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1  |  INTRODUC TION

Glioblastoma multiforme (GBM) is a highly aggressive and preva-
lent malignant primary brain tumor, accounting for 6.9% of 5-year 
survival rates and 14.2% of all tumors, as well as 50.1% of all malig-
nant tumors.1 Unfortunately, the prognosis for GBM is consistently 
poor, and there are limited successful therapies available in clinical 
practice. Despite undergoing standard treatment, which involves 

maximal safe surgical resection followed by concomitant radio-
therapy and chemotherapy, GBM remains incurable, with a median 
overall survival of 14.6 months.2 Both temozolomide (TMZ) and 
radiotherapy are known to elicit symptoms of nausea and vomit-
ing.3 Additionally, chemotherapy induces various adverse effects, 
including myelosuppression, alopecia, and fatigue, among others. 
The clinical utility of chemotherapy is constrained by its limited 
efficacy in the face of drug resistance, particularly in the case of 
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Abstract
Background: Glioblastoma multiforme (GBM) is an aggressive malignant tumor 
with a high mortality rate and is the most prevalent primary intracranial tumor that 
remains incurable. The current standard treatment, which involves surgery along 
with concurrent radiotherapy and chemotherapy, only yields a survival time of 
14–16 months. However, the introduction of tumor electric fields therapy (TEFT) has 
provided a glimmer of hope for patients with newly diagnosed and recurrent GBM, as 
it has been shown to extend the median survival time to 20 months. The combination 
of TEFT and other advanced therapies is a promising trend in the field of GBM, 
facilitated by advancements in medical technology.
Aims: In this review, we provide a concise overview of the mechanism and efficacy 
of TEFT. In addition, we mainly discussed the innovation of TEFT and our proposed 
blueprint for TEFT implementation.
Conclusion: Tumor electric fields therapy is an effective and highly promising 
treatment modality for GBM. The full therapeutic potential of TEFT can be exploited 
by combined with other innovative technologies and treatments.
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TMZ.4 TMZ resistance is a significant factor contributing to a nega-
tive prognosis in patients.4 Radiotherapy has been associated with 
the development of radiation-induced brain injury, which includes 
cognitive dysfunction and increased intracranial pressure.5,6 In 
cases of recurrent GBM, the median overall survival (OS) is typi-
cally limited to 3–5 months without the implementation of effec-
tive therapeutic interventions.7 Consequently, the investigation of 
an anticancer treatment modality that is both efficacious and well 
tolerated is crucial for enhancing the survival rates of individuals 
diagnosed with GBM.

Tumor electric fields therapy (TEFT) is a biophysical technol-
ogy that inhibits the growth of proliferating cells, including can-
cer cells, while sparing nonproliferating cells when applied under 
appropriate conditions.8 Dr.Ling Chen's team, along with other 
researchers, has demonstrated that TEFT, which utilizes alternat-
ing electric fields of low intensity (1–3 V/cm) and intermediate fre-
quency (100–300 kHz), induces cell death in a wide range of tumor 
cells both in vitro and in vivo9–11 while having minimal impact on 
normal cells.8 It has been observed that most types of GBM cells 
exhibit optimal response at a frequency of 200 kHz, with only a 
few cell types showing no response at this frequency.11 The effec-
tiveness of TEFT on cellular processes such as cell division and cell 
death was found to be influenced by the intensity of the applied 
electric field and the angle between the electric field and the axis 
of division.9 As a form of physical treatment therapy, TEFT demon-
strated a favorable safety profile with minimal adverse reactions, 
primarily limited to skin-related adverse events.9,12,13 A clinical trial 
involving 10 patients with recurrent GBM treated with TEFT re-
vealed a median OS of 62.2 weeks. Based on these findings, TEFT 
received approval in the United States and Europe for the treat-
ment of recurrent GBM and is now recommended as a first-line 
therapy following surgical resection, radiotherapy, and TMZ. A 
more extensive clinical trial of EF-14, which encompassed 695 pa-
tients, revealed that the median OS was 20.9 months in the TEFT 
plus TMZ group, whereas it was 16.0 months in the TMZ alone 
group. Additionally, the median progression-free survival (PFS) was 
observed to be 6.7 months in the TEFT plus TMZ group, compared 
to 4.0 months in the TMZ group.14 Notably, for Chinese patients, 
the median PFS was 16 months in the TEFT plus TMZ group, in 
contrast to 11 months in the TMZ group. Similarly, the median OS 
for Chinese patients was 21.8 months in the TEFT plus TMZ group, 
while it was 15 months in the TMZ group.15 It is worth mentioning 
that the TEFT instruments were granted approval by the Chinese 
National Medical Products Administration in 2020.

Despite the significant improvement in the prognosis of patients 
with GBM through the use of TEFT, there remains a limited un-
derstanding of the molecular mechanisms underlying TEFT action. 
Furthermore, it is crucial to optimize and upgrade the current hard-
ware and software to enhance the efficacy of TEFT. Consequently, 
this article aims to summarize the recently proposed mechanisms by 
which TEFT induces antitumor effects and to discuss the prospects 
of optimizing TEFT instruments.

2  |  MECHANISM OF TEF T

The mechanisms underlying tumor cytotoxicity can be categorized 
into several perspectives, including apoptosis, autophagy, cell cycle 
arrest, anti-angiogenesis, enhanced drug penetration, reduced DNA 
repair capacity, diminished migration and invasion capabilities, and 
immune activation.13,16 Preclinical studies have shown multiple ef-
fects on GBM cells, including promoting cell death, inhibiting DNA 
repair, inhibiting proliferation, and regulating immune response. 
TEFT treatment results in the extension of mitosis in the major-
ity of treated GBM cells, resulting in the cessation of proliferation. 
Additionally, approximately 25% of GBM cells undergoing mitosis 
experience destruction due to cell membrane rupture, while nuclear 
rotation is observed in a subset of cells.8

2.1  |  TEFT promoting several types of cell death

The primary mechanism employed in the application of TEFT in-
volved anti-mitotic effects, such as the induction of prolonged mi-
tosis, aberrant mitotic morphology, and mitotic cell death.16,17 The 
principal function of the mitotic spindle is to accurately segregate 
the chromosomes to opposing poles of the cells.18 TEFT has been 
found to impair chromosomal segregation and cell division through 
two major mechanisms, as summarized in several reviews. These 
mechanisms include the disruption of mitotic spindle microtubule 
formation and the dielectrophoretic effect.19,20 Specifically, TEFT 
hinders the localization of cytokinetic cleavage furrow to the mid-
line of the spindle by affecting Septin, resulting in plasma membrane 
instability and blebbing, ultimately leading to abnormal cytokinesis 
in the telophase stage.21,22 Additionally, TEFT perturbs spindle mi-
crotubules and normal spindle assembly during mitosis, thereby pre-
venting complete cytoplasmic separation.10

Apoptosis has traditionally been regarded as the sole form of 
controlled cell death, characterized by the disintegration of the 
nuclear membrane, cleavage of intracellular proteins, membrane 
blebbing, and the degradation of genomic DNA into nucleoso-
mal structures.23 The induction of apoptotic cells by TEFT was 
found to be notably mediated by caspase-3 activation and Poly 
(ADP-ribose) Polymerase (PARP)-1 cleavage, in a p53-dependent 
manner.24,25

Autophagy serves a dual function in the progression of tumors, as 
it promotes both tumor survival and growth by overcoming stressful 
conditions, while also suppressing tumor growth through the mainte-
nance of cellular homeostasis at a basal level of autophagy.26 In con-
sistency, the specific impact of autophagy in combinatorial therapy 
with TEFT remains unclear, as it is uncertain whether autophagy en-
hances or reduces the killing of GBM cells.16 It has been established 
that TEFT leads to mitotic arrest, which is associated with increased 
activation of autophagy.27 The induction of autophagic cell death by 
TEFT occurs through the miR-29b-Akt2 pathway, with downstream 
effects on the mammalian target of rapamycin (mTOR)/ribosomal 
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protein S6 kinase (S6K)/eukaryotic translation initiation factor 4E 
binding protein 1 (4EBP1) axis.25 TEFT was found to enhance auto-
phagic flux through the upregulation of proteotoxic stress response 
and the activation of AMP-activated protein kinase (AMPK) and se-
quential unc-51-like autophagy-activating kinase 1 (ULK1).28

2.2  |  TEFT inhibits DNA repair

Additionally, TEFT demonstrated inhibitory effects on DNA repair, 
as it suppressed the DNA damage response following exposure to 
radiotherapy,29 suggesting that a combination of radiotherapy and 
TEFT may be beneficial in controlling the progression of GBM. The 
breast cancer susceptibility gene 1 (BRCA1) gene, which plays a cru-
cial role in DNA damage response, including repair of double-strand 
DNA breaks and stalled fork repair. Knockdown of the BRCA1 gene 
resulted in an increase in R-loops, DNA damage, and replication 
stress.30–32 The inhibition of the BRCA1 pathway was observed 
following exposure to TEFT.33 An increase in replication protein A 
(RPA), which serves as a marker for replication stress and protects 
single-stranded DNA at stalled replication forks, was detected after 
TEFT exposure.30 These findings suggest that TEFT leads to an el-
evated level of DNA damage and a decrease in the capacity for repair 
through multiple pathways.16

2.3  |  TEFT inhibits cell proliferation and migration

TEFT suppressed GBM cell proliferation by reducing circMMD 
synthesis, thereby inhibiting the Wnt/β-catenin pathway.34 Kirson 
et al. demonstrated that TEFT had the potential ability to inhibit the 
migration of tumor metastasis and activate antitumor immune re-
sponse in peri-tumoral location.35 Additionally, TEFT was found to 
impair the migration and invasion of GBM cells.36 Yoon et al. demon-
strated that TEFT exerts inhibitory effects on cell migration and in-
vasion by downregulating of phosphoinositide 3-kinase (PI3K)/AKT/
nuclear factor-κB (NF- κB) signaling pathway.37

2.4  |  TEFT regulates immune response

GBM fostered an immunosuppressive environment characterized by 
dysfunction of T cells, inactivation of natural killer cells, elevated lev-
els of regulatory T cells (Tregs), and myeloid lineage cells, including 
tumor-associated macrophages (TAM), myeloid-derived suppressor 
cells (MDSCs), and neutrophils.38,39 In addition, immunosuppres-
sion is a key aspect of escaping immune recognition which was also 
partly induced by low immunogenicity, antigenic modulation, and 
immune-privileged site.40 TAM played a vital role in immune escape 
in GBM through upregulating programmed death ligand 1(PD-L1) 
expressed on GBM and activating programmed death 1(PD-1) ex-
pressed on TAM.40–42 A range of chemokine chemotactic factors, 
such as alkB homolog 5, C-C motif chemokine ligand 2/5 (CCL2/5), 

chitinase-3-like protein 1 (CHI3L1), C-X3-C motif chemokine ligand 
1 (CX3CL1), and C-X-C motif chemokine ligand 8 (CXCL8) expressed 
and secreted by GBM cells, induce intratumoral immune suppres-
sion via promoting TAM infiltration and immunosuppressive po-
larization.39,43 Combination of TEFT and anti-PD-1 therapy induced 
antitumor immune response,44 which may block the GBM immune 
evasion.

In the TEFT-treated mouse model, there was a decrease in ex-
hausted CD8+ T cells and an increase in the formation of memory 
T cells.45 Furthermore, patients who received TEFT treatment ex-
hibited clonal expansion of T cells in their blood, indicating a robust 
tumor-specific immune response.45 Positive T cell-mediated re-
sponses were observed in TEFT-treated tumor areas, as evidenced 
by CD45 activation and subsequent tumor necrosis factor (TNF)-α 
production to induce cell death.35,46 T-lymphocyte counts have been 
identified as a prognostic indicator for treatment outcomes in the 
context of TEFT.47 Additionally, TEFT treatment has been shown 
to recruit dendritic cells (DCs) from the bone marrow, enhance the 
ability of bone marrow-derived DCs to engulf cancer cells, and facil-
itate the maturation of DCs by upregulating MHC class II molecules, 
CD40, and CD80.48 Furthermore, TEFT has been found to elevate 
the levels of pro-inflammatory cytokines, including interleukin 
(IL)-1β, TNF-α, and IL-6, in macrophages through the regulation of 
the mitogen-activated protein kinase (MAPK) and NF-κB signaling 
pathway.48,49 Moreover, TEFT-treated macrophages have exhibited 
increased production of nitric oxide and reactive oxygen species 
(ROS), which have been shown to effectively eliminate tumor cells 
and pathogens.49

Due to the presence of the blood–brain barrier (BBB), the 
transport of activated immune cells from blood to the brain paren-
chyma was strictly restricted.50 TEFT increases the permeability of 
BBB,51,52 which is an advantage factor for immune cells to access the 
brain parenchyma.

As mentioned above, TEFT has a powerful impact on promot-
ing antitumor immunity to invert the immune-suppressive environ-
ment. Furthermore, the promotion of immunogenic cell death (ICD) 
by TEFT emerged as a significant concern.53 ICD causes the liber-
ation of specific molecules to activate immune response,54 which 
improves tumor immunogenicity.

TEFT induced ICD, characterized by the translocation calre-
ticulin (CRT) to the cell surface, the release of the alarmin high-
mobility group box  1 (HMGB1), and the secretion of adenosine 
triphosphate (ATP).44 Voloshin et al. demonstrated that TEFT in-
duced ICD via influencing the biological behavior of immune cells, 
such as the maturation of DCs in vitro and leukocyte recruitment 
in vivo.44 TEFT was found to activate the GMP-AMP synthase 
(cGAS)/stimulator of interferon genes (STING) inflammasomes 
and absent in melanoma 2 (AIM2)/caspase-1 inflammasomes, 
resulting in the production of pro-inflammatory cytokines (PICs) 
and type 1 interferon (T1IFNs), which induced adaptive immunity 
against GBM.55

The findings indicated that TEFT effectively inhibited the 
growth of GBM cells through a complex interplay of multiple 
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factors, as depicted in Figure 1. While much research has focused 
on TEFT's role in mitotic arrest and cell death, further investiga-
tion is warranted to elucidate its mechanisms in stimulating im-
mune activities.

3  |  EFFIC ACY OF TEF T

TEFT was employed to generate an alternating electric field using 
transducer arrays directly applied to the scalp of patients.36 The fre-
quency range of TEFT, spanning from 10 kHz to 1 MHz, was care-
fully selected to prevent the stimulation of excitable tissues such 
as nerves and muscles.36,56 It should be noted that high-frequency 
fields exceeding 500 kHz were found to induce tissue heating via 
the vibration of charged and/or polar molecules.16,57 In a study 
conducted by Kirson et al., it was demonstrated that TEFT within 
the frequency range of 100–300 kHz effectively inhibited the 
growth of GBM cells both in vitro and in vivo.8 Consequently, these 
intermediate-frequency alternating electric fields (100–300 kHz) 
were deemed to be efficacious without causing any adverse tissue 
effects.

The maximal inhibition of TEFT was found to be contingent upon 
the specific frequency of alternating electric fields, varying accord-
ing to cell types.8 In the clinical therapy of GBM cells, a frequency of 
200 kHz has been employed.9 Kseeler et al. proved that the frequency 
of 200 kHz had the maximum effect on four GBM cell lines (GaMG, 
U-138MG, U-343 MG, and U-87 MG) proliferation among frequen-
cies of 100, 200, 300, and 400 kHz.58 It should be noted that different 
patients with GBM displayed distinct characteristics, resulting in vary-
ing sensitive frequencies. Our research team has observed that the 
majority of cell lines exhibited sensitivity to a frequency of 200 kHz. 
However, the specific sensitive frequency varied for each cell line, 
and the therapeutic effect was enhanced by the random sequential 
sequence of TEFT. Furthermore, increasing the random sequential di-
rections demonstrated improved efficacy in inhibiting tumor growth.11 
Based on this result, Dr. Ling Chen's team developed a new type of 
TEFT equipment system named ASCLU-300 which offers adjustable 
frequency and intensity along with random sequential direction.59 Dr. 
Ling Chen's team also upgraded the second generation of an instru-
ment named ASCLU-350 (Hunan An Tai Kang Cheng Biotechnology 
Co., Ltd.) (Figure  2), and we conducted a prospective, single-center, 
single-arm, exploratory study (NCT0441793).60,61

F I G U R E  1 The mechanism of TEFT. TEFT inhibited GBM progression by disturbing mitosis, promoting apoptosis, triggering immune 
response, inhibiting DNA repair, and restraining cell proliferation and migration (By Figdraw).
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5-aminolevulinic acid hydrochloride was approved for use as an 
optical imaging agent in the context of neurosurgery for glioma re-
section to demarcate the relative boundary of malignant tissue and 
normal tissue.62 Exposure to TEFT resulted in heightened uptake of 
5-aminolevulinic acid, with this increase being directly proportional 
to the duration of exposure, owing to the augmented permeability of 
cellular membranes.63 5-aminolevulinic acid proved to be a reliable in-
dicator for assessing the permeability of glioma cells, including GBM 
cells. Furthermore, TEFT significantly amplified both the quantity and 
size of cell membrane perforations, as observed through scanning elec-
tron microscopy.63 The efficacy of cooperative reinforcement between 
TEFT and chemotherapy might be implemented by TEFT improving the 
concentration of chemotherapeutic drugs within tumor cells. However, 
other studies have demonstrated that TEFT not only reduces the via-
bility of multi-drug resistant cells but also improves chemotherapy ef-
ficacy without impacting drug transport.64 These findings consistently 
indicate that TEFT increases the permeability of GBM cell membranes, 
thereby enhancing sensitivity to chemotherapy.

TEFT-based combination therapies show promising potential for 
the treatment of GBM in the future. Here, we provide a compre-
hensive overview of preclinical research and clinical trials investi-
gating the combination of TEFT with various treatment modalities, 
including chemotherapy, radiotherapy, concurrent chemoradiother-
apy, targeted therapy, immunotherapy, small molecular inhibitors, 
tumor vaccine, skull remodeling surgery, and multiple-treatment 
approaches (Table 1).

Stupp et al. reported that compared to active chemotherapy, 
the median survival of TEFT application alone only prolonged 

0.6 months, and the difference was not significant (p = 0.27).7 The 
result meant the curative effect of TEFT was equivalent to che-
motherapy, and the combination of those two entirely different 
therapies might be quite effective. A phase 3 (EF-11) randomized 
clinical trial in 695 newly diagnosed GBM patients concluded that 
combination therapy with TEFT and chemotherapy was more 
effective than chemotherapy alone (median OS of 20.9 months 
vs. 16.0 months).14 A second phase 3 (EF-14) randomized clinical 
trial for newly diagnosed GBM revealed that the combination of 
TEFT (≥ 18 h/d) and TMZ maintenance therapy significantly pro-
longed the OS with 4.9 months compared to TMZ alone group 
(20.9 months vs. 16 months).14 The median time of this trial from 
diagnosis to randomization was 3.8 months in the combination 
of TEFT plus TMZ group and 3.7 months for TMZ alone group. 
Accordingly, the median OS for the patients receiving TEFT plus 
TMZ was 24.7 months from the diagnosis.65

Kim et al. found that radiotherapy enhanced cellular response 
as TEFT was administrated prior to radiotherapy.24 In contrast, 
delaying TEFT application after radiotherapy also increased treat-
ment efficacy, and the combination of TEFT and radiotherapy 
showed no increase in skin toxicities.29 Furthermore, the combi-
nation of spindle assembly checkpoint (SAC) inhibitor MPS1-IN-3 
(IN-3) and TEFT resulted in a stronger impact on GBM cell lines 
with an increased apoptotic rate compared to TEFT or IN-3 treat-
ment alone.58 Additionally, the concurrent application of TEFT and 
anti-PD-1 therapy was found to be safe without causing patholog-
ical changes in normal lungs and decreased tumor volume, albeit 
without statistical significance when compared to monotherapy 

F I G U R E  2 The current system of TEFT instrument. (A) The head model of TEFT instruments for clinical application (ASCLU-350). (B) The 
first generation of TEFT instrument for cell culturing. (C) The quadrilateral petri dish for cells in TEFT instruments (CL-301A). (D) The second 
generation of TEFT instruments for cell culturing (BES-100). (E, F) The TEFT instruments for mouse.
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of TEFT or anti-PD-1. This was accompanied by an increase in 
macrophages, DCs infiltration, and interferon (IFN)-γ production 
in vivo.44 Although the experiment was conducted on mice with 
lung carcinoma and the inhibitory effect of combination therapy 
on tumor growth did not reach statistical significance, the findings 
demonstrated the safety of combination therapy and indicated a 
potential for inhibiting tumor growth. These results hold valuable 
implications for GBM research.

4  |  ADVANTAGES OF TEF T

Chemotherapy is commonly used as an adjunctive treatment for 
post-resection GBM. However, the efficacy of chemotherapy 
is hindered by the limited permeability of BBB. Although long-
term or high-dose chemotherapy has shown effectiveness in 
killing GBM cells and preventing recurrence, it also induces toxic 
effects and drug resistance.66 In certain cases, the development 
of systemic toxicity, such as myelosuppression, necessitates 
discontinuation of chemotherapy. Compared to chemotherapy, 
radiotherapy exhibits lower levels of systemic toxicity and serves 
as a vital physical treatment modality for eliminating residual 
microscopic lesions after surgical resection and preventing the 
recurrence of GBM. Patients undergoing cerebral radiotherapy 
frequently experience a complication known as radiation-induced 

brain injury, which contributes to the clinical presentation of 
increased intracranial pressure.67 Besides, radiation may also 
induce systemic toxicity, such as lymphopenia, thrombocytopenia, 
alopecia, fatigue, cognitive impairment, and memory loss.67 
Though immunotherapy, including immune checkpoint blockade, 
oncolytic therapy, and vaccine therapy, has made significant 
progress in some cancers, the research on immunotherapy for 
GBMs is still being conducted.68 The targeted agents derived from 
the antitumoral immune response also induce inflammatory and 
anti-immune side effects.69

TEFT offers a non-invasion and portable approach to prolong 
survival time with fewer side effects. TEFT instruments are accessi-
ble to be carried, which means patients can receive tumor-treating 
fields at their convenience. In contrast to both chemotherapy and 
radiotherapy could induce resistant GBM cells through enhancing 
DNA damage response, the existence of GBM stem cells, and re-
molding the tumor microenvironment,70 TEFT has few side effects 
and rare resistance. Our research team found that long-term TEFT 
does not adversely affect vital organs and tissues, such as kidney, 
liver, and blood.59 Moreover, clinical trials revealed that the addi-
tion of TEFT to TMZ therapy did not exhibit a significant correla-
tion with the occurrence or intensity of systemic adverse events.14 
However, it should be noted that the utilization of TEFT devices 
may result in a higher occurrence of adverse events specifically re-
lated to dermal toxicity beneath the transducer arrays (Table 2).14 

TA B L E  2 Comparison of adverse effects between TEFT and other conventional therapies.

TEFT7 Chemotherapy92 Radiotherapy93,94 Immunotherapy95–102
Targeted 
therapy103–107

Skin injury ✓ ✓ ✓ ✓

Gastrointestinal disorder ✓ ✓ ✓

Fatigue ✓ ✓ ✓

Headache ✓ ✓ ✓ ✓

Blood cell disorder ✓ ✓ ✓

Elevated intracranial pressure ✓

Dizziness ✓ ✓

Injection-site reaction ✓

Epilepsy ✓ ✓

Myalgia (muscle pain) or 
arthralgia

✓ ✓

Cardiac disorder ✓

Fever ✓ ✓

Infusion reaction ✓ ✓

Peripheral motor neuropathy ✓

Migraine ✓

Meningitis with hydrocephalus ✓

Respiratory system disorder ✓ ✓

Hepatic insufficiency ✓ ✓

Electrolyte disturbance ✓

Leukoencephalopathy ✓

Neurologic deficits ✓ ✓
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Consequently, it can be concluded that TEFT represents a viable, 
secure, and user-friendly therapeutic approach for patients diag-
nosed with GBM.

5  |  THE PROSPEC TIVELY INNOVATIVE 
APPLIC ATION OF TEF T AND DISCUSSION

The development of TEFT as an innovative therapeutic approach 
for GBM has prompted the exploration of its full potential through 
the utilization of advanced iatrotechnique for tumor treatment. To 
provide a comprehensive overview, we have compiled prospective 
patents related to TEFT (Table 3) and have also presented a visual 
representation in the form of a blueprint (Figure 3).

Photodynamic therapy (PDT) involves the utilization of a photo-
sensitizer that is exposed to appropriate illumination light and en-
ergy, resulting in the generation of cytotoxic reactive oxygen species 

(ROS) and subsequent cell death.71 The photosensitizers exhibit a 
preference for localizing in tumors rather than normal cells, thereby 
enabling photodynamic therapy to specifically target and eliminate 
tumor cells. By disturbing the proliferation of dividing cells, the anti-
tumor effect induced by TEFT could be reinforced with combination 
of photodynamic therapy. Suitable light sources for PDT, such as 
light-emitting diodes (LEDs), are activated by applying an alternating 
current field with specific orientation and intensity. By adjusting the 
field orientation or intensity below the LED turn-on threshold, TEFT 
can be performed without activating PDT.72

The BBB can be effectively opened by focused ultrasound, 
excluding vessels with a diameter exceeding 30 μm.73 In a phase 
1 clinical trial involving adults with recurrent GBM, the BBB was 
successfully opened using a skull-implantable ultrasound device 
combined with intravenous microbubbles (LIPU-MB).74 The poten-
tial of enhancing the reversible opening of the BBB and increasing 
drug concentration could be further amplified by combining the 

TA B L E  3 Patents of emerging technologies for TEFT.

Title Date of filing Application number
Notification number or 
publication patent number

Publication 
patent date

1 Reducing motility of cancer cells using tumor-
treating fields (TTFields)81

2017.04.04 EP19219639 EP3693054B1 2023.06.28

2 Arrays for delivering tumor-treating fields 
(TTFields) with selectively addressable 
sub-elements108

2019.11.18 US16686918 US20200155835A1 2020.05.21

4 Arrays for delivering tumor-treating fields 
(TTFields) with individually accessible 
electrode elements and temperature 
sensors86

2020.12.21 PCT/IB2020/062309 WO/2021/137094 2021.07.08

5 Temperature measurement in arrays for 
delivering TTFields87

2017.08.11 PCT/IB2017/054922 WO/2018/033842 2018.02.22

6 TTFields treatment with optimization of 
electrode positions on the head based on 
MRI-based conductivity measurements76

2016.10.27 US201615336660 US2017120041A1 2017.05.04

7 Determining a frequency for TTFields 
treatment based on an electrical 
characteristic of target cancer cells109

2020.02.25 US16800737 US20200269042A1 2020.08.27

8 Evaluating the quality of segmentation of an 
Image into different types of tissue for 
planning treatment using tumor-treating 
fields (TTFields)

2020.01.07 US16736604 US20200219261A1 2020.07.09

9 Optimizing treatment using TTFields by 
changing the frequency during long-term 
tumor treatment82

2017.04.21 US201715493309 US2017215939A1 2018.08.03

10 Determining a frequency for TTFields 
treatment based on an electrical 
characteristic of targeted cancer cells83

2020.02.25 US16800737 US20200269042A1 2020.08.27

11 Treating cancer using electromagnetic fields 
in combination with photodynamic 
therapy72

2013.03.07 US201313788154 US9023090B2 2015.05.05

12 Using power loss density and related 
measures to quantify the dose of tumor-
treating fields (TTFields)77

2019.07.18 US16515311 US20200023179A1 2020.01.23

13 Delivering tumor-treating fields (TTFields) 
using implantable transduce arrays110

2020.02.26 US16801972 US20200269043A1 2020.08.27
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ultrasound device with TEFT, thereby potentially augmenting the 
efficacy of chemotherapy drugs.

In conjunction with the integration of scalp electrodes, the uni-
versal implantable electrodes generate an electrical field with multi-
ple stereoscopic orientations. This configuration allows for reduced 
distance to the lesion, independent of the anatomical structure of 
the scalp and skull, thereby requiring lower voltage and enhancing 
safety and effectiveness. It is prospective that integrate the implant-
able electrodes with implantable ultrasound device to form a unified 
device.

Immunotherapy, encompassing vaccines and adoptive immune 
cell transfer therapy, represents emerging treatment modalities for 
GBM patients.75 The implantation of an Ommaya reservoir serves 
as a pivotal approach for immunotherapy, facilitating the delivery of 
chimeric antigen receptor (CAR) T cells into the cerebrospinal fluid 
circulation. By integrating the comprehensive design of the Ommaya 
reservoir and TEFT implantable electrodes with an ultrasound de-
vice, a multifaceted therapeutic approach can be achieved, offer-
ing enhanced device functionality and mitigating patient distress 
through a singular surgical intervention.

As TEFT inhibited tumor growth via electric fields, the position 
of transducer array is vital to optimize the TEFT efficacy. To achieve 
this, a 3D map of electrical conductivity, resistivity, and power 
loss density can be generated using magnetic resonance imaging 
(MRI),76,77 taking into account the anatomical volume of the target 
tissue. The utilization of MRI measurements in conjunction with the 
NovoTAL System (Novocure Ltd.) could adjust the maximal electric 

field intensity at the tumor site.78 Additionally, a theory of evaluating 
the quality of segmentation of MRI was developed, and it provided 
the best segmentation to determine transducer arrays layouts.79 
Based on these techniques, adjusting the position of electrodes 
would elevate the efficacy of TEFT.

Single-cell heterogeneity was inferred because of variable 
transcription and distinct GBM subtypes in the same tumor.80 
Notably, the optimal frequencies for GBM varied among different 
patients and cell types.8,11 The use of a fixed frequency in TEFT 
only inhibited specific cell types, while exhibiting a weaker inhib-
itory effect on other heterogeneous cells. Conversely, employing 
a random frequency in TEFT enhanced the therapeutic effect on 
GBM,11 suggesting that the application of a random frequency in 
TEFT may effectively target heterogeneous cells with varying op-
timal frequencies. The theory was transferred to a utility device 
reducing the motility of GBM cells with changing frequency and 
amplitude every one second.81 Besides, changing the direction 
of TEFT also enhanced the therapeutic efficacy through promot-
ing cell apoptosis and CD8+ T cell infiltration.11 The selection of 
the frequency of the alternating electric field can be determined 
based on the size of the cells through biopsy or inverse electric im-
pedance tomography82 and electrical characteristics of GBM cells 
obtained from the patient.83 The implementation of individualized 
treatment frequencies, the adjustment of switching frequency ac-
cording to multiple optimal frequencies, and the incorporation of 
multidirectional mode are expected to significantly enhance the 
effectiveness of TEFT.

F I G U R E  3 The prospect of TEFT plus 
advanced therapy (By Figdraw).
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Though there were multiple technologies to adjust the position 
of electrodes to exert the maximal field density on GBM under the 
same voltage, the prediction of the TEFT treatment efficacy for in-
dividual patient was still rarely developed. Digital twins were the 
virtual counterparts of the entity measures, which witnessed the 
status of a physical object much earlier for further optimization.84,85 
The application of digital twins could simulate the TEFT and pro-
vide the prediction of TEFT efficacy. According to the predictive 
data, we could adjust the parameters of TEFT equipment, such as 
the position of electrodes, voltage, and current. As the electrodes of 
TEFT generating heat during producing electric fields, the sensors 
monitoring the temperature of electrodes transmitted the data to a 
central hub and switched off the overheating electrodes.86,87 Digital 
twin could substitute the role of the central hub to calculate and 
predict the temperature of electrodes. The efficacy of TEFT was 
dependent on the compliance of patients88 and the duration of ef-
fective field intensity. As the TEFT equipment was connected to the 
network and transferred data to digital twin appliance, digital twins 
could also monitor the use duration of TEFT, especially elevating the 
duration of effective field intensity. This technology could improve 
the efficacy of TEFT for supervising all stages of TEFT usage.

In this study, we mainly summarized the innovation and pro-
spective application of TEFT. Previous studies had shown that 
TEFT inhibited GBM growth in  vitro and in  vivo,9,11 and as dis-
cussed above, the mechanisms of TEFT were not fully understood. 
The researches on mechanisms of TEFT acting on crosstalk be-
tween GBM tumor microenvironment would be a hotspot of re-
search field. It is a critical point that develops a TEFT device for 
cell co-culture and monitoring culture medium component. Neural 
stem cells (NSCs), mainly existing in the subventricular zone (SVZ), 
are associated with the origin and recurrence of GBM.89,90 It is 
worth exploring that the antitumoral effect of TEFT on NSCs lo-
cated in SVZ.
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