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Blood based metabolic markers 
of glioma from pre‑diagnosis 
to surgery
Sebastian Löding 1*, Henrik Antti 1, Rickard L. Sjöberg 2, Beatrice Melin 3 & 
Benny Björkblom 1*

Gliomas are highly complex and metabolically active brain tumors associated with poor prognosis. 
Recent reports have found altered levels of blood metabolites during early tumor development, 
suggesting that tumor development could be detected several years before clinical manifestation. 
In this study, we performed metabolite analyses of blood samples collected from healthy controls 
and future glioma patients, up to eight years before glioma diagnosis, and on the day of glioma 
surgery. We discovered that metabolites related to early glioma development were associated with 
an increased energy turnover, as highlighted by elevated levels of TCA‑related metabolites such 
as fumarate, malate, lactate and pyruvate in pre‑diagnostic cases. We also found that metabolites 
related to glioma progression at surgery were primarily high levels of amino acids and metabolites 
of amino acid catabolism, with elevated levels of 11 amino acids and two branched‑chain alpha‑
ketoacids, ketoleucine and ketoisoleucine. High amino acid turnover in glioma tumor tissue is 
currently utilized for PET imaging, diagnosis and delineation of tumor margins. By examining blood‑
based metabolic progression patterns towards disease onset, we demonstrate that this high amino 
acid turnover is also detectable in a simple blood sample. These findings provide additional insight of 
metabolic alterations during glioma development and progression.
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Glioma is the most common type of malignant primary brain tumor in adults. The current treatment approaches 
include surgical resection often combined with radiochemotherapy, yet the median survival time of the most 
aggressive subtype, glioblastoma, is no longer than 15  months1. Given the poor prognosis and limited treatment 
options, early detection of glioma development is important in order to treat patients at an earlier stage of the 
disease progression. Interestingly, markers of glioma development have been reported to appear several years 
before a patient is diagnosed with a brain  tumor2,3. These markers include altered metabolite levels in blood, 
which have been found in several  studies2,4–7. Recently, it was shown that glioma development can be detected 
in blood up to at least two years before diagnosis with a panel of 20 metabolites in a multicenter pan-European 
 cohort7. These findings highlight the possibility of an earlier detection of glioma, which could potentially lead 
to an improved prognosis and outcome for glioma patients. Moreover, analyzing metabolic alterations related 
to disease development and progression could enhance our understanding of the mechanism of the disease.

Metabolic changes associated with glioma include elevated levels of certain metabolites related to an increased 
energy  turnover7. These include metabolites within the tricarboxylic acid (TCA) cycle and other metabolites 
associated with an increased energy turnover such as hypoxanthine, lactate, and N-lactoyl-amino  acids8,9. Other 
metabolic changes related to glioma development include an imbalanced redox homeostasis and altered glu-
tathione  metabolism2,4,7. Previous studies have mainly focused the analysis on pre-diagnostic plasma samples or 
samples collected after glioma  diagnosis10. To fully understand changes in metabolite levels during the timeline of 
glioma development and progression, it would be necessary to analyze both pre-diagnostic samples and surgical 
samples over time from the same individuals.

In this study, we examined blood plasma samples collected years before diagnosis, as well as on the day of 
surgery. We compared pre-diagnostic plasma samples with matched healthy controls to find early metabolic 
markers related to glioma development. We also analyzed surgery samples in relation to pre-diagnostic samples, 
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from the same individuals, to find metabolites related to glioma progression. All samples were analyzed by 
untargeted gas chromatography mass spectrometry (GC–MS) based metabolite analyses. We also performed 
targeted GC–MS analyses, in an attempt to validate previous findings of elevated levels of N-lactoyl-amino acids 
close to glioma diagnosis.

Results
Altered metabolite levels related to glioma development
To find metabolites that could indicate early glioma development, we analyzed plasma samples from patients 
that had been collected up to eight years before glioma diagnosis, and carefully matched plasma samples from 
cancer free healthy controls (Table 1 and Fig. 1). All samples were part of the Northern Sweden Health and Dis-
ease Study (NSHDS), which is a population based cohort with over 150,000  individuals11. Based on our criteria, 
we retrieved 126 pre-diagnostic glioma plasma samples together with 126 matched control samples. By use of 
untargeted GC–MS analysis, we identified 134 metabolites with high confidence, and 22 molecular features 
with unknown identity. The study design enabled us to do dependent analyses as each pre-diagnostic case was 
paired to a non-disease control based on stringent matching criteria (see Methods section) and differences in 
metabolite levels were calculated. Paired multivariate statistical analysis was applied by using Orthogonal Projec-
tions to Latent Structures – Effect Projection (OPLS-EP). Initial OPLS-EP modeling did not show a significant 
difference between pre-diagnostic cases and controls based on all metabolites combined (P = 1). However, when 
we examined the significance level of individual metabolites, eight identified metabolites and one unidentified 
molecular feature showed significantly altered levels in pre-diagnostic samples (Fig. 2, Table 2). The significant 
metabolites replicate previous findings of elevated levels of lactate, fumarate, malate and pyruvate in cases within 
eight years to glioma diagnosis in the NSHDS, analyzed by the liquid chromatography analytical platform at 
Metabolon  Inc7. Additionally, we found elevated levels of α-hydroxyisovalerate, and lower levels of pyroglutamate 
(also known as 5-oxoproline), O-phosphoethanolamine and methyl hexadecanoate in pre-diagnostic glioma 
cases (Fig. 2, Table 2).

Table 1.  Characteristics of pre-diagnostic cases and their matched controls, along with samples obtained at 
the time of surgery.

Patient and sample characteristics

Pre-diagnosis Cases Controls

Subjects, n 126 126

Sex, n (%)

 Female 80 (63.5) 80 (63.5)

 Male 46 (36.5) 46 (36.5)

 Age at sampling (years), mean (range) 54.3 (28.6–73.6) 54.3 (27.8–73.0)

Time from sampling to diagnosis (years), mean (range) 3.8 (0.15–7.98) n/a

Sampling date (year), median (range) 1999 (1988–2014) 1999 (1988–2014)

Time in freezer (years), mean (range) 19.3 (5.8–31.3) 19.3 (5.8–31.3)

BMI (kg/m2), mean (range) 25.6 (18.3–39.8) 25.5 (18.1–35.0)

Fasting status, n

 0–4 h 42 45

 4–6 h 11 8

  > 8 h 73 73

Glioma subtype, n (females/males)

 Glioblastoma: 9440/3 79 (45/34) n/a

 Gliosarcoma: 9442/3 1 (0/1) n/a

 Astrocytoma: 9400/3, 9401/3 24 (19/5) n/a

 Oligodendroglioma: 9450/3, 9451/3 16 (11/5) n/a

 Glioma NOS: 9380/3 6 (5/1) n/a

At surgery Cases Cases with < 7 years to pre-diagnostic sample

Subjects, n 40 27

Sex, n (%)

 Female 17 (42.5) 11 (40.7)

 Male 23 (57.5) 16 (59.3)

 Age at diagnosis (years), mean (range) 62.0 (43.8–77.3) 62.6 (43.8–77.3)

Glioma subtype, n (females/males)

 Glioblastoma: 9440/3 29 (11/18) 21 (8/13)

 Gliosarcoma: 9442/3 1 (0/1) 0

 Astrocytoma: 9400/3, 9401/3 5 (3/2) 4 (2/2)

 Oligodendroglioma: 9450/3, 9451/3 5 (3/2) 2 (1/1)
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Fig. 1.  Study design and analysis overview. (a) Collection of plasma samples from pre-diagnostic glioma cases 
(n = 126) within eight years before diagnosis, along with samples from matched healthy controls (n = 126). (b) 
Plasma samples were also collected on the day of glioma surgery (n = 40) from individuals who had previously 
donated a pre-diagnostic sample within twelve years. The illustration was created with BioRender.com.

Fig. 2.  Metabolite levels in plasma from pre-diagnostic glioma cases compared to controls. (a) Volcano plot of 
all 134 metabolites and 22 unidentified molecular features for case–control pairs in the NSHDS discovery cohort 
within eight years before diagnosis (n = 126 pairs). Effect sizes are shown as  log2 fold change, and statistical 
significance by -log10 P-value for individual metabolites using model loadings w. Metabolites with significantly 
higher (blue) or lower (red) levels in plasma from pre-diagnostic glioma cases are named. (b) Paired-boxplots of 
the significant metabolites displayed in (a).

Table 2.  Metabolites with significantly higher or lower levels in pre-diagnostic cases within eight years to 
glioma diagnosis. P-values and mean percentage difference were calculated from case–control pairs within 
eight years to diagnosis (n = 126). Significance levels were calculated from loadings w of the OPLS-EP model 
(two-sided), which is equivalent to paired samples t-test.

Metabolite P-value Mean difference (%) HMDB ID

Higher in pre-diagnostic cases

 Lactate 0.002 14 HMDB0000190

 α-Hydroxyisovalerate 0.014 10 HMDB0000407

 Fumarate 0.023 5 HMDB0000134

 Malate 0.026 5 HMDB0000156

 Pyruvate 0.031 9 HMDB0000243

Lower in pre-diagnostic cases

 Pyroglutamate 0.020 − 6 HMDB0000267

 O-Phosphoethanolamine 0.033 − 2 HMDB0000224

 Methyl hexadecanoate 0.035 − 6 HMDB0061859
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Since glioma is a heterogenous disease with several subtypes, we performed the same analysis separately for 
pre-diagnostic glioblastoma cases (n = 79) and their paired controls (n = 79). Here as well, we did not gener-
ate a significant OPLS-EP model (P = 1). When we examined the metabolites individually, malate, fumarate, 
α-hydroxyisovalerate, pyruvate and lactate were significantly elevated in pre-diagnostic glioblastoma patients 
(Supplementary Table S1), which they also were when all glioma pre-diagnostic cases were analyzed together 
(Fig. 2, Table 2). It should be noted that the elevated levels of these metabolites were higher in pre-diagnostic 
glioblastoma cases compared to when all glioma were analyzed together. In addition, pre-diagnostic glioblastoma 
cases had significantly elevated levels of both α-hydroxybutyrate and β-hydroxybutyrate, together with elevated 
levels of oxalate, 2,3-dihydroxybutanoate and 1,5-anhydrosorbitol (Supplementary Table S1).

Altered metabolite levels related to glioma progression
To find metabolites related to glioma progression, we analyzed plasma samples collected on the day of surgery 
(n = 40) for a subset of individuals that had previously donated a pre-diagnostic plasma sample up to 12 years 
before surgery. This approach allowed us to examine changes of metabolite levels over time, from years before 
diagnosis to the time of surgery (Table 1 and Fig. 1) of the 134 identified metabolites detected and unidentified 
22 molecular features. Surgery samples were obtained from the Uppsala-Umeå Comprehensive Cancer Con-
sortium (U-CAN)12, and pre-diagnostic samples were sourced from NSHDS, as previously described. All 40 
individuals were fasting during both sample collections. An overview of time between collection of the surgery 
and pre-diagnostic samples is shown in Fig. 3a. Before statistical analysis, each surgery sample was paired with its 
corresponding pre-diagnostic sample, and changes in metabolite levels were calculated. OPLS-EP modeling was 
applied to find metabolites related to disease progression. To explore how paring affects the quality of models and 
metabolite discovery, we also performed independent sample analysis by OPLS—Discriminant Analysis (OPLS-
DA). We initially generated an OPLS-DA model with all surgery samples (n = 40) and all matched pre-diagnostic 
samples (n = 40), and an OPLS-EP model with all surgery and pre-diagnostic sample pairs (n = 40 pairs) (Fig. 3b). 
The OPLS-DA model generated a P-value of 1 while the OPLS-EP P-value was improved to 0.28. Even though 
none of the models were significant, it indicates that the paired-sample approach results in higher information 
retrieval and increased signal to noise ratio. This was also observed when looking at the cross-validated scores 
of the two models (Fig. 3c), were the paired analysis correctly classified the samples to a greater extent than the 
unpaired analysis. Upon examining individual metabolites, it was clear that the paired analysis performed better 
in terms of a larger number of metabolites being significant (Fig. 3d,e).

With the aim of capturing the timeline of glioma development, we limited the time between collection of the 
pre-diagnostic sample to seven years to diagnosis. We chose this rationale since previous studies have indicated 
that glioma development might start up to 8 years before  diagnosis2,3,7. Moreover, it has also been seen that lon-
gitudinal plasma metabolite analysis is improved when time between samplings is limited to 7  years2. Therefore, 
we generated an OPLS-DA model and an OPLS-EP model using pre-diagnostic cases sampled within 7 years 
to diagnosis (n = 27) together with their corresponding surgery sample (n = 27) (Fig. 3b). As hypothesized, the 
significance of the models improved with P-values of 0.16 and 0.039 for the OPLS-DA and OPLS-EP model, 
respectively. It was also evident that the dependent sample analysis by OPLS-EP analysis performed better com-
pared to the independent sample analysis by OPLS-DA, both in terms of model quality parameter (Fig. 3b) and 
the extent of correct sample classification (Fig. 3c). The paired analysis also increased the number of significant 
metabolites compared to the unpaired analysis (Fig. 3c–g), with 22 metabolites significantly higher at the time 
of surgery and 2 metabolites and 3 unidentified molecular features significantly lower at surgery (Table 3).

It was notable that many of the metabolites that were higher at surgery were either amino acids or metabolites 
of amino acid metabolism (Fig. 3g). Significantly elevated amino acids were asparagine, methionine, citrulline, 
serine, phenylalanine, glycine, proline, lysine, beta-alanine and pipecolinate/cycloleucine. Metabolites of amino 
acid metabolism included the branched-chain alpha-ketoacids (BCKAs) namely ketoisoleucine and ketoleucine, 
which are products of the branched-chain amino acids (BCAAs) isoleucine and leucine catabolism. Notably, the 
levels of fumarate which was found to be higher in pre-diagnostic cases compared to controls, were even higher 
at surgery. Moreover, cystine, glycerol-2-phosphate and 3,4-dihydroxybutyrate were only detected in samples 
collected at the time of surgery (Fig. 3h).

To examine if altered metabolite levels at surgery depends on glioma subtype, we performed OPLS-EP on 
glioblastoma patients only with a limit of seven years between the surgery sample and the pre-diagnostic sample 
(n = 21 pairs). The model did not reach statistical significance (P = 0.14), which was likely due to loss of power 
when fewer samples were included. A large overlap of significant metabolites was seen for glioblastoma separately 
and all glioma (Supplementary Table S2). Interestingly, α-aminobutyrate and α-hydroxyisovalerate was signifi-
cantly elevated in glioblastoma patients at surgery. As showed earlier, α-hydroxyisovalerate was also significantly 
elevated in pre-diagnostic glioma cases compared to healthy controls (Fig. 2).

Investigating blood samples from biobanks of human populations to identify systematic differences related 
to diseases can pose difficulties due to the existence of other sources of systematic variation. We can successfully 
obtain the pattern of progression by subtracting one sample from the repeated sample, which normalizes indi-
vidual differences and highlights changes over time. By comparing this progression pattern with a closely matched 
control, one can further mitigate extraneous influences linked to the passage of time and sample  storage2. How-
ever, in the context of the surgical samples in this study, we lack controls. In order to assess the impact of the 
time interval between samples as a covariate in our discovery of metabolites, we generated an OPLS model with 
time between the paired pre-diagnostic and surgery samples as Y variable and differences in metabolites levels 
as X variables (Supplementary Fig. S1a). Upon examining metabolites, we found that metabolites that are related 
to time between the samples are in general not the same metabolites we discovered to be related with disease 
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Fig. 3.  Metabolite levels in plasma on the day of surgery compared to years before diagnosis. (a) An overview 
of repeated plasma samples, collected up to 12 years before glioma diagnosis (pre-dx) and on the day of 
surgery (OP), from the same individuals (n = 40). (b) Summary of the four generated OPLS-models. Bold text 
highlight significant OPLS-EP model (n = 27 pairs) with satisfactory  Q2 value and P < 0.05. (c) Cross-validated 
scores of the four OPLS-models shown in (b). (d–g) Volcano plots of the 134 metabolites and 22 unidentified 
molecular features for the repeated plasma samples modeled in (b). Effect sizes are shown as  log2 fold change, 
and statistical significance by -log10 P-value for individual metabolites using model loadings w. Metabolites with 
significantly higher (blue) or lower (red) levels in surgery samples are named. (h) Boxplots of metabolites that 
were only detected in surgery samples.
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progression (Supplementary Fig. S1b). This was shown as the significantly altered metabolites at surgery were 
not observed to be the most important coefficients of the time model (Supplementary Fig. S1c).

Altered metabolite levels years before glioma diagnosis and at surgery
As shown, the levels of several metabolites are significantly altered years before glioma diagnosis and at the time 
of surgery. To bridge the two separate analyses and to find metabolic markers of early diagnostic potential, we 
targeted the most altered metabolites in pre-diagnostic cases compared to controls (p < 0.10) and analyzed how 
their levels progressed towards surgery (Fig. 4). As reported, fumarate shows significantly elevated levels in pre-
diagnostic cases compared to controls, and its levels are further elevated to the time of surgery. The same pattern 
of elevated levels years before diagnosis and even higher levels at the time of surgery was also seen for pyruvate, 
lactate, urea and 2,3-dihydroxybutanoate (Fig. 4). On the other hand, an unidentified hexitol (421 m/z, RI 1946) 
showed lower level in pre-diagnostic cases compared to controls and even lower levels at the time of surgery 
(Fig. 4). Lastly, methyl hexadecanoate showed significantly lower levels years before diagnosis and significantly 
elevated levels at the time of surgery (Fig. 4).

Targeted analysis of N‑lactoyl‑amino acids by GC–MS
As observed in this study, amino acids and their metabolism play a role in glioma development and progression, 
with higher levels at the time of surgery. A class of metabolites that have recently garnered increased interest are 
N-lactoyl-amino  acids9,13. Using a LC–MS/MS based approach, we previously detected elevated levels of N-lac-
toyl-amino acids in blood of pre-diagnostic glioma  cases7. To validate these findings with another method, we 
performed targeted GC–MS analysis of four commercially available N-lactoyl-amino acids: N-lactoyl-phenylala-
nine, N-lactoyl-leucine, N-lactoyl-valine and N-lactoyl-tyrosine (Supplementary Fig. S2). Although our method 
could detect N-lactoyl-amino acid standards down to 1.3 pmol levels, corresponding N-lactoyl-amino acids 
within our pre-diagnostic glioma samples were below our methods limit of detection for a reliable quantification.

Table 3.  Metabolites with significantly higher or lower levels at surgery. P-values and mean percentage 
difference were calculated from paired surgery samples (n = 27) and pre-diagnostic samples (n = 27) within 
seven years to diagnosis. Significance levels were calculated from loadings w of the OPLS-EP model (two-
sided), which is equivalent to paired samples t-test.

Metabolite P-value Mean difference (%) HMDB ID

Higher at time of surgery

 Methyl hexadecanoate 0.004 61 HMDB0061859

 Pipecolinate/Cycloleucine 0.004 32 HMDB0000070/
HMDB0062225

 2,3-Dihydroxybutanoate 0.006 16 HMDB0245394

 Ketoisoleucin 0.007 59

 beta-Alanine 0.011 55 HMDB0000056

 Xylulose/Ribulose 0.015 22

 Glucose 0.016 15 HMDB0000122

 Urea 0.018 26 HMDB0000294

 Asparagine 0.018 56 HMDB0033780

 Isomaltose 0.020 170 HMDB0002923

 Xylitol/Arabitol/Ribitol 1 0.020 41

 Ketoleucine 0.020 15 HMDB0000695

 Methionine 0.021 18 HMDB0000696

 Citrulline 0.023 26 HMDB0000904

 Serine 0.024 20 HMDB0000187

 Phenylalanine 0.027 17 HMDB0000159

 Fumarate 0.030 46 HMDB0000134

 Glycine 0.032 19 HMDB0000123

 Erythronate 0.034 22 HMDB0000613

 Xylitol/Arabitol/Ribitol 2 0.040 86

 Proline 0.040 25 HMDB0251528

 Lysine 0.041 36 HMDB0000182

Lower at time of surgery

 Monosacharide (319 m/z, RI 2103) 0.011 -24

 Hexitol (421 m/z, RI 1946) 0.016 -59

 Glycerol 3-phosphoate 0.025 -35 HMDB0000126

 Unknown (331 m/z, RI 1971) 0.035 -27

 Glucoheptose 0.036 -28
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Discussion
In this study, we analyzed altered metabolite levels in blood samples of glioma patients collected years before 
diagnosed and compared that to healthy controls. We also examined how the metabolite levels change from 
years before diagnosis to the time of surgery. This approach enabled us to identify early metabolic markers that 
indicate glioma development years before diagnosis, and metabolites related to the progression of glioma up to 
the time of surgery.

For early metabolic markers of glioma development, we verify our previous findings of increased levels of 
metabolites related to energy turnover, years before glioma  diagnosis7. These include elevated levels of lactate, 
pyruvate, fumarate and malate in the blood. Interestingly, fumarate was found to be significantly elevated in 
pre-diagnostic cases compared to controls, and their levels progressed to be significantly higher at surgery. 
This indicate that fumarate becomes even more pronounced as the disease progress. The same progression pat-
tern with elevated levels towards surgery from already elevated levels years before diagnosis was also seen for 
pyruvate, lactate, urea and 2,3-dihydroxybutanoate. Methyl hexadecanoate was found to be significantly lower 
in pre-diagnostic glioma cases compared to controls, and significantly higher at the time of surgery. Methyl 
hexadecanoate is known to have anti-inflammatory  properties14 and the higher levels at surgery could be due to 
a response to an inflammatory environment during glioma development. Previous metabolomics studies have 
indicated an imbalanced redox homeostasis in pre-diagnostic glioma  cases2,4,7 with altered levels of metabolites 
of the glutathione  metabolism2. Glutathione is an antioxidant and plays a key role in redox  homeostasis15. In 
this study, we also found indications of an altered glutathione metabolism, with lower levels of pyroglutamate 
(5-oxoproline) years before diagnosis and elevated levels of methionine, serine, glycine seen at the time of surgery.

It is a well-known fact that the amino acid metabolism in gliomas is  altered16,17. Here, we found elevated levels 
of amino acids and metabolites of amino acids metabolism at the time of surgery. Particularly BCKAs, ketoisoleu-
cine and ketoleucine, that are metabolites from catabolism of the BCAAs, isoleucine and  leucine18 by branched-
chain amino acid aminotransferase, an enzyme that is expressed higher in glioblastoma tissue and higher expres-
sion levels are linked to poor  survival19. Interestingly, the BCAA catabolism metabolite α-hydroxyisovalerate 
were significantly elevated pre-diagnostically and even higher levels were seen at of surgery for glioblastoma 
patients. Moreover, both α-hydroxyisovalerate and α-aminobutyrate are elevated in glioblastoma  tissue20 and 
were here shown to be elevated in blood at surgery of glioblastoma patients. In addition to catabolic products of 
BCAAs, the levels of the amino acids asparagine, methionine, citrulline, serine, phenylalanine, glycine, proline, 
lysine, beta-alanine and pipecolinate/cycloleucine were elevated at the time of surgery. All these amino acids, 
except methionine and pipecolinate/cycloleucine, have been found to be higher in glioma tissue compared to 
brain tissue adjacent to  tumor20. Higher levels of ketoleucine (2-oxoisocaproic acid) and α-hydroxyisovalerate 
(2-hydroxy-3-methylbutyric acid) in glioma tissue were also seen in the same  study20. In general, we found 
elevated levels of metabolites of amino acid metabolism in blood at surgery that have been found elevated in 
glioma tissue. Amino acids can pass through the blood brain barrier through various  mechanisms21 and can 
enter the blood stream and could affect the elevated levels we observe. However, the altered metabolite levels seen 
here in blood could be due to other causes, such as a rewired metabolism throughout the body as a consequence 
of the disease, and might not be directly applicable to earlier glioma detection and diagnosis. It should also be 
noted that most of the patients received the glucocorticoid betamethasone before surgery, which could alter blood 
metabolite levels. A previous study of a different glucocorticoid, dexamethasone, has shown to alter the levels of 
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glucose, asparagine, proline, methionine, ketoleucine and phenylalanine in blood shortly after  administrated22. 
The other 21 significantly metabolites we found altered at the time of surgery was not reported to be altered after 
administration of dexamethasone. Although the altered metabolism at surgery can depend on several factors, 
some of the altered metabolites seems to carry early diagnostic value as there altered levels years before diagnosis 
became even more pronounced at surgery (Fig. 4).

As described, an altered energy state is seen in pre-diagnostic glioma cases and during the time of surgery. 
This altered energy state appears to be shift towards a catabolic state, as we see elevated levels of metabolites 
within the TCA cycle, protein- and amino acid catabolism, and increased lactate formation. In addition, we 
see indication of oxidative stress as metabolites within the glutathione metabolism are altered. As found here 
and in previous studies, the pre-diagnostic metabolic signature of glioma development seems to bear similari-
ties to the metabolic signature of strenuous physical  exercise7–9. Moreover, we see a large overlap of significant 
metabolites in our studies of pre-diagnostic glioma case and individuals diagnosed with mitochondrial disease, 
such as Mitochondrial encephalomyopathy lactic acidosis and stroke-like  episodes23. Altered metabolites related 
to glioma development and progression found here and in previous  studies2,7 together with altered metabolic 
pathways are mapped in Fig. 5.

Metabolite levels in blood are highly dynamic and depend on factors such as biological sex, age and fasting 
status. To adjust for these factors, we performed paired analysis with stringent matching of pre-diagnostic cases 
with controls based on biological sex, age and fasting status. Paired analysis was also performed for the sur-
gery- and pre-diagnostic samples from the same individual, where the individual was fasting at both samplings. 
Even though biological sex difference is adjusted for by pairing to the same sex, the number of pre-diagnostic 
case–control pairs were higher for females (63.5%), which could influence the results. The opposite was true 
for the surgery and pre-diagnostic sample-pairs, with 59.3% males. However, the stringent matching approach 
applied here has previously shown to yield pre-diagnostic glioma metabolic markers that are independent on 
both biological sex and glioma  subtype7.

This study confirms and validates previous findings in a new patient dataset. The main points of novelty 
are the identification of early metabolic markers that indicate glioma development, years before diagnosis, and 
metabolites related to the progression of glioma up to the time of surgery, in the same individuals. Specifically, 
we identify metabolites related to increased energy turnover, as highlighted by elevated levels of TCA-related 
metabolites in pre-diagnostic samples, and high levels of amino acids and metabolites of amino acid catabolism 
at glioma progression. These findings provide further insight into the metabolic alteration that occurs during 
glioma development and progression.

Fig. 5.  Schematic illustration of affected metabolic pathways during glioma development and progression. 
Altered metabolite levels found in this and earlier  studies2,7. Altered metabolite levels occurs in closely 
related metabolic pathways that are linked to energy production (TCA cycle, purine metabolism, and lactate 
formation), redox balancing (GSH synthesis and transsulfuration pathway) and amino acid metabolism 
(BCAAs, BCKAs and N-lactoyl-amino acids). Green and red arrows depict elevated and decreased metabolite 
levels, respectively, found in this study whereas up/down pointing grey arrows indicate higher/lower levels 
found in previous studies. BCAAs = Branched chain amino acids. BCKAs = Branched chain α-keto acids. 
GSH = Glutathione. The illustration was created with BioRender.com.
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Methods
Study subjects and sample acquisition
EDTA-plasma samples from pre-diagnostic glioma cases and healthy controls were acquired from  NSHDS11. 
NHSDS is a population-based and ongoing cohort in Västerbotten County, Sweden, with over 150 000 par-
ticipants. Information about participant recruitment, study design, samples collection protocols and follow-up 
procedure has been published  elsewhere24. We included pre-diagnostic glioma case samples collected up to 
eight years before diagnosis, together with matching controls. This resulted in 126 pre-diagnostic glioma case 
samples, from 105 individuals who had donated 1 or 2 blood samples, and 126 matched control samples. The 
study group consisted mainly of Caucasians individuals. Glioma cases were identified through cancer registries 
or via active follow up (ICD-7, topography: 193, histology: 475–476). Each case was paired randomly with a 
control that followed the set matching criteria. The control was alive and free of cancer at the time of diagnosis 
of the index case. Case–control matching was based on sex, age (± six months), BMI, time of sampling (± three 
months) and fasting status. Matched case–control pairs with opposite fasting status and suspected hemolyzed 
samples were not included.

We acquired EDTA-plasma samples collected on the day of surgery from the U-CAN  biobank12,25. We selected 
surgery samples of individuals that also had pre-diagnostic samples in NSHDS, with a set limit of no more than 
12 years before diagnosis. The U-CAN biobank was initiated later than NSHDS and therefore plasma samples 
were not collected at the time of surgery for all 126 individuals available. The latest pre-diagnostic sample was 
selected for individuals with more than one pre-diagnostic samples. Both the surgery and the pre-diagnostic 
sample were collected from fasting individuals. Suspected hemolyzed samples were removed from the analysis. 
This resulted in surgery samples (n = 40) and pre-diagnostic samples (n = 40) from 40 individuals, with pre-
diagnostic samples collected up to 12 years before diagnosis with a median time of 4.4 years before diagnosis. 
Most of the patients received betamethasone before surgery. Additional drugs administered before surgery 
varied for each patient.

Untargeted GC–MS metabolite analysis
For metabolite extraction, the plasma samples were divided into analytical batches, with matched pre-diagnostic 
case–control pairs and pre-diagnostic-surgery samples pairs kept within the same batch. Frozen 50 µl plasma 
samples in Eppendorf tubes were stored at -80 °C, and were placed on ice to thaw before extraction as previously 
 described2,20. Extraction of metabolites was done by adding 450 µL cold methanol:water mixture (90:10 v/v, 
including internal standards (2.5–7.5 ng/µL)) and the tubes were shaken heavily at 30 Hz for 2 min using a bead 
mill (Retsch, MM 400). The samples were left on ice for 2 h before being centrifuged at 18,600 × g for 10 min at 
4 °C. 100 µL of supernatant was collected from each Eppendorf tube and added to separate GC-vials. Supernatant 
was evaporated using a speedvac. The dry samples were derivatized by adding 15 µL methoxyamine in pyridine 
(15 µg/µL) and placed on a shaking machine for 10 min. The reaction was left for 16 h at room temperature. 
15 µL MSTFA + 1% TMCS was then added and the vial was vortexed and left for 1 h at room temperature. 15 
µL heptane with injection standard methyl stearate (15 ng/µL) was then added and the vial was vortexed. The 
samples were then analyzed using untargeted GC–MS.

For untargeted GC–MS analysis, we designed a constrained randomized run  order26, where matched pre-
diagnostic case–control pairs were analyzed directly adjacent to each other in a randomized order. The same 
procedure was applied for surgery samples and matched pre-diagnostic samples. The entire run order was 
randomized to achieve a balanced distribution of glioma subtype diagnosis, age, sex and time of sampling. To 
incorporate quality control measures, we included pooled quality control plasma samples, blank samples and 
serial dilutions throughout the  analysis27. The samples from NSHDS and U-CAN were analyzed in the same 
analytical run.

The GC–MS analysis was performed as previously  described2,20 using an Agilent 7890A gas chromatograph 
coupled to a Leco Pegasus HT time-of-flight mass spectrometer. 1 μL of sample was injected using a PAL autosa-
mpler in splitless mode at 260 °C, with a purge flow of 20 mL/min for 75 s. Helium carrier gas was kept at a 
flowrate of 1 mL/min. A 30 m DB-5MS column with 0.25 mm inner diameter and 0.25 μm film thickness was 
used for metabolite separation. The GC oven temperature program was set at 70 °C for 2 min, ramped at 20 °C/
min until 320 °C, and then kept at 320 °C for 8 min. The temperature of the transfer line between the GC and 
the mass spectrometer was 250 °C. Electron impact ionization was performed at an energy level of 70 eV. The 
ion source temperature was 200 °C and detector voltage was set to 1820 V. Mass spectra from 50–800 m/z was 
recorded at 20 spectra/sec. An n-alkane series (C8-C40) was analyzed at the beginning, in the middle, and at 
the end of the analysis, and was used to calculate retention index (RI).

Data processing and curation
Data processing was carried out as described  previously2,20. Raw spectra were exported as NetCDF files and 
processed using in-house developed MATLAB  scripts28. We used the area of the chromatographic peaks for 
quantification of relative amounts. The identities of the peaks were determined using mass spectral libraries 
from the Swedish Metabolomics Centre and the National Institute of Standards and Technology (NIST) (mainlib 
and replib libraries), using the NIST MS search 2.4 software. Identities were given to metabolites with spectral 
match score > 700, RI value within 25 units from the reference value, and all major ion fragments present in 
correct spectral intensities.

The data was curated before statistical analysis. Serial dilution of pooled quality control plasma samples was 
used to evaluate linearity of detection and to exclude molecular features not correlating with a linear quantifica-
tion. To minimize the influence of instrument drift, raw peak area data was normalized by the analytical batches. 
That is, for each batch, each metabolite was divided by the batch median level of that metabolite. Metabolites 
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with missing values were given an imputed value of half of the minimum intensity detected of that metabolite. 
We assessed the robustness of the analysis by examining the relative standard deviation (RSD) for the detected 
metabolites in the pooled plasma quality control samples. Metabolites that had missing values in more than 
20% of samples were excluded from statistical  analysis29,30. Detected drugs were also removed before statistical 
analysis. Median RSD was 27.9% and 86.8% of the molecular features had an RSD below 50%. After the data 
curation was completed, 134 identified metabolites and 22 unidentified molecular features remained.

Analysis of chemical standards of N‑lactoyl amino acids
We analyzed chemical standards of four commercially available N-lactoyl-amino acids: N-lactoyl-phenylalanine 
(Merck), N-lactoyl-leucine (Enamine), N-lactoyl-valine and N-lactoyl-tyrosine (BOC Sciences). All chemical 
standards were of analytical grade and were analyzed on the same GC–MS instrument, using the same settings 
and derivatization protocol as for the analytical samples described above. All standards were analyzed two times 
separately in concentrations of 20 ng/µL and 40 ng/µL for structural identification of mass spectrum and record-
ing of RI. Dilution series for all four N-lactoyl-amino acid standards were analyzed with concentration range of 
100 ng/µL – 0.2 ng/µL. Internal standards with final concentrations of 5–15 ng/µL were added to all concentra-
tions of N-lactoyl-amino acids. The dilution series was used as a calibration curve for semi-quantification of 
N-lactoyl-amino acids in the analytical samples from the untargeted GC–MS analysis. Ratios of each N-lactoyl-
amino acid and internal standard were calculated and quantified using the ratios from the calibration curve.

Statistics
To discover metabolites that early indicate glioma development, we performed dependent multivariate modeling 
using OPLS-EP26 on an effect matrix with differences of metabolite levels of pre-diagnostic case–control pairs 
within eight years to diagnosis in NSHDS. For OPLS-EP modeling, the 134 metabolites and 22 unidentified 
molecular features were used as X variables. Response variable Y consisted of a vector with ones only. The X 
variables were scaled to unit variance without centering and the Y variable was not scaled.

To discover metabolites related to glioma progression, we performed OPLS-DA and OPLS-EP on surgery 
samples and matched pre-diagnostic samples. Curated batch normalized data was used for the OPLS-DA and 
the effect matrix of calculated metabolite level differences of each individual’s surgery sample and pre-diagnostic 
sample were used for OPLS-EP. Metabolites that were detected in both the surgery and pre-diagnostic samples 
were included in the modeling (134 metabolites and 22 unidentified molecular features). For OPLS-DA modeling, 
X variables were scaled to unit variance and centered.

For the OPLS model with time between surgery and pre-diagnostic sample as Y variable, we used the effect 
matrix with calculated differences of metabolite levels between the paired samples. The X variables were scaled 
to unit variance but not centered, whereas the Y variable was scaled to unit variance and centered.

Model significance was calculated using leave one out CV-ANOVA (two-sided)31 and metabolite significance 
was calculated using loadings w from the models (two-sided), which is equivalent to paired sample t-test for one 
component OPLS-EP models and independent t-test for one component OPLS-DA models. The selection of 
number of components included in each OPLS model was based on the lowest CV-ANOVA P-value. All statistical 
tests performed were two-sided and P < 0.05 was considered as a significant change.

Study approval
All study participants provided written informed consent and all samples were pseudonymized. The study was 
conducted in accordance with the ethical standards of the Helsinki Declaration. The study project was approved 
by the ethical review board of Umeå University (Dnr 2017–295-31 M).

Data availability
Data can be shared upon reasonable request to the corresponding authors. Publicly sharing of data is not permit-
ted according to written informed consent, and access to data will require ethical approval.
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