade 2 diffuse astrocytoma to WHO grade 4 glio-
blastoma multiforme (GBM), or multiple forms can coexist 
in different regions. There is no significant difference in the 
histological grade distribution between adult and pediatric 
patients [10, 11].Solely relying on histopathological grad-
ing to predict patient prognosis has its limitations. In our 
study group, the histopathological types of tumors included 
diffuse astrocytoma (WHO grade 2, 9 cases), anaplastic 

Fig. 3  A Patients with a tissue grade of 4 have a poorer prognosis, 
P = 0.083. B The Ki67 index, stratified according to a median value 
of 27, indicates that a higher value corresponds to a worse prognosis, 
P = 0.060

 

Fig. 2  According to the stratified survival curve by age, patients under 
the age of 32 have a poorer prognosis, P = 0.033
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indicator of tumor proliferation rate. In the context of DMG, 
although the prognostic utility of conventional histological 
grading alone is limited, the Ki-67 index has demonstrated 
prognostic value, with similar findings reported in other 
gliomas [13, 14]. Studies have shown a strong correlation 
between higher Ki-67 indices and larger tumor volumes in 
glioblastoma multiforme [15]. Furthermore, elevated Ki-67 
indices in DMG are associated with a higher frequency of 
hypermutated alleles, which in turn correlates with poorer 
survival rates [16]. In our study, patients were stratified 
based on a median Ki67 index of 27%, with those exhibit-
ing higher indices tending to have shorter survival periods, 
although this did not reach statistical significance. These 
findings suggest that DMGs exhibit considerable hetero-
geneity, with a multitude of prognostic factors influencing 
outcomes. Further research is warranted to refine potential 
markers for study.

astrocytoma (WHO grade 3, 12 cases), and GBM (WHO 
grade 4, 24 cases). Some patients did not receive specific 
histopathological subtyping due to variations in pathologi-
cal standards across different regions. Upon univariate and 
multivariate analysis, the histopathological type did not sig-
nificantly impact prognosis, with no statistical significance 
observed.

The treatment of gliomas has entered the era of molecu-
lar profiling, with pivotal genomic studies highlighting the 
significance of molecular markers such as IDH mutations, 
1p/19q codeletion, MGMT promoter methylation, ATRX 
mutations, TERT promoter mutations, PTEN mutations, 
and TP53 mutations and so on. These studies have revealed 
that diffuse intrinsic pontine gliomas (DIPGs) are driven 
by somatic mutations in the histone H3 gene, defining sub-
groups with distinct biological and clinical phenotypes and 
prognoses. Various indicators have differential impacts on 
the prognosis of gliomas [12]. The Ki67 index serves as an 

Table 1  Univariate analysis of factors influencing the prognosis of diffuse midline glioma
Group Category Numbers Survival Rate(%) χ2 value P value

1 year 2 year 3 year
Gender 11.370 0.242
Male 38 91.1 69.6 35.4
Female 26 96.0 84.0 58.8
Age (Years) 4.565 0.033
< 32 31 88.3 61.5 26.4
≥ 32 33 96.9 86.3 14.4
Histopathological Grading 3.009 0.083
< Grade 4 23 89.1 82.2 82.2
Grade 4 24 95.5 67.4 25.3
Ki67 index 3.529 0.06
< 27% 25 95.8 89.8 89.9
≥ 27% 26 90.2 68.6 11.4
Lesion Location 0.741 0.389
Spinal Cord 19 88.5 71.5 71.5
Intracranial 45 94.7 76.3 33.0
Diagnosis Method 0.869 0.351
Biopsy 23 89.3 74.4 74.4
Resection 41 94.7 87.9 31.6
Concurrent Chemotherapy 0.488 0.485
Yes 35 90.8 82.9 44.2
No 29 96.2 66.3 47.4

Table 2  Results of multivariate analysis
B SE Wald df P Exp(B) 95.0% Exp (B) CI

lower Upper
Gender 0.029 0.542 0.003 1 0.958 1.029 0.356 2.976
Age (Years) 1.660 0.625 7.061 1 0.008 5.258 1.546 17.884
Lesion Location 0.417 0.644 0.419 1 0.517 1.518 0.429 5.365
Diagnosis Method -0.426 0.674 0.399 1 0.527 0.653 0.174 2.446
Chemotherapy 0.861 0.587 2.151 1 0.142 2.365 0.749 7.475
Histopathological Grading 0.139 0.386 0.130 1 0.719 1.149 0.540 2.446
Ki67 index 0.463 0.397 1.357 1 0.244 1.588 0.729 3.460
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When complete surgical resection is not feasible, conven-
tional high-dose fractionated radiotherapy and temozolo-
mide chemotherapy are the primary treatment options [29, 
30]. However, comparisons of different treatment regimens 
in children and adults, such as concurrent chemoradiother-
apy, post-radiotherapy chemotherapy, radiotherapy alone, 
or chemotherapy alone, have not demonstrated statistically 
significant advantages [17, 29, 31]. Therefore, treatment 
approaches should be tailored to each individual case [29]. 
The overall prognosis for DMG is poor, and improving the 
survival of patients with DMG is an increasingly researched 
topic. Radiotherapy remains the mainstay of treatment and 
its efficacy is well-established. A study by Othman Bin-
Alamer et al. [32] found that the survival time of patients 
who received radiotherapy was significantly longer than 
those who did not, with a P < 0.019. Given the importance 
of radiotherapy in the treatment of DMG, it is essential to 
investigate prognostic factors associated with it.

In their comprehensive description of the characteris-
tics of DMG, Carlos et al. [33] reported a generally poor 
overall survival for the condition, with a median survival 
duration of 9–12 months in children and 9–19 months in 
adults. Studies comparing prognostic differences between 
the two age groups indicate that pediatric patients have 
nearly identical poor outcomes [34] or even worse progno-
ses [29] when compared to adults. DMG is common in chil-
dren and adolescents but can also occur in middle-aged and 
elderly individuals, with no significant gender differences 
[34]. Literature reports indicate that the average age at diag-
nosis ranges from 25 to 39.1 years [35–37]. In a survival 
analysis conducted by Yao et al. [38] on 33 patients with 
DMG, it was observed that survival duration increased with 
age. Notably, patients older than 45 years exhibited a sig-
nificantly better prognosis than those younger than 19 years 
(P = 0.001). However, Cox regression analysis did not con-
firm this result as statistically significant. The age range of 
the patients in this study was 6–56 years, with a noticeable 
trend across all age groups. After stratifying by the median 
age of 32 years, both univariate and multivariate analyses 
were conducted, all of which were statistically significant. 
This suggests that age is an independent prognostic factor 
for patients undergoing radiation therapy for DMG.

The therapeutic efficacy of the chemotherapeutic agent 
temozolomide in the treatment of glioblastoma continues 
to emerge, as exemplified by a clinical study conducted by 
the European Organisation for Research and Treatment of 
Cancer (EORTC). Stupp R and colleagues [39, 40] ana-
lyzed data from 573 patients with glioblastoma, finding that 
the median survival was significantly longer in the group 
receiving concurrent radiotherapy and chemotherapy (14.6 
months) compared to the radiotherapy-only group (12.1 
months). This has led to an increasing number of scholars 

Patients with DMG typically exhibit radiological features 
characterized by diffuse infiltrative growth, accompanied by 
varying degrees of enhancement, edema, necrosis, and hem-
orrhage. The imaging characteristics of adult DMG have 
yielded divergent results across several studies [17–20]. To 
date, no distinct structural imaging features have been iden-
tified, which may be attributed to their lower incidence and 
the recent recognition of DMG as a separate entity [20]. The 
highly variable appearances on MRI are largely due to the 
heterogeneity of tissue pathology, which in turn reflects the 
histopathological diversity of DMG [19]. The radiological 
findings in our cohort are consistent with those reported in 
the literature, with no unique imaging features observed.

Surgical resection is a critical initial treatment modality 
for gliomas, with higher rates of resection correlating with 
increased survival [21–23]. Liu et al. [24] collected data 
from 529 patients with brainstem gliomas and found that 
the group with complete resection had the highest overall 
survival rate. In the subgroup of children with low-grade 
brainstem gliomas (BSG), those who underwent complete 
resection had a significantly higher survival rate compared 
to those who did not. However, in adults with low-grade 
BSG and children with high-grade BSG, the survival rates 
were higher in the complete resection group, but the dif-
ferences were not statistically significant. Clinical stud-
ies indicate that patients with focal low-grade brainstem 
and dorsally exophytic tumors may benefit from surgical 
resection [25]. Ius et al. [26] reported that the incidence 
of complications following biopsy and surgical resection 
for high-grade brainstem gliomas was 10.5% and 35.5%, 
respectively, p = 0.009, indicating a statistically significant 
difference. For patients with DMG, due to the location of 
the lesion in the midline structures of the brain and spinal 
cord, the difficulty of surgical resection makes the impact 
of the extent of tumor removal on prognosis unclear. Kare-
mann and colleagues assessed 85 pediatric patients with 
DMG and found that the extent of resection was not associ-
ated with prognosis [27]. The HERBY trial, which included 
42 patients with thalamic DMGs, demonstrated an associa-
tion between maximal tumor debulking or near-total resec-
tion and extended overall survival [28]. The aforementioned 
studies highlight the impact of anatomical location on the 
completeness of surgical resection and the probability of 
postoperative complications, both of which may influence 
the prognosis of DMG patients. Further refined research is 
necessary to screen and select patients suitable for surgery 
to ascertain the role of surgical intervention in the treatment 
of DMGs. In this cohort, the extent of surgical resection was 
not fully documented, only biopsy and surgical procedures 
were stratified for analysis, with no statistical difference 
observed.
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advances hold promise for improving the poor prognosis of 
DMG patients through combination therapies. We aim to 
increase the sample size and refine patient categorization to 
provide reference indicators for the formulation of clinical 
treatment plans, offering new hope for patients with DMG.
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