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Abstract
Background and purpose  Magnetic resonance imaging is indispensable for the preoperative diagnosis of glioma. 
This study aimed to investigate the role of the apparent diffusion coefficient values as predictors of survival in patients 
with gliomas.

Methods and materials  A retrospective analysis was conducted on 101 patients with gliomas who underwent 
surgery between 2015 and 2020. Diffusion-weighted MRI was performed before the surgery. The regions of interest 
were categorized into parenchymal area, non-enhancing peritumoral area, and necrotic or cystic area. All the patients 
were divided into three subgroups: the parenchyma group, the non-enhancing peritumoral signal abnormality group, 
and the necrosis or cyst group. Univariate and multivariate analyses were performed using COX regression.

Results  In the parenchymal group, Ki67, P53, IDH, and the high or low ADC values were identified as independent 
prognosticators for disease-free survival, while Ki67, IDH, and the high or low ADC values for overall survival. 
In the non-enhancing peritumoral signal abnormality group, Ki67, P53, IDH, and the ADC parenchymal area/ADC 
non−enhancing peritumoral area ratio were identified as independent prognostic factors for disease-free survival, while Ki67, 
IDH, and the ADC parenchymal area/ADC non−enhancing peritumoral area ratio for overall survival. In the necrosis or cyst group, 
Ki67 was significantly associated with disease-free survival, while Ki67 and the ADC value of the necrotic or cystic area 
for overall survival.

Conclusions  The ADC values, including the ADC value in the parenchymal area, the ADC parenchymal area/ADC 
non−enhancing peritumoral area ratio, and the ADC value in the necrotic or cystic area, can serve as an efficient and potential 
index for predicting the survival of patients with glioma.
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Introduction
Gliomas are the most common primary intracranial 
tumors, which account for about 80% of brain malignan-
cies [1], with a global incidence rate of 5 to 6 cases per 
100,000 people each year [2]. The 5-year survival rate 
is only 5% for glioblastoma [1]. Gliomas of the central 
nervous system were classified into low-grade (grades I, 
II) and high-grade (grades III, IV) by the World Health 
Organization (WHO) [3]. The main treatments for glio-
mas include surgical resection, adjuvant chemotherapy, 
and radiotherapy [4, 5]. Despite the comprehensive treat-
ment options available for glioma patients, the overall 
prognosis remains poor. Currently, there is still a lack of 
effective methods to predict the survival outcomes for 
individuals diagnosed with glioma.

Magnetic resonance imaging (MRI) is a commonly used 
non-invasive diagnostic method in the preoperative diag-
nosis of gliomas [6]. Due to DNA-sequencing is either 
costly and difficult to achieve in the process of pathologi-
cal diagnosis, by evaluating the enhancement, necrosis, 
edema, angiogenesis and other aspects of the tumor on 
MRI, the preliminary diagnosis of the tumor classification 
and grade can be made, which is important for the diag-
nosis and treatment of patients in some special cases [7]. 
Diffusion-weighted imaging (DWI), a specialized func-
tional MRI technique, possesses sensitivity to the motion 
of water molecules within living tissues [8]. The appar-
ent diffusion coefficient (ADC) is derived from DWI 
and displayed as a parametric map. The value of ADC is 
calculated based on the fluidity of water molecules and 
the density of cells, which has the potential to noninva-
sively assess the overall hypoxic status of tumors [9]. It is 
an important indicator for evaluating treatment efficacy 
and tumor progression or recurrence [10, 11]. Higher 
ADC values indicate greater fluidity and lower cell den-
sity [12]. Previous reports have indicated a relationship 
between ADC values in the parenchymal area of gliomas 
and patient’s survival [13, 14]. Due to the obstruction of 
the flow of water molecules, the ADC value of highly cel-
lular tissue is lower. The lower the ADC value, the worse 
the patient’s prognosis. While in high-grade gliomas, the 
presence of edema and necrosis has been found to cor-
relate with survival [15, 16]. Glioblastoma patients with 
less necrosis have longer survival times, and peritumoral 
edema is associated with poor prognosis [15]. The sur-
vival rate of glioblastoma patients with necrosis is lower 
than that of patients without necrosis [16]. Since peritu-
moral edema contains tumor cells, the P/N ratio (ADC 
parenchymal area/ADC non−enhancing peritumoral area) was included 
in this study. To the current knowledge, no prior research 
has been explored to investigate the connection between 
survival and the P/N ratio. Therefore, it is necessary to 
measure the ADC value in different regions to predict the 
survival of patients.

In this study, the ADC value in the parenchymal area, 
the P/N ratio and the ADC value in the necrotic or cys-
tic (N/C) area were calculated to explore the relation-
ship with disease-free survival (DFS) and overall survival 
(OS).

Methods
Patient population
A retrospective analysis was conducted on a total of 101 
patients with gliomas who underwent surgical resection 
followed by radiotherapy in combination with temozolo-
mide at the First Affiliated Hospital of Wenzhou Medi-
cal University from November 2015 to October 2020. 
The inclusion criteria for this study were as follows: (1) 
histopathologically confirmed diagnosis of gliomas based 
on the World Health Organization criteria by at least one 
expert pathologist; (2) availability of MRI examination 
with DWI sequence prior to the surgery; (3) no previous 
antitumor treatment prior to the surgery; (4) administra-
tion of radiotherapy and chemotherapy after the surgery. 
Patients who had conditions such as severe cardio-cere-
brovascular disease, other malignant tumors, and a large 
number of extracranial tumors that could potentially 
decrease their chances of survival were not included in 
the study. These exclusion criteria aimed to ensure that 
the focus of the research was on patients with the highest 
likelihood of achieving positive outcomes. The scientific 
investigation took place at the First Affiliated Hospital 
of Wenzhou Medical University and received approval 
from the Institutional Review Board. The need for writ-
ten informed consent was exempted.

Magnetic resonance imaging
All the 101 patients participated in the study and under-
went a series of brain scans using a 3.0 Tesla MRI scan-
ner (Philips Achieva, Philips Medical System) equipped 
with an 8-channel receive-only head coil. The MRI scans 
included T1-weighted imaging (T1WI), T2-weighted 
imaging (T2WI), contrast-enhanced T1WI, fluid-
attenuated inversion recovery (FLAIR), and diffusion-
weighted imaging (DWI) before the surgery. The DWI 
scans were obtained in the transverse plane using a spin 
echo-echo planar imaging (SE-EPI) sequence, which 
had the following parameters: echo time/repetition time 
(TE/TR) = 109/3234 ms, field of view = 230 × 230 mm2, 
matrix = 128 × 128, slice thickness = 5.0  mm, and b-val-
ues = 0, 1000 s/mm2. The mean ADC value of the region 
of interest (ROI) was calculated from the DWI scans 
obtained at b-values of 0 and 1000 s/mm2 using the Mic-
roDicom DICOM Viewer software 2022.3 (Build 4004).

Imaging analysis and regions of interest (ROI)
The ROIs were divided into three areas by using three 
different colored lines: parenchymal area, non-enhancing 
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peritumoral area, and N/C area (Fig.  1). All slices con-
taining these areas were drawn in transverse section, and 
at each slice, the largest area was plotted along the lesion 
area. In this study, DWI images with a b-value of 1000 s/
mm2 were manually used to place the ROIs. Then, the 
DWI images with a b-value of 0 s/mm2 were duplicated 
by using these ROIs. According to the ADC value calcu-
lation formula, the ADC values of different areas on each 
slice were calculated firstly, and then the average ADC 
values of different regions were calculated according to 
these ADC values. To ensure accuracy and impartiality, 
an experienced radiologist analyzed the pre-surgery mag-
netic resonance (MR) images and DW images. This radi-
ologist was blinded to the pathology reports and clinical 
patient data, which reduced the possibility of bias. In case 
of any uncertainties or disagreements, another senior 
radiologist was consulted for resolution.

Treatment
All the patients enrolled underwent gross total resection. 
However, due to the invasive nature of high-grade glio-
mas, completely removing the tumor pathologically can 
be challenging. To achieve the maximum safe resection 
of high-grade gliomas, new surgery-assisted techniques 
such as neural image navigation and intraoperative neu-
roelectrophysiological monitoring was applied. After the 
surgery, all the patients received radiotherapy (54 ~ 60 Gy 
for 5 ~ 6 weeks) concurrent with simultaneous TMZ 

chemotherapy. Six cycles of adjuvant chemotherapy were 
administered after concurrent chemoradiotherapy.

Follow-up
OS and DFS were the primary endpoints in this study. 
The assessment of OS involved determining the length of 
time between surgical intervention and either the occur-
rence of death or the end of the study period. Similarly, 
DFS was calculated by evaluating the time between the 
surgical procedure and the initial occurrence of recur-
rence, death, or the conclusion of the study period, 
whichever occurred first.

Statistical analysis
The patients were divided into three subgroups: the 
parenchymal group, the non-enhancing peritumoral sig-
nal abnormality (NEPSA) group, and the N/C group. For 
the parenchymal group, the ADC value of the parenchy-
mal area was analyzed using the X-tile software to classify 
it into high ADC value and low ADC value. Univariate 
and multivariate Cox regression analysis was conducted 
to examine the factors influencing DFS and OS, and the 
Kaplan-Meier method was used to visualize the results. 
In the NEPSA group, the P/N ratio was used for analy-
sis. Furthermore, the COX proportional hazard regres-
sion model was employed to investigate the relationship 
between DFS, OS, and the relevant factors. In the N/C 
group, the association between the ADC value of the N/C 

Fig. 1  Tumor segmentation in DWI MRI. (A) non-enhancing peritumoral area in DWI with the b-value of 0 s/mm2. (B) non-enhancing peritumoral area in 
DWI with the b-value of 1000 s/mm2. (C) Necrotic area in DWI with the b-value of 0 s/mm2. (D) Necrotic area in DWI with the b-value of 1000 s/mm2. (E) 
Parenchymal area in DWI with the b-value of 0 s/mm2. (F) Parenchymal area in DWI with the b-value of 1000 s/mm2
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area and DFS or OS was examined. A statistically signifi-
cant difference was defined as a p-value less than 0.05. All 
statistical analyses in this article were performed using 
commercially available statistical software (version 4.2.2, 
R Statistics Software, Inc.).

Results
Patient characteristics and survival
The characteristics of 101 patients with gliomas are sum-
marized in Table 1. The results of mean ADC measure-
ment were 1.186 (ranging from 0.679 to 1.770) (× 10− 3 
mm2/s) in parenchymal area with 101 patients; 1.306 

(ranging from 0.816 to 1.552) (× 10− 3 mm2/s) in non-
enhancing peritumoral area with 70 patients; 1.793 (rang-
ing from 1.065 to 2.483) (× 10− 3 mm2/s) in N/C area with 
75 patients. The median follow-up time for the patients 
was 51.8 months, ranging from 30.23 to 87.03 months. 
Out of the 101 patients, 62 experienced a relapse, with a 
median disease-free survival time of 18.8 months (rang-
ing from 0.63 to 57.50 months). Among them, 50 patients 
with glioblastoma relapsed and 12 patients with non-glio-
blastoma relapsed. Additionally, 70 patients died, with a 
median survival time of 24.7 months (ranging from 1.73 
to 68.57 months). Among them, 58 patients with glioblas-
toma died and 12 patients with non-glioblastoma died.

The subgroup of the patients who had parenchymal area
All the patients included in the study exhibited parenchy-
mal area. The cut-off value for ADC in the parenchymal 
area was determined using X-tile software (V.3.6.1). An 
ADC value more than 1.123 × 10–3 mm2/s was classified 
as high, while the remaining values were classified as low.

A wide range of factors were evaluated using Kaplan-
Meier curves and cox regression analysis to determine 
prognostic factors for postoperative survival. Univariate 
and multivariate cox regression analysis indicated that 
Ki67, P53, IDH, and high or low ADC value were inde-
pendent prognostic factors for DFS (Fig. 2A-D; Table 2).

The same approach was used to identify OS-associated 
features, such as age, presence of glioblastoma, grade, 
Ki67, P53, IDH, NEPSA, status of N/C, and high or low 
ADC value per univariate cox regression analysis. Multi-
variate Cox regression analysis revealed that Ki67, IDH, 
and high or low ADC value were independent prognostic 
factors for postoperative OS (Fig. 2E-G; Table 3).

The subgroup of the patients who had non-enhancing 
peritumoral area
A total of 70 patients with non-enhancing peritumoral 
area were included in the study. Univariate COX regres-
sion analysis revealed that the ADC value of the non-
enhancing peritumoral area did not show any statistically 
significant association. However, the ADC value of the 
parenchymal area showed a statistically significant asso-
ciation with DFS and OS when analyzed. Therefore, the 
P/N ratio was incorporated in the subsequent analysis.

The study analyzed various factors such as age, gen-
der, presence of glioblastoma, location, grade, Ki67, P53, 
MGMT, IDH, tumor maximum diameter, status of N/C, 
and the P/N ratio to determine their association with 
DFS. To assess these characteristics, univariate and mul-
tivariate cox regression analyses were performed. The 
results showed that Ki67 (P = 0.013), P53 (P = 0.043), IDH 
(P = 0.042), and the P/N ratio (P = 0.030) were indepen-
dent prognostic factors for DFS. Similarly, the study iden-
tified that Ki67 (P = 0.015), IDH (P = 0.009), and the P/N 

Table 1  Patient characteristics
Variables Values Range or percent
Total no. of patients 101
Age, years
  ≤ 52 55 54.5%
  >52 46 45.5%
Gender
  Male 53 52.5%
  Female 48 47.5%
Glioblastoma
  Yes 67 66.3%
  No 34 33.7%
Location
  Occipital lobe 5 5.0%
  Parietal lobe 22 21.8%
  Temporal lobe 31 30.7%
  Frontal lobe 33 32.7%
  Other 10 9.9%
Grade
  Low 18 17.8%
  High 83 82.2%
Ki67
  ≤ 10% 29 28.7%
  >10% 72 71.3%
P53
  Positive 70 69.3%
  Negative 31 30.7%
MGMT
  Positive 61 60.4%
  Negative 40 39.6%
IDH
  Positive 32 31.7%
  Negative 69 68.3%
Tumor maximum diameter
  ≤38 mm 32 31.7%
  >38 mm 69 68.3%
NEPSA
  Yes 70 69.3%
  No 31 30.7%
Necrosis or cyst
  Yes 75 74.3%
  No 26 25.7%
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ratio (P = 0.047) were independent prognostic factors for 
OS using the same method.

Ki67, P53, IDH, and the P/N ratio were utilized to 
develop a nomogram model for predicting DFS and the 
DFS rates at 1, 2, and 3 years (Fig.  3A). Similarly, Ki67, 
IDH, and the P/N ratio were employed to construct a 
nomogram for predicting postoperative OS and the OS 
rates at 1, 2, and 3 years (Fig. 3D).

The study conducted a comprehensive evaluation of 
nomograms for discrimination, calibration, and clini-
cal utility. This evaluation involved the use of various 
measurements such as C-index, receiver operating char-
acteristic (ROC), calibration plot, and decision curve 
analysis (DCA). Specifically, the nomogram for DFS 
demonstrated a C-index of 0.734 (95% confidence inter-
val: 0.664–0.817). Additionally, the area under the curve 

(AUC) for the predictions of DFS at 1-, 2-, and 3-year 
intervals were found to be 0.823, 0.839, and 0.875, respec-
tively (Fig.  3B). Similarly, the nomogram for postop-
erative OS exhibited a C-index of 0.760 (95% confidence 
interval: 0.692–0.821). The AUCs for the predictions of 
OS at 1-, 2-, and 3-year intervals were determined to be 
0.811, 0.864, and 0.827, respectively (Fig. 3E).

Calibration plots were created to compare nomogram-
predicted outcomes with actual outcomes for 1-year, 
2-year, and 3-year DFS/OS rates, demonstrating the high 
quality of the nomogram (Fig. 3C and F). The calibration 
curves graphically represented the predicted DFS or OS 
incidence on the x-axis and the observed actual DFS or 
OS incidence on the y-axis, ranging from 0 to 1, which 
represented the event incidence. The reference line, 
shown as a grey diagonal line, represented the predicted 

Fig. 2  Disease-free survival (DFS) and Overall survival (OS) analysis. (A) Kaplan–Meier DFS curves of IDH. (B) Kaplan–Meier DFS curves of Ki67. (C) Kaplan–
Meier DFS curves of P53. (D) Kaplan–Meier DFS curves of high or low ADC value. (E) Kaplan–Meier OS curves of IDH. (F) Kaplan–Meier OS curves of Ki67. 
(G) Kaplan–Meier OS curves of high or low ADC value
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value equaling the actual value. The curve fitting line, 
which closely followed the grey diagonal line, indicated 
higher accuracy, and the colored area on both sides rep-
resented the 95% confidence interval.

The decision curve analysis demonstrated the value of 
the two models. The net benefit of 3-year DFS was con-
sistently higher than that at other time points across a 
wide range of reasonable threshold probabilities, as illus-
trated in Fig. 3G-L.

The subgroup of the patients who had N/C area
A total of 75 patients with N/C areas were included in 
the study. Various factors such as age, gender, presence 
of glioblastoma, location, grade, Ki67, P53, MGMT, IDH, 
tumor maximum diameter, NEPSA, and the ADC value 
of N/C area were analyzed using univariate cox regres-
sion analysis to determine their association with DFS. 
The results of cox regression analyses revealed that only 

Table 2  Univariable and multivariable cox regression analysis for DFS
Variables Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value
Age, years
  ≤52 1
  >52 2.722 (1.774–4.177) < 0.001* 1.260 (0.799–1.986) 0.404
Gender Not selected
  Male 1.313 (0.862–2.001) 0.287
  Female 1
Glioblastoma
  Yes 4.354 (2.538–7.470) < 0.001* 0.700 (0.326–1.504) 0.443
  No 1
Location Not selected
  Occipital lobe 0.328 (0.098–1.171) 0.151
  Parietal lobe 1
  Temporal lobe 0.736 (0.417–1.297) 0.373
  Frontal lobe 0.660 (0.377–1.157) 0.224
  Other 1.104 (0.523–2.330) 0.828
Grade
  Low 1
  High 8.733 (3.282–23.238) < 0.001* 1.294 (0.376–4.447) 0.731
Ki67
  ≤10% 1
  >10% 9.432 (4.580-19.423) < 0.001* 3.043 (1.349–6.866) 0.024*
P53
  Positive 6.146 (3.260-11.589) < 0.001* 2.416 (1.170–4.986) 0.045*
  Negative 1
MGMT Not selected
  Positive 0.853 (0.558–1.302) 0.536
  Negative 1
IDH
  Positive 0.199 (0.112–0.356) < 0.001* 0.342 (0.180–0.647) 0.006*
  Negative 1
Tumor maximum diameter Not selected
  ≤38 mm 1
  >38 mm 1.302 (0.814–2.082) 0.353
NEPSA
  Yes 2.576 (1.537–4.316) 0.003* 2.052 (1.055–3.990) 0.076
  No 1
Necrosis or cyst
  Yes 2.996 (1.650–5.439) 0.002* 1.792 (0.967–3.321) 0.120
  No 1
ADC parenchymal area

  Low 1
  High 0.314 (0.203–0.486) < 0.001* 0.401 (0.242–0.664) 0.003*
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Ki67 (P = 0.004) was an independent prognostic factor for 
DFS, while the ADC value of the N/C area was not.

The same method was applied to assess Ki67 (P = 0.007) 
and the ADC value of N/C area (P = 0.047) as indepen-
dent prognostic factors of OS.

Discussion
MRI is an essential noninvasive imaging method for 
diagnosing gliomas. Numerous studies have shown that 
advanced MRI sequences, such as DWI, play a crucial 
role in tumor grading, predicting therapeutic effective-
ness, assessing disease progression, and predicting sur-
vival time in glioma patients [17–23]. DWI measures 
the diffusion of protons in water molecules, allowing the 
evaluation of cell density and cell membrane integrity 

Table 3  Univariable and multivariable cox regression analysis for OS
Variables Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value
Age, years
  ≤52 1
  >52 3.078 (2.049–4.625) < 0.001* 1.273 (0.821–1.974) 0.364
Gender Not selected
  Male 1.591 (1.064–2.378) 0.092
  Female 1
Glioblastoma
  Yes 4.568 (2.698–7.733) < 0.001* 1.041 (0.699–2.807) 0.425
  No 1
Location Not selected
  Occipital lobe 0.337 (0.098–1.161) 0.148
  Parietal lobe 1
  Temporal lobe 1.099 (0.653–1.849) 0.766
  Frontal lobe 0.607 (0.347–1.063) 0.143
  Other 1.198 (0.590–2.430) 0.675
Grade
  Low 1
  High 8.360 (3.155–22.151) < 0.001* 0.819 (0.229–2.932) 0.797
Ki67
  ≤10% 1
  >10% 10.179 (4.935–20.996) < 0.001* 3.881 (1.631–9.239) 0.010*
P53
  Positive 4.783 (2.700-8.473) < 0.001* 1.270 (0.650–2.483) 0.558
  Negative 1
MGMT Not selected
  Positive 1.028 (0.686–1.541) 0.910
  Negative 1
IDH
  Positive 0.190 (0.108–0.335) < 0.001* 0.321 (0.171–0.602) 0.003*
  Negative 1
Tumor maximum diameter Not selected
  ≤38 mm 1
  >38 mm 1.364 (0.876–2.123) 0.248
NEPSA
  Yes 1.819 (1.157–2.858) 0.030* 1.148 (0.661–1.992) 0.682
  No 1
Necrosis or cyst
  Yes 2.618 (1.521–4.506) 0.004* 1.619 (0.920–2.850) 0.161
  No 1
ADC parenchymal area

  Low 1
  High 0.291 (0.193–0.438) < 0.001* 0.383 (0.239–0.614) < 0.001*
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[24]. The measurement of the ADC of water in vivo is not 
feasible using MRI directly due to its complex mecha-
nisms. Instead, it is determined indirectly from the ADC 
acquired via DWI [25]. A negative relationship exists 
between the value of ADC and cell density. An elevation 
in ADC indicates a rise in the mobility of water mole-
cules, suggesting either a disruption in the integrity of the 
membrane or a higher proportion of extracellular fluid 
caused by a reduction in cell size or count. Conversely, a 
decline in ADC signifies a decrease in extracellular water 

molecules or an expansion in cell size or count [12]. Con-
sequently, the nucleus-to-cytoplasm ratio of the tumor 
type tends to increase with tumor grade, while the ADC 
value tends to decrease [26].

In the study by Murakami et al., it was found that high-
grade astrocytes with low ADC values generally have 
a poor prognosis [13]. Saksena et al. also demonstrated 
that low ADCs in glioblastomas were associated with a 
worse 6-month progression-free survival rate [27]. In our 
study, we observed that patients with high ADC values 

Fig. 3  Construction of the model, time-dependent ROC curves, calibration plots of the nomogram, and decision curve analysis. (A) Nomogram for pre-
dicting the 1-, 2- and 3-year DFS. (B) Time-dependent ROC curves for predicting 1-, 2- and 3-year DFS. (C) Calibration curves of the model for predicting 
DFS at the 1-year, 2-year, and 3-year time points. (D) Nomogram for predicting the 1-, 2- and 3-year OS. (E) Time-dependent ROC curves for predicting 
1-, 2- and 3-year OS. (F) Calibration curves of the model for OS at the 1-year, 2-year, and 3-year time points. (G) Decision curve analysis of 1-year DFS. (H) 
Decision curve analysis of 2-year DFS. (I) Decision curve analysis of 3-year DFS. (J) Decision curve analysis of 1-year OS. (K) Decision curve analysis of 2-year 
OS. (L) Decision curve analysis of 3-year OS
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had longer DFS and OS, which is consistent with other 
related studies. However, Brasil Caseiras et al. reported 
that low-grade gliomas had no effect on prognosis in 
relation to ADC values [28]. This difference can be attrib-
uted to the fact that low-grade gliomas generally have 
longer survival times compared to high-grade gliomas. 
Additionally, ADC values have also been shown to be a 
helpful marker for assessing therapy responses in other 
cancers, such as thymoma, solitary large hepatocellular 
carcinoma, and gastric cancer [29–31].

Peritumoral edema, which refers to the abnormal 
accumulation of water in the brain parenchyma, is often 
observed in patients with gliomas [32]. Previous studies 
have shown that edema has prognostic significance in 
multivariable analysis [15]. However, Ramnarayan et al. 
demonstrated that multivariate analysis did not identify 
peritumoral edema as an independent predictive fac-
tor [33]. In our study, while NEPSA showed prognostic 
significance in univariate analysis, it did not retain its 
significance in multivariable analysis. The heterogene-
ity in patients’ clinical characteristics and imaging tech-
niques used among different studies may contribute to 
these varying results. In glioblastoma cadaver specimens, 
Burger et al. discovered tumor cell infiltration in the 
peritumoral edema region [34]. Therefore, we included 
the P/N ratio in our study, which represents the ratio of 
tumor cells in the parenchymal area to those in the non-
enhancing peritumoral area. To the best of our knowing, 
there have been no prior studies on the application of 
this ratio for analysis. Our study revealed that this ratio 
was a standalone predictive factor in the survival analysis 
of patients with glioma, covering both DFS and OS. The 
smaller the ratio, the shorter the survival or recurrence 
time of the patients, as there is a negative correlation 
between ADC value and cell density.

It is believed that necrotic areas, which are com-
monly seen in gliomas on imaging, indicate rapid expan-
sion and malignant behavior. However, the relationship 
between tumor necrosis and patient survival in gliomas 
remains controversial. A study involving 416 patients 
found that the extent of tumor necrosis observed on MR 
imaging is an independent prognostic characteristic for 
glioma patients [16]. Another study by David A. Gut-
man et al. revealed that the percentage of necrosis did 
not show a substantial correlation with overall survival 
[35]. The exact mechanism of cyst formation is still not 
fully understood, and further research is needed. In our 
study, we found that necrosis or cysts were not indepen-
dent prognostic factors for survival in all glioma patients. 
However, in a subgroup analysis of patients with N/C 
areas, the ADC value of these areas was found to be an 
independent prognostic variable for OS, but not DFS. 
This finding may be attributed to the limited number of 
patients included in our study.

Vascular endothelial growth factor (VEGF) expres-
sion is increased in gliomas due to necrosis and hypoxia, 
which encourages angiogenesis. This process further 
increases necrosis and enhances resistance to radio-
therapy [36]. On the other hand, radiotherapy eliminates 
tumor cells by generating reactive oxygen species (ROS) 
in the tumor tissue, which damage the DNA of tumor 
cells. However, ROS can also activate hypoxia-induc-
ible factors, resulting in an elevation of VEGF levels. 
This increase in VEGF contributes to angiogenesis and 
improves the survival rate of tumor cells. Therefore, in 
the treatment of gliomas, combining radiotherapy with 
antivascular drugs such as bevacizumab can be con-
sidered to reduce the resistance of tumor cells to radio-
therapy. Ki67 and IDH were found to be independent 
prognostic elements for survival, which is consistent with 
previous studies [37, 38]. In our study, P53 predicted 
a good prognosis for DFS, but not for OS. However, a 
recent study indicated a significant difference in the OS 
period between high expression P53 and low expression 
P53 [39].

There are several limitations to the current study. 
Firstly, the number of patients included in the study was 
small, and therefore, more extensive research is required. 
Secondly, our study was conducted in a single center, 
indicating the need for multicenter research. Thirdly, our 
models lack internal and external verification, which may 
impact the accuracy and reliability of the study. Fourthly, 
it is a retrospective study and some missing information 
may affect the results of the research, thus prospective 
research needs to be carried out. Additionally, by divid-
ing the lesions into three areas and analyzing them sepa-
rately, patients may have different prognostic outcomes. 
Therefore, a larger sample quantity is needed for a con-
solidated analysis.

Conclusions
The ADC value including the ADC value in parenchy-
mal area, the P/N ratio and the ADC value in N/C area 
is an efficient and practical potential index to predict the 
survival of patients with gliomas when compared to the 
conventional imaging evaluation methods. However, due 
to the heterogeneity of tumors, relying on ADC values 
alone can lead to misinterpretations of tumor behavior. 
Therefore, ADC values are often used in conjunction 
with other imaging features and clinical information to 
provide a more comprehensive tumor assessment.
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