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Simple Summary: Spinal cord tumors encompass a diverse range of rare neoplasms originating from
tissues in and around the spinal canal. Traditional treatment modalities like surgery, radiation therapy,
and chemotherapy have been the mainstay for managing these tumors. Nowadays, advancements in
gene therapy, immunotherapy, and targeted therapy are offering groundbreaking possibilities. This
article outlines the available and developing options for diagnosis and such treatments.

Abstract: Spinal cord tumors, though rare, present formidable challenges in clinical management
due to their intricate nature. Traditional treatment modalities like surgery, radiation therapy, and
chemotherapy have been the mainstay for managing these tumors. However, despite significant
advancements, challenges persist, including the limitations of surgical resection and the potential
side effects associated with radiation therapy. In response to these limitations, a wave of innovative
approaches is reshaping the treatment landscape for spinal cord tumors. Advancements in gene
therapy, immunotherapy, and targeted therapy are offering groundbreaking possibilities. Gene
therapy holds the potential to modify the genes responsible for tumor growth, while immunotherapy
harnesses the body’s own immune system to fight cancer cells. Targeted therapy aims to strike
a specific vulnerability within the tumor cells, offering a more precise and potentially less toxic
approach. Additionally, novel surgical adjuncts are being explored to improve visualization and
minimize damage to surrounding healthy tissue during tumor removal. These developments pave
the way for a future of personalized medicine for spinal cord tumors. By delving deeper into the
molecular makeup of individual tumors, doctors can tailor treatment strategies to target specific
mutations and vulnerabilities. This personalized approach offers the potential for more effective
interventions with fewer side effects, ultimately leading to improved patient outcomes and a better
quality of life. This evolving landscape of spinal cord tumor management signifies the crucial
integration of established and innovative strategies to create a brighter future for patients battling
this complex condition.

Keywords: spinal cord tumor; astrocytoma; diagnosis; current treatment; surgery

1. Introduction

Spinal cord tumors encompass a diverse range of rare neoplasms originating from
tissues in and around the spinal canal. These tumors typically exhibit a benign onset
with a gradual progression of signs and symptoms. They are characterized by histological
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heterogeneity, indicating potential origination from various precursor cells [1,2]. Con-
stituting a mere 2–4% of all primary tumors within the central nervous system (CNS),
these tumors present a significant clinical challenge [3–5]. Despite their lower incidence
compared with their intracranial counterparts, spinal cord tumors share histopathological
similarities with primary intracranial neoplasms, emphasizing the need for a nuanced
approach to their management [4]. By convention, spinal cord tumors are commonly
classified by anatomic sublocation as intradural intramedullary, intradural extramedullary,
or extradural [1] (Table 1). Extradural spinal tumors are the most prevalent tumors of
the spine, constituting 50% [6]. They are further categorized into primary and secondary
tumors. Primary extradural tumors, such as hemangiomas and enostoses, are exceptionally
rare, often incidental findings, and frequently asymptomatic, requiring no treatment [7]. In
contrast, secondary tumors constitute 97% of all vertebral spinal tumors due to the spine’s
rich vascularity and proximity to lymphatic drainage [7].

Intradural extramedullary spinal cord tumors (EMSCTs) develop in the subdural space,
outside of the spinal cord, accounting for 40% [6]. These tumors are from leptomeninges or
nerve roots [8]. Among EMSCTs, schwannomas are the most common, constituting 29% [9].
Patients with EMSCTs often have lower back pain, especially worsened in the supine
position [9]. Intramedullary spinal cord tumors (IMSCTs) constitute 5–10% of tumors and
gliomas constitute up to 90%, including ependymomas (two-thirds) and astrocytomas
(one-third) [10–12].

The classification of CNS tumors has traditionally relied on histological analysis, sup-
plemented by ancillary tests such as immunohistochemistry and ultrastructural studies.
However, in recent years, molecular biomarkers have emerged as crucial tools in enhancing
diagnostic accuracy and refining classification criteria. The latest edition of the WHO
Classification of Tumors of the Central Nervous System (CNS) integrates a multitude of
molecular alterations that provide valuable diagnostic and prognostic insights. These
molecular changes not only complement histological findings but also offer defining infor-
mation, thereby contributing to a more precise and comprehensive classification of CNS
neoplasms [13] (Tables 1 and 2).

Table 1. WHO classification (grading) [13].

Grade 1

These are the least malignant tumors and are usually associated with long-term
survival. They grow slowly and have an almost normal appearance when

viewed through a microscope. Surgery alone may be an effective treatment for
this grade tumor.

Grade 2
These tumors are slow-growing and look slightly abnormal under a microscope.

Some can spread into nearby normal tissue and recur, sometimes as a
higher-grade tumor.

Grade 3

These tumors are, by definition, malignant, although there is not always a big
difference between grade 2 and grade 3 tumors. The cells of a grade 3 tumor are

actively reproducing abnormal cells, which grow into nearby normal brain
tissue. These tumors tend to recur, often as a grade 4 tumors.

Grade 4

These are the most malignant tumors. They reproduce rapidly, can have a
bizarre appearance when viewed under a microscope, and easily grow into

nearby normal brain tissue. These tumors form new blood vessels so they can
maintain their rapid growth. They also have areas of dead cells in their centers.
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Table 2. WHO classification (origin) [13].

Neuroepithelial tissue

Paraspinal nerves

Meninges

Meningothelial cells;
mesenchymal;

primary melanocytic lesions;
other neoplasms

Lymphoma and hematopoietic neoplasms

Germ cell tumors

Metastatic tumors

Navigating the intricate landscape of spinal cord tumors, characterized by their rarity
and complexity, demands a comprehensive understanding of both established state-of-the-
art treatment modalities and emerging innovative approaches. Various surgical techniques
can be employed for tumor excision, depending on factors such as the tumor type, surgical
goal, and the patient’s overall health status [14]. Traditional treatment modalities, including
surgery, radiation therapy, and targeted drug therapies, have formed the backbone of
spinal cord tumor management [3,5,15]. Surgical resection, guided by advances in imaging
and neurosurgical techniques, remains a primary intervention, aiming for maximal tumor
removal while preserving neurological function [3,15]. Radiation therapy, encompassing
conventional external beam radiation and modern techniques like stereotactic radiosurgery,
plays a crucial role in adjuvant and palliative settings [3]. Additionally, targeted drug
therapies, leveraging molecular insights into tumor biology, offer promising avenues for
personalized treatment approaches [15]. However, despite the progress achieved with
traditional treatment modalities, challenges persist in achieving optimal outcomes for
patients with spinal cord tumors. These challenges include limitations in surgical resection
due to tumor location or size and the risk of damaging surrounding healthy tissues with
radiation therapy [3].

Amidst these challenges, the field of spinal cord tumor research is witnessing a surge
of innovative approaches aimed at addressing existing limitations and enhancing thera-
peutic efficacy. Immunotherapy, harnessing the body’s immune system to recognize and
attack tumor cells, offers a paradigm shift toward personalized and potentially curative
treatment strategies [16,17]. The cytotoxic capabilities of the immune system and the pre-
cision afforded by molecular targeting make immunotherapy promising [18].To enhance
the precision of procedures and improve postoperative outcomes, emerging digital tech-
nologies are increasingly being integrated into tumor resections as complementary tools
for visualizing the surgical field [19]. In this review, we will explore how the fusion of
established state-of-the-art treatment methods with emerging innovative approaches opens
up vast promise and potential in the management of spinal cord tumors, enriching our
understanding of this complex field. By seamlessly integrating these strategies, the field
aspires to surpass current limitations, leading the path toward a future where patients with
spinal cord tumors can access refined treatment protocols and enjoy an enhanced quality
of life.

2. Diagnosis
2.1. MRI and CT

Diagnosing IMSCTs and EMSCTs is complex due to their diverse behaviors, which can
range from benign to malignant [20]. These tumors often elude early detection and only
present neurological symptoms after substantial infiltration of the spinal canal, resulting in
considerable morbidity and mortality [21]. Consequently, reliable and timely diagnostic
techniques are critical for effective treatment. Magnetic resonance imaging (MRI) is the
primary diagnostic tool for identifying spinal tumors, providing detailed information about
their size, location, and position along the axis [22].



Cancers 2024, 16, 2360 4 of 22

Table 3, in the context of spinal cord tumors, serves as a guide for clinicians to differ-
entiate between various types of spinal cord tumors based on specific imaging and clinical
characteristics.

Table 3. Differential diagnosis tips.

Tumor location

MRI intensity and CT density

Enhancement pattern

Bone erosion

Accompanied findings (peritumoral cyst, edema, flow void, calcification, etc.)

Other studies (angiography, PET, CSF study, etc.)

Tumor location: The location of the tumor within the spinal cord or surrounding struc-
tures can provide valuable information about its possible origin and nature. For example,
tumors located within the spinal cord parenchyma may indicate intramedullary tumors,
while those located outside the cord may suggest extramedullary tumors. I IMSCTs include
ependymomas and astrocytomas. EMSCTs include meningiomas and schwannomas [1,6].

MRI intensity and CT density: The intensity or density of the tumor in magnetic
resonance imaging (MRI) or computed tomography (CT) scans can offer insights into its
composition and characteristics. Different types of tumors may exhibit distinct intensity
or density patterns, aiding in their differentiation. Low-grade gliomas (e.g., astrocytomas)
may appear hypointense in T1-weighted MRI and hyperintense in T2-weighted MRI.
Meningiomas often demonstrate the isointensity in T1-weighted MRI and hyperinten-
sity in T2-weighted MRI [23]. Conventional MRI only provides anatomical information.
However, MR diffusion tensor imaging (DTI) and MR perfusion-weighted imaging (PWI)
may detect microstructural diffusion and hemodynamic changes in spinal cord tumors.
These techniques are useful for improving differential diagnoses between spinal cord
tumors and tumor mimics especially for demyelinating disease, tumor grading, and pro-
viding assistance in surgical navigation [24]. The most common MRI perfusion techniques
utilized are dynamic susceptibility contrast (DSC), arterial spin labeling (ASL), and dy-
namic contrast-enhanced (DCE) perfusion. Susceptibility-weighted imaging (SWI) is a
high-spatial-resolution, three-dimensional (3D), fully velocity-compensated, gradient echo
MRI technique that accentuates the magnetic properties (susceptibility effects) of various
substances such as blood products, calcification, and iron [25]. Magnetic resonance spec-
troscopy (MRS) can aid in the evaluation of pediatric brain tumors by providing metabolic
information complementary to neuroanatomical imaging [26].

Enhancement pattern: The enhancement pattern observed in contrast-enhanced imag-
ing studies can help distinguish between various types of spinal cord tumors. For instance,
certain tumors may show homogeneous enhancement, while others may exhibit hetero-
geneous enhancement patterns. Ependymomas may exhibit heterogeneous enhancement
with contrast due to the presence of cystic components. Schwannomas typically show
intense, homogeneous enhancement following contrast administration [27].

Bone erosion: The presence of bone erosion detected in imaging studies, such as CT
scans, may suggest an invasive tumor that has extended into the surrounding bone tissue.
This finding can help narrow down the differential diagnosis and guide treatment planning.
Chordomas are known to cause bone erosion and destruction of adjacent vertebral bodies
due to their locally aggressive nature. Metastatic spinal tumors, such as from lung or breast
cancer, may also lead to bone erosion as they invade the vertebral column [28,29].

Accompanied findings: Additional imaging findings, such as peritumoral cysts,
edema, flow voids, or calcifications, can provide further clues about the nature and char-
acteristics of a tumor. These accompanying features may vary depending on the tumor
type and location. Peritumoral cysts: These are seen in ependymomas and hemangioblas-
tomas [27,30]. Flow voids: These are characteristic of vascular tumors like spinal heman-
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gioblastomas [30]. Edema: These are commonly observed around high-grade gliomas,
such as glioblastomas [31]. Calcifications: These are seen in oligodendrogliomas and
meningiomas [32].

Other studies: In some cases, supplementary studies such as angiography, positron
emission tomography (PET), or cerebrospinal fluid (CSF) analysis may be necessary to
confirm the diagnosis or rule out other possibilities. These additional investigations can
contribute to a more comprehensive evaluation and management plan for spinal cord
tumors. Angiography: This is helpful in delineating vascular malformations or tumors
with a prominent vascular supply, such as hemangioblastomas. PET scan: This can aid
in detecting metabolic activity and differentiating between benign and malignant tumors.
CSF study: This may be indicated to evaluate for leptomeningeal involvement or detect
tumor markers in cerebrospinal fluid, particularly in cases of suspected metastatic disease
or primary CNS lymphoma [33].

Among EMSCTs, meningiomas are typically iso- or hypointense in T1-weighted MRI
scans and mildly hyperintense in T2-weighted scans, with most showing a “dural tail”
sign after gadolinium contrast enhancement [23] Additionally, CT myelography is used
to detect calcifications within tumors or when MRI is not suitable. In specific scenarios,
spinal angiography is utilized preoperatively to facilitate the embolization of the arteries
supplying the tumor, thereby reducing intraoperative bleeding and tumor size.

Schwannomas usually show low intensity in T1-weighted MR imaging and high
intensity in T2-weighted MR imaging (Figures 1 and 2). These tumors often enlarge
alongside the nerve root and become a dumbbell-type [34]. The heterogenicity of a tumor
indicates cystic change.

Meningiomas usually indicate isointensity in both T1- and T2-weighted MR imaging
and are enhanced homogeneously (Figure 3) [35]. Meningiomas are sometimes calcified and
are recognized in CT (Figure 4). The key points of a differential diagnosis of meningioma
and schwannoma are in Table 4.
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Figure 1. Fifty-four M, spinal schwannoma. (A) T1-weighted midsagittal image, (B) T2-weighted
midsagittal image, and (C) enhanced T1-weighted midsagittal image. Red arrows indicate tumor and
blue arrow shows tumor enhancement. The tumor is mixed-intensity because of tumor necrosis.
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Figure 2. Fifty-five M, spinal schwannoma. (A) Enhanced T1-weighted midsagittal image, (B) T2-
weighted midsagittal image, and (C) enhanced T1-weighted axial image at C2/3. Red arrow indicates
tumor and blue arrow shows tumor enhancement. The tumor is dumbbell-shaped (black arrow).
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Figure 3. Forty-two F, spinal meningioma. (A) T1-weighted midsagittal image, (B) T2-weighted
midsagittal image, and (C) enhanced T1-weighted midsagittal image. (D) CT. Red arrows indicate
tumor and blue arrow shows tumor enhancement. Yellow arrow shows dural tail sign and black
arrow indicates tumor ossification.
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Figure 4. Sixty-eight F, spinal meningioma. (A) Enhanced T1-weighted midsagittal image, (B) en-
hanced T1-weighted axial image at T7/8, (C) T2-weighted midsagittal image, (D) T2-weighted axial
image at T7/8, (E) midsagittal reconstruction CT, and (F) axial CT at T7/8. Red arrows indicate tumor,
and blue arrows show tumor enhancement. The tumor is calcified (white arrows).
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Table 4. The key points of differential diagnosis of meningioma and schwannoma.

Category Meningioma Schwannoma

T2-weighted MR imaging Iso-low High; heterogenous
Enhanced Homogenous Heterogenous
Location Lateral Posterior

Cyst −~+ ++
Calcification −~+ −
Tumor angle Dull Sharp

Dural tail + −
Mobile tumor − +

The characterization of IMSCTs involves distinguishing the tumor from surrounding
edema or cavities, which provides crucial information about its position, size, and growth
dynamics (Tables 5 and 6). Addressing the challenges of manual segmentation, Lemay et al.
developed an automated technique using a cascaded architecture based on U-Net mod-
els [36]. This approach simplifies the segmentation process into two phases of precise
localization and labeling, improving the efficiency and accuracy of tumor identification.

Furthermore, the integration of emerging technologies like artificial intelligence (AI)
and machine learning is poised to enhance diagnostic precision and accelerate treatment
planning for IMSCTs [37]. The adoption of these technologies in clinical settings could trans-
form diagnostic procedures, promoting earlier interventions and better patient outcomes
for those with spinal cord tumors.

Table 5. Spinal intramedullary tumors in adults [2].

Tumor Incidence

Ependymoma 50–60%
-Myxopapillary 20–30%

Astrocytoma 15–30%
-Pilocytic 10–45%

-High-grade 10–33%
Hemangioblastoma 3–11%
Cavernous angioma 4–5%

Schwannoma 1%
Metastasis 1%

Table 6. Spinal intramedullary tumors in children [38].

Tumor Incidence

Astrocytoma 41%
-Pilocytic 6%

-High-grade 26%
Ganglioglioma 27%
Ependymoma 12%

-Myxopapillary 35%
Hemangioblastoma 2%

Astrocytoma: Pilocytic astrocytomas usually indicate well-circumscribed intramedullary
masses with cystic lesions. These tumors exhibit a mixed signal intensity in both T1-
weighted and T2-weighted images (Figure 5). High-grade astrocytomas, such as glioblas-
tomas, present as infiltrative growth, with ill-defined margins and heterogeneous enhance-
ment. These tumors may indicate surrounding edema.
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Figure 5. Fourteen M, spinal astrocytoma, grade 3. (A) T1-weighted midsagittal image, (B) T2-
weighted midsagittal image, and (C) enhanced T1-weighted midsagittal image. Red arrows indicate
tumor and blue arrow shows tumor enhancement.

Ependymoma: Myxopapillary ependymomas typically present as well-defined in-
tradural extramedullary masses with a heterogeneous signal intensity in T1-weighted
images and hyperintensity in T2-weighted images (Figure 6). These tumors often demon-
strate avid contrast enhancement.
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Figure 6. Thirty-seven M, spinal ependymoma, grade 1. (A) T1-weighted midsagittal image, (B) T1-
weighted axial image at C4/5, (C) T2-weighted midsagittal image, (D) T2-weighted axial image
at C4/5, (E) enhanced T1-weighted midsagittal image, and (F) enhanced T1-weighted axial image
at C4/5. Red arrows indicate tumor; blue arrow shows enhancement. Green arrows indicate
large syringomyelia.

Hemangioblastoma: Hemangioblastomas usually appear as well-circumscribed in-
tramedullary lesions with marked hypointensity in T1-weighted images and hyperintensity
in T2-weighted images due to the presence of cystic components and vascularity. They
typically demonstrate avid contrast enhancement (Figure 7).
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Cavernous angioma: Cavernous angiomas present as well-circumscribed intramedullary
lesions with a mixed signal intensity in both T1-weighted and T2-weighted images (Figure 8),
often showing a characteristic “popcorn” appearance due to multiple blood-filled caverns.
They may demonstrate variable enhancement patterns.
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Figure 8. Forty-nine M, cavernous angioma. (A) T2-weighted midsagittal image; (B) T2-weighted
axial image at C3. Red arrows indicate tumor.

Metastasis: Metastatic spinal cord tumors often present as multiple intramedullary or
intradural extramedullary lesions with a variable signal intensity in both T1-weighted and
T2-weighted images, depending on the primary tumor’s histology. They may demonstrate
avid contrast enhancement and typically show associated vertebral body metastases.

2.2. Molecular and Genetic Profiling

Beyond diagnostic neuroradiology, molecular genomics is increasingly employed
to decode the complexities of spinal cord tumors. Research, such as the work of Jung
et al., analyzing clinical and radiological data to predict H3 K27M mutations, and Pandey
et al., developing techniques to differentiate between driver and passenger mutations in
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glioblastomas, demonstrates the potential of these approaches [39,40]. These methods help
prioritize essential mutations and inform the development of targeted treatments. The
genetic and molecular characterization of spinal cord tumors, especially astrocytomas and
ependymomas, is challenging due to their rarity and the difficulty in obtaining sufficient
samples for thorough analysis compared with brain tumors. Nonetheless, recent progress
has illuminated several common and distinct genetic features among these tumor types.
For example, spinal ependymomas commonly show mutations in the NF2 gene, whereas
spinal meningiomas often have chromosomal irregularities, including the loss of chromo-
some 22 [41,42]. Additionally, schwannomas and neurofibromas are tightly linked with
genetic conditions such as neurofibromatosis type 1 (NF1) and NF2, with schwannomatosis
emerging as a separate syndrome associated with SMARCB1 mutations [43–45]. These
molecular insights are guiding the development of targeted treatments and personalized
care strategies. Overall, molecular and genetic analysis is proving essential for enhancing
the diagnosis and treatment of spinal cord tumors.

2.3. The Important Role of Biopsy and Deferential Diagnosis of Other Non-Tumor Conditions

A biopsy plays one of the most important roles in the diagnosis of spinal oncology.
Although modern imaging technology is well-developed, a precise histological diagnosis
is essential for further treatment [45]. For a vertebral lesion, a percutaneous core needle
biopsy is suitable for spinal vertebral lesions [46]. Recently, when core needle biopsies were
performed under CT guidance, they were demonstrated to be more accurate and safer for
patients than C-arm-guided biopsies.

Usually, a spinal cord biopsy is contraindicated because the procedure causes seriously
compromised spinal cord function. Especially, in patients with known malignancy who
present with intramedullary lesions, as in this situation, the diagnosis can be made with
the clinical setting [47]. Also, this procedure is not recommended in the evaluation of
autoimmune myelopathies associated with AQP4-IgG because the risks outweigh the
benefits [48]. However, fine-needle aspiration of mass lesions in the vertebral canal can
be useful and produces little damage. For the diagnosis of sarcoidosis, a biopsy of sites
outside the central nervous system is preferable, but if no other sites are available and
diagnostic certainty is important, sometimes a spinal cord biopsy is necessary to confirm
the diagnosis of isolated spinal cord sarcoidosis [49].

The differential diagnosis of spinal oncology is very important in congenital or other
conditions. A neurenteric cyst is a rare lesion of the spinal axis composed of heterotopic
endodermal tissue, and its incidence is 0.7–1.3% of all spinal cord tumors [50]. Wilkins et al.
classified neurenteric cysts based on three histopathological presentations [51] (Table 7).
Patients with symptomatic neurenteric cysts typically present in the second and third
decades of life with myelopathy and/or radicular symptoms. The surgical results are
relatively good with minimal morbidity [52].

The ventriculus terminalis is an embryological remnant consisting of the ependymal-
lined space of the conus medullaris. This anomaly can become symptomatic after cystic
dilation. de Moura and Ganau established a clinical classification system based on the
available literature as the cystic lesion of the ventriculus terminalis classification (CLVT):
type Ia (stable nonspecific symptoms without a clear relation to the ventriculus terminalis),
type Ib (nonspecific but progressing symptoms), type II (focal neurological deficits), and
type III (sphincter disturbances) [53,54]. Type Ia is best treated conservatively, and type Ib
may benefit from surgical evacuation. In patients with type II (focal neurological deficits)
and III (sphincter disturbances) symptoms, surgical treatment sustained improvement even
at the late follow-up [54].
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Table 7. Wilkins and Odom’s neurenteric cyst histopathological classification system [51].

Characteristics Type A Type B Type C

Single layer of pseudostratified columnar or cuboidal
cells mimicking respiratory or

gastrointestinal epithelium
+ + +

Complex invaginations with glandular organization;
mucinous or serous production; and nerve ganglion,

lymphoid, skeletal muscle, smooth muscle, fat,
cartilage, and/or bone elements

− + −

Ependymal or glial tissue − − +

Spinal cord infection is a rare disease with different etiological causes. In an acute
presentation, a differential diagnosis is relatively easy because of the symptoms of infection
(fever and severe pain) and increased white blood count and CRP. However, chronic cases
might mimic features of intramedullary tumors and show neurological symptoms [55].
Spinal cord ischemia is also a rare disease and constitutes one of the acute spinal emergen-
cies. The spinal cord is usually enlarged, and MRI indicates hyperintensity in T2-weighted
images and DWI [56]. This may occur at any location in the cord but has a propensity for
the upper thoracic or thoracolumbar regions [57].

Vascular malformations may also mimic a spinal cord tumor. Spinal AVMs are a
heterogeneous group of abnormally developed spinal blood vessels associated with an
increased risk for hemorrhage and morbidity [58]. Due to the shunting of arteriole blood to
the venous system without capillary access and resistance, over 70% of arterial pressure is
transmitted to the venous system [59]. There are three types of this condition: type I, spinal
dural arteriovenous fistula; type II, intramedullary arteriovenous malformation; type III,
extradural–intradural arteriovenous malformations; and type IV, intradural perimedullary
arteriovenous fistula.

3. Current Treatment Strategies and Their Limitations

Following the confirmation of a positive diagnosis, the formulation of a therapeutic
strategy is entrusted to a multidisciplinary tumor board, comprising experts from various
specialized departments including oncology, neurosurgery, radiation oncology, medical
oncology, neurology, radiology, pathology, rehabilitation medicine, palliative care, and ge-
netics [21,60]. A diverse array of treatments exists for spinal tumors, ranging from radiation
therapy to extensive en bloc resection [13]. However, inherent limitations constrain their
broad application and efficacy. In response, contemporary technological advancements, in-
cluding nanotechnology, 3D printing, gene therapy, immunotherapy, and targeted therapy,
coupled with novel surgical adjuncts and digital tools, are being increasingly integrated
into spinal tumor management to address the shortcomings associated with conventional
treatment approaches.

3.1. Surgical Method

The primary treatment approach for spinal cord tumors is surgical excision, which
should be incorporated into the diagnostic and therapeutic strategy outlined by the tumor
board [21,61–63]. Surgery aims to achieve maximal resection while minimizing the risk of
long-term neurological dysfunction.

Precise access to intramedullary tumors is determined through careful evaluation of
diagnostic imaging prior to surgery. Recent advancements in mixed reality (MR) technology,
utilizing head-mounted displays (HMDs), enable surgeons to visualize stereoscopic images
in 3D [64,65]. MR systems have demonstrated effectiveness in tumor removal by providing
surgeons with enhanced visualization of vital structures, such as hidden blood vessels
within the surgical field [66,67]. Moreover, utilizing HMDs to view spinal cord tumors
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in 3D enables surgeons to intuitively comprehend the tumor’s location, facilitating the
preoperative planning of decompression methods and laminectomy sites [68].

Intraoperative ultrasonography (IOUS) is employed during surgeries for spinal in-
tradural mass lesions to limit the extent of exposure, affecting not just dural incision and
myelotomy but also bony exposure [69]. IOUS is capable of evaluating all types of mass
lesions and can predict surgical outcomes. It enables the visualization of nerve rootlets
and dentate ligaments, aiding in the mobilization of neural structures, particularly in cases
with primarily anterior lesions. In situations involving highly infiltrative lesions where the
tumor appears isoechoic to the spinal cord, making the tumor–myelin interface indistinct,
IOUS proves invaluable in guiding surgical decisions [70]. However, the tool has its limita-
tions, such as the size of the ultrasound probe tip (1 × 3.5 cm) sometimes exceeding the
surgical field, and difficulty in visualizing parenchyma during heavy bleeding, as well as
during the use of excessive hemostatic material, which appears highly hyperechoic [71].

The reliability of matching pathologic findings from frozen biopsies of spinal cord
tumors with the final diagnosis remains controversial [72]. Consequently, reliance solely on
frozen section results for surgical planning is inadequate; a comprehensive approach in-
corporating multiple factors—clinical characteristics, preoperative imaging, frozen-section
diagnosis, and intraoperative tumor planes—is essential. Despite advancements in soft-
ware [73], intraoperative ultrasound [74,75], and corrections made by intraoperative
MRI [76], current technologies still fail to deliver the needed accuracy for consistent, precise,
and extensive tumor resection [77,78]. New technologies are emerging that enable the accu-
rate visualization of brain tumors and even residual tumor cells using fluorescent markers.

5-aminolevulinic acid (5-ALA) is a prodrug that accumulates in tumor cells, which
convert it into protoporphyrin IX, a fluorescent compound [79,80]. This fluorescence allows
surgeons to better visualize and distinguish tumor tissue from normal spinal cord tissue
during surgery [81]. The benefits of using 5-ALA in spinal cord tumor surgery include
enhanced visualization, which aids in maximal tumor removal, reduced risk of neurological
damage, and the potential for better patient outcomes such as lower recurrence rates and
improved quality of life. However, challenges include the possibility that not all tumor
cells may fluoresce, variable sensitivity and specificity of the fluorescence, and the need for
specialized training and experience in surgeons [82]. Current studies focus on improving
the sensitivity and specificity of fluorescence, exploring its utility in different types of
spinal tumors, and integrating it with other surgical technologies like intraoperative MRI
and robotics.

The choice of surgical approach is straightforward, aiming for the shortest route to the
tumor, given the absence of non-eloquent neural tissues within the spinal cord parenchyma.
The three primary surgical accesses include the posterior median sulcus approach, the
posterolateral sulcus approach, and the lateral direct subpial approach [83]. A posterior
median sulcus approach is commonly used for most gliomas, including ependymomas
and astrocytomas, while a lateral myelotomy is more appropriate for vascular tumors
like hemangioblastomas or cavernous malformations, where the lesion is visible under
microscopic examination [84–86].

Tumor staging is very important to treat patients with spinal vertebral tumors/metastases.
However, the prognosis of patients with spinal tumors/metastases is not very promising
and difficult to predict. Several systems are based on the overall tumor load and functional
status of the patient and the anatomical extent of tumor involvement (Tables 8–10) [87–89].
Among them, Tomita and modified Tokuhashi prognosis scores have become very popular
and are used to determine the optimal patient treatment. Tokuhashi et al. described a
scoring system based on six parameters, which they later revised to take into account the
stronger influence of the primary tumor type on survival [87]. The Tokuhashi score is better
for predicting the short-term survival rate (Table 8). The primary tumor type is given more
weight in the scoring system of Tomita et al. (Table 9) [88].
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Table 8. Tokuhashi score [87].

Prognosis Parameter Score

Patient condition
Poor (performance status: 10–40%)

Moderate (performance status: 50–70%)
Good (performance status: 80–100%)

0
1
2

No. of bone metastases outside spine
Poor (performance status: 10–40%

Moderate (performance status: 50–70%)
Good (performance status: 80–100%)

0
1
2

No. of bone metastases outside spine
>2
1–2

0

0
1
2

Metastasis to major organs
Nonremovable

Removable
None

0
1
2

Primary site
Lung; osteosarcoma; stomach; bladder; esophagus; pancreas

Liver; gallbladder; unidentified
Other

Kidney; uterus
Rectum

Thyroid; breast; prostate; carcinoid tumor

0
1
2
3
4
5

Palsy
Complete (Frankel A; B)

Incomplete (Frankel C; D)
None (Frankel E)

0
1
2

Table 9. Tomita surgical classification for spinal malignant tumors [88].

Intra-compartmental Type 1 Vertebral body

Type 2 Pedicle extension

Type 3 Body-lamina extension

Extra-compartmental Type 4 Epidural extension

Type 5 Paravertebral extension

Type 6 2-3 vertebrae

Multiple Type 7 Multiple, more than 2

Table 10. Enneking staging for malignant musculoskeletal tumors [89].

Stage Grade Site Metastasis

IA Low (G1) Intra-compartmental (T1) No metastasis (M0)

IB Low (G1) Extra-compartmental (T2) No metastasis (M0)

IIA High (G2) Intra-compartmental (T1) No metastasis (M0)

IIB High (G2) Extra-compartmental (T2) No metastasis (M0)

III Any (G) Any (T) Regional or distant metastasis (M1)

During surgery, the exposure is widened to fully reveal the intraparenchymal lesion,
and a careful dissection plane is established between the tumor and the healthy spinal cord
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tissue. Typically, the tumor’s caudal and rostral boundaries are identified by cystic forma-
tions. Ependymomas manifest as encapsulated, brownish-red, sausage-shaped tumors,
whereas astrocytomas appear as vague, whitish swellings accompanied by cysts.

Ependymomas display a red or dark gray coloration with distinct margins from the
surrounding spinal cord tissue, allowing for precise separation along the craniocaudal axis
before complete excision. These tumors commonly adhere ventrally to small vessels passing
through the anterior median raphe, necessitating careful preservation of the anterior spinal
artery [61,83,90,91]. Unlike ependymomas, astrocytomas typically lack a clear boundary
between the tumor and the spinal cord. Removal of these tumors often involves piecemeal
excision, beginning with internal decompression and progressing outward to define the
tumor–cord interface [92]. Hemangioblastomas, which are subpial and highly vascular,
contain small arterial feeders that end within the tumor. These are excised en bloc by
coagulating the feeder vessels near the tumor’s surface [93].

Once the interface between the tumor and the spinal cord is established, the tumor
can be carefully debulked using gentle dissection or ultrasonic cavitation to reduce manip-
ulation of the spinal cord. Nonetheless, achieving a complete resection of benign tumors
without causing neurological damage is challenging, especially when the tumor–spinal
cord interface is not clearly defined [92].

Intraoperative neuromonitoring plays a vital role in surgical resections. Its outstanding
predictive capabilities regarding functional outcomes have established it as an essential
tool in all spinal cord tumor surgeries. Mehta et al. demonstrated that dorsal column
dysfunction occurred in just 9% of patients monitored with SSEP, compared with 50% in
those without SSEP monitoring [94].

3.2. Radiotherapy

Radiotherapy is typically reserved for situations where en bloc resection is unfeasible.
Traditionally, high doses of radiation (40–60 Gy) are required, leading to a high incidence
of complications due to the proximity of the spinal cord and thoracoabdominal organs,
including radiation myelopathy and various issues affecting gastrointestinal and reproduc-
tive health, e.g., hormonal imbalances, reduced fertility, uterine dysfunction, miscarriage,
preterm labor, low birth weight, and placental abnormalities [39,43,95]. However, with the
advent of intensity-modulated radiation therapy and stereotactic radiosurgery, it is now
possible to deliver high radiation doses directly to the spinal region while sharply reducing
exposure to surrounding areas, thereby minimizing the side effects typical of conventional
radiation treatments [96,97].

According to a study by Shin et al., stereotactic radiosurgery (SRS) proves to be an
effective treatment for benign neurogenic tumors, though malignant spinal neurogenic
tumors (MPNSTs) exhibit variable responses to SRS [98]. Other case series have similarly
reported excellent rates of local control with minimal neurotoxicity [99,100]. Thus, while
surgical removal continues to be the preferred treatment for most intradural tumors,
radiosurgery emerges as a viable alternative, particularly for recurrent, residual, or multiple
lesions (such as in familial phakomatoses), or when surgical intervention is contraindicated
or ill-advised due to patient comorbidities or poor health [100].

3.3. Systemic Therapy

Chemotherapy is less effective in treating spinal cord astrocytomas than intracranial
ones [101,102]. Several studies have reported only a partial response to temozolomide in
spinal cord astrocytomas [103–105]. Furthermore, pediatric low-grade astrocytoma patients
with adjuvant radiation therapy and chemotherapy after subtotal resection had longer
survival than those who had only a subtotal resection or en bloc resection [106]. Some
reports suggest that etoposide might benefit patients with recurrent spinal cord ependymo-
mas [107]. Targeted therapies for ependymomas are under investigation. Imatinib indicated
the potential of recurrent spinal cord ependymomas with overexpressed platelet-derived
growth factor (PDGF), though such overexpression is not present [108]. Bevacizumab has
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been showed to reduce the size of cystic spinal cord ependymomas in NF2 patients, with
clinical improvement observed [109].

Medical therapy trials for NF2-related schwannomas have had limited success, partic-
ularly with agents targeting epidermal growth factor receptor (EGFR) activity. Lapatinib,
a selective EGFR inhibitor, showed some efficacy in ependymomas, although follow-up
outcomes have been inconsistent [110–112]. However, despite their potential to curb tumor
growth, chemotherapeutic agents must be administered at high systemic doses to achieve
effective concentrations at tumor sites, adversely affecting normal tissue health and leading
to side effects such as neurotoxicity, kidney toxicity, and cardiac toxicity.

4. Emerging Treatment Strategies
4.1. Immunotherapy

Immunotherapeutic strategies focus on activating the patient’s immune system to
target and destroy cancer cells, preventing them from evading or reaching a balance
with the immune system [20,39]. Current leading immunotherapy treatments for gliomas
include checkpoint inhibitors, cancer vaccines, and chimeric antigen receptor T cells (CAR-
T cells). Notably, CAR-T cell therapy involves modifying allogeneic or autologous T
cells in vitro to carry CAR molecules on their membranes [113]. These modified T cells
are reintroduced into the patient’s body to target and destroy tumor cells that express
the specific antigen. There is increasing interest in applying immunotherapy to several
gliomas, with developments in CAR-T therapy, immune checkpoint inhibitors, and vaccine-
based strategies. Because of the rarity of spinal cord gliomas, obstacles in crossing the
blood–spinal cord barrier, limited antigens for targeting, and potential neurotoxic side
effects impede the use of immunotherapy in these tumors [20]. Furthermore, immune
checkpoint inhibitors can lead to autoimmune diseases and, in severe cases, death [114].
The selection of spinal cord tumor patients for treatment with immunotherapy or immune
checkpoint inhibitors remains a challenge. Nowadays, several approaches have been
reported [18,115,116]. For high-grade spinal cord astrocytomas, the prognosis is often
poor with the currently available therapies. Immunotherapy is at the experimental stage
in such gliomas. However, recent novel advances in immunotherapy include immune
checkpoint inhibitors, chimeric antigen receptor (CAR)-T therapy, and vaccine therapy [115].
Immunotherapies targeting the programmed cell death-1 receptor (PD-1) and its ligand-1
(PD-L1) yielded impressive clinical results in advanced malignant tumors expressing high
levels of PD-L1 [116]. Immunotherapy has the potential to play an increasingly important
role in the treatment of these tumors. Several clinical trials have evaluated immunotherapy
for intracranial gliomas, providing evidence for an immunotherapy-mediated ability to
inhibit tumor growth [117].

4.2. Neural Stem Cells

Neural stem cells (NSCs) are pluripotent cells with the capability to develop into either
gliogenic or neurogenic lineages [118]. A notable characteristic of NSCs is their inherent
tropism for tumors in vivo, which positions them as excellent vehicles for targeted cancer
therapies [119,120]. One innovative approach involves engineering NSCs to produce an
enzyme that activates a harmless prodrug, which then transforms into a potent chemother-
apeutic agent near the tumor cells [121]. This strategy has shown potential, particularly
in initial studies where NSCs were modified to express cytosine deaminase. This enzyme
converts the prodrug 5-FC into the active chemotherapeutic, 5-fluorouracil, effectively
targeting and reducing tumor size in glioblastoma models in rodents through the bystander
effect [119]. Further research includes a dual-gene strategy where NSCs are engineered to
express both cytosine deaminase and thymidine kinase, the latter converting the prodrug
ganciclovir into the oncolytic agent ganciclovir triphosphate, enhancing the therapeutic
impact [122].
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4.3. Cancer Vaccine

Cancer vaccines are formulated from antigens that are mainly expressed on specific
cancer cells [123]. These antigens provoke an immune response aimed at selectively elimi-
nating the targeted cell. Nowadays, there are five antitumor vaccine therapies, with peptide
vaccines and dendritic cell (DC) vaccines being the two basic approaches [124]. Peptide vac-
cines for spinal gliomas are composed of 8–30 amino acids or tumor-specific antigens such
as isocitrate dehydrogenase (IDH)-1(R132H) and EGFRvIII [123,125]. Conversely, autolo-
gous dendritic cell vaccines are developed ex vivo by culturing CD14+ monocytes with IL-4
and granulocyte-macrophage colony-stimulating factor (GM-CSF) [125]. These vaccines are
primed with tumor-specific antigens. Several phase I and II clinical trials have documented
the effectiveness and safety of DC vaccines to treat malignant gliomas [126–129].

4.4. Tumor-Targeted Therapies (Nanotechnology)

Investigations into the local environment of neoplastic diseases have led to the dis-
covery and detailed study of the tumor microenvironment (TME), enhancing our under-
standing of cancer progression and fostering the development of more targeted therapies.
Recent advancements include the development of several nanoformulations aimed at de-
livering targeted therapies specifically for spinal cord tumors and spinal metastases. A
notable study by Yan et al. [130] involved a novel bone-targeted protein nanomedicine
that combines saporin with a boronated polymer, encapsulated in an anionic poly(aspartic
acid) layer. In mouse models, these nanoparticles accumulated in the bone and released
saporin in response to the acidic tumor environment, effectively inactivating ribosomes
and inducing cancer cell death.

For intramedullary spinal cord tumors (IMSCTs), magnetic nanoparticles loaded with
doxorubicin have been developed by Kheirkhah et al. [131], showing targeted delivery
and localized chemotherapeutic-induced apoptosis in cancer cells. Ahmadi et al. [132]
have explored an advanced anticancer formulation using methotrexate encapsulated in a
smart nanocarrier featuring a magnetic core and a polymeric shell with cationic properties.
Huang et al. [133] have engineered nanoparticles that merge the benefits of exosomes
with lncRNA MEG3 to target four human osteosarcoma cell lines, including MNNG/HOS,
U2OS, MG63, and SaOS-2, showcasing another innovative approach to cancer treatment.

5. Conclusions

Spinal cord tumors are a rare and complex group of neoplasms that can be challenging
to diagnose and treat. This review article discussed the current state of knowledge on spinal
cord tumors, including their classification, diagnosis, treatment, and emerging therapeutic
strategies. This article highlighted the importance of a multidisciplinary approach to care,
which involves neurosurgeons, radiation oncologists, medical oncologists, neurologists,
radiologists, pathologists, rehabilitation specialists, and palliative care physicians. Cur-
rent treatment strategies for spinal cord tumors include surgery, radiation therapy, and
chemotherapy. However, these treatments can be limited by their side effects and the
difficulty of targeting tumors in the spinal cord. Emerging therapeutic strategies, such as
immunotherapy, neural stem cell therapy, cancer vaccines, and tumor-targeted therapies,
offer promise for improving the outcomes of patients with spinal cord tumors.
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