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Imaging and Liquid Biopsy for 
Distinguishing True Progression 

From Pseudoprogression in Gliomas, 
Current Advances and Challenges 
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Rationale and Objectives: Gliomas are aggressive brain tumors with a poor prognosis. Assessing treatment response is challenging 
because magnetic resonance imaging (MRI) may not distinguish true progression (TP) from pseudoprogression (PsP). This review aims 
to discuss imaging techniques and liquid biopsies used to distinguish TP from PsP. 

Materials and Methods: This review synthesizes existing literature to examine advances in imaging techniques, such as magnetic 
resonance diffusion imaging (MRDI), perfusion-weighted imaging (PWI) MRI, and liquid biopsies, for identifying TP or PsP through tumor 
markers and tissue characteristics. 

Results: Advanced imaging techniques, including MRDI and PWI MRI, have proven effective in delineating tumor tissue properties, 
offering valuable insights into glioma behavior. Similarly, liquid biopsy has emerged as a potent tool for identifying tumor-derived 
markers in biofluids, offering a non-invasive glimpse into tumor evolution. Despite their promise, these methodologies grapple with 
significant challenges. Their sensitivity remains inconsistent, complicating the accurate differentiation between TP and PSP. 
Furthermore, the absence of standardized protocols across platforms impedes the reliability of comparisons, while inherent biological 
variability adds complexity to data interpretation. 

Conclusion: Their potential applications have been highlighted, but gaps remain before routine clinical use. Further research is needed 
to develop and validate these promising methods for distinguishing TP from PsP in gliomas.   
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INTRODUCTION 

G liomas are the most common and aggressive pri-
mary brain tumors, accounting for approximately 
80% of all malignant brain cancers (1). The 

standard of care for gliomas, especially high-grade gliomas 
such as glioblastoma, involves maximal surgical resection 
followed by chemoradiation and/or immunotherapy (2). 
However, the prognosis of glioma patients remains poor, 
with a median survival of less than 15 months (3). 

One of the major challenges in the management of glioma 
is the accurate assessment of treatment response and disease 
progression. Conventional magnetic resonance imaging 
(MRI) is the mainstay for monitoring gliomas, but it has 
limitations in distinguishing true progression (TP) from 
pseudoprogression (PsP). TP refers to the actual growth and 
invasion of tumor cells into the surrounding brain tissue, 
whereas PsP refers to the transient increase in contrast en-
hancement and edema caused by treatment-induced in-
flammation and necrosis (4). Both phenomena can appear 
similar on MRI scans, leading to misdiagnoses and in-
appropriate clinical decisions. 

Differentiating TP from PsP in gliomas is crucial for de-
termining the optimal treatment strategy and predicting 
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patient outcomes. Therefore, there is a need for more reli-
able and sensitive methods for evaluating tumor response and 
evolution. In this review, we discuss the current advances 
and challenges in the use of imaging techniques and liquid 
biopsy to distinguish TP from PsP in gliomas. We also 
highlight the potential applications and future directions of 
these methods in clinical practice. 

Imaging techniques, such as MRI and computed tomo-
graphy (CT), can provide detailed images of the brain and 
the tumor, but they may not be able to distinguish between 
tumor growth and inflammation caused by treatment (5). 
Therefore, advanced imaging techniques, such as magnetic 
resonance diffusion imaging (MRDI) and perfusion 
weighted imaging (PWI) MRI, are required to measure the 
blood flow and microstructure of the tumor tissue. These 
techniques can help distinguish TP from PsP by showing 
different patterns of perfusion and diffusion in the tumor. 

Liquid biopsy is a less invasive method that samples 
tumor-derived material from biofluids such as blood and 
cerebrospinal fluid (CSF) (6). Liquid biopsy can detect cir-
culating tumor DNA (ctDNA), circulating tumor cells 
(CTCs), and extracellular vesicles (EVs), which carry tumor- 
specific molecular markers (7). However, liquid biopsy is 
hampered by technical and biological problems such as low 
concentrations of tumor-derived DNA in the bloodstream of 
patients (8). 

Distinguishing TP from PsP post-glioma treatment re-
mains a focal challenge in the current radiological research. 
Previous studies have extensively discussed this issue. This 
study aimed to provide a comprehensive overview of current 
techniques, including imaging and liquid biopsy, and discuss 
their merits and limitations. The goal was to offer clinically 
meaningful insights into practice and future research. 

PSEUDOPROGRESSION OF GLIOMA 

PsP of glioma is a condition in which MRI demonstrates 
worsening lesions not caused by actual tumor growth (9). 
PsP most commonly occurs within 12 weeks following ra-
diation therapy in patients with high-grade gliomas (HGGs), 
although it may manifest from the first few weeks to 6 
months post-treatment (10). Biopsy reveals PsP as a con-
sequence of inflammation, cell death, or, rarely, an immune 
response. PsP does not indicate tumor dissemination but is a 
side effect of therapy (11). PsP often resolves spontaneously 
without additional intervention. The precise etiology and 
mechanisms underlying PsP remain poorly defined. PsP may 
arise from an exaggerated treatment response. Both radio-
therapy and chemotherapy elicit increased levels of in-
tracranial tumor necrosis factor-alpha (TNF-α), disturbing 
brain homeostasis, vasculature, and the blood-brain barrier 
(BBB) (12,13). An association between PsP and isocitrate 
dehydrogenase 1 (IDH1) mutations in glioma patients has 
been proposed. Li et al. identified IDH1 mutations as a risk 
factor for PsP development in 145 glioblastoma patients, 

with IDH1 demonstrating 34.2% sensitivity and 97.3% spe-
cificity for PsP diagnosis, suggesting its utility as a predictive 
biomarker. The basis of this relationship is yet to be eluci-
dated (14,15). In certain instances, MRI interpretation can 
be challenging, with PsP lesions potentially mistaken for TP. 
Accordingly, a reliable, non-invasive approach is imperative 
for distinguishing TP from PsP when evaluating ambiguous 
intracranial lesions via neuroimaging. 

IMAGING TECHNIQUES FOR DISTINGUISHING 
TRUE PROGRESSION FROM 
PSEUDOPROGRESSION IN GLIOMAS 

Imaging detection remains the predominant method for 
distinguishing TP from PsP in gliomas. However, the effi-
cacy of conventional imaging techniques in distinguishing 
this distinction is challenging. The demand for more precise 
and dependable imaging modalities that can accurately dif-
ferentiate between TP and PsP in gliomas is evident (16). 
Recently, several advancements have been made in this 
domain, employing a variety of imaging modalities, in-
cluding, but not limited to, conventional MRI, advanced 
MRI, CT scans, and positron emission tomography (PET) 
scans. Despite these advancements, numerous challenges and 
limitations have persisted, necessitating further research and 
development. In this section, we provide a comprehensive 
review of the current state-of-the-art imaging techniques 
and discuss potential future directions for improving the 
differentiation of TP from PsP in gliomas (Fig 1). 

Conventional Magnetic Resonance Imaging 

Conventional MRI is difficult to distinguish between TP and 
PsP using conventional MRI in most cases, but considering 
that conventional MRI is a routine examination technique in 
most hospitals, we have also summarized some conventional 
MRI features that may help distinguish TP from PsP. 
Conventional MRI is instrumental in evaluating TP and PsP 
in gliomas. It offers invaluable anatomical data, aiding in the 
assessment of alterations in tumor size, morphology, and 
enhancement patterns (17). In the early 1990 s, Macdonald 
et al. proposed criteria for assessing the treatment response in 
HGGs based on conventional MRI (18). These criteria 
primarily consider the extent of lesion enhancement on 
MRI, in conjunction with clinical symptoms and steroid use, 
to determine glioma progression. However, the limitations 
of this approach include the fact that post-treatment contrast 
enhancement may not be related to tumor activity but rather 
to BBB (19,20). Furthermore, the increased incidence of PsP 
following concurrent temozolomide chemoradiation, as well 
as the use of antiangiogenic agents, has made the deficiencies 
of the Macdonald criteria more apparent. Consequently, the 
Response Assessment in Neurooncology (RANO) working 
group introduced the RANO criteria, which incorporate 
additional measures, such as T2/FLAIR, to the assessment, 
emphasizing that the non-enhancing tumor component 
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should also be evaluated for decision-making (21). Cur-
rently, certain traditional MRI features may assist in distin-
guishing PsP from TP. For instance, the presence of a solitary 
lesion within the resection cavity or lesions with mass effect 
and progressive enhancement involving the corpus callosum 
may suggest TP; in contrast, PsP is typically characterized by 
"Swiss cheese-like" enhancement (13) and involvement of 
subependymal enhancement (22). In a study of 93 patients, 
subependymal enhancement on MRI was identified as a 
unique indicator of TP, with a sensitivity of 38.1%, speci-
ficity of 93.3%, and negative predictive value of 41.8% (23). 
However, it may be difficult to differentiate or coexist these 
features. 

To address these limitations, the incorporation of ad-
vanced imaging techniques such as MRDI, PWI, and mag-
netic resonance spectroscopy (MRS) can provide 
supplementary information (19). These techniques can 
evaluate blood flow, vascular permeability, microstructural 
alterations, and metabolic changes, thereby enhancing dif-
ferentiation accuracy (24,25). 

Advanced Magnetic Resonance Imaging Technique 

Advanced MRI techniques refer to various MRI methods 
that can provide more information on the structure and 

function of the brain than conventional MRI. The most 
common advanced MRI techniques currently available for 
differentiating TP from PSP in gliomas include MRDI, 
MRS, PWI, among others (26,27). Although each of these 
techniques holds a certain value in their application, they also 
have limitations. Therefore, summarizing the application of 
these techniques in glioma treatment is of significant im-
portance. 

Magnetic Resonance Diffusion Imaging Technique 

MRDI is an MRI technique that reflects the microstructure 
and function of tissues based on the diffusion of water mo-
lecules (28). MRDI includes diffusion-weighted imaging 
(DWI) and Diffusion tensor imaging (DTI). DWI can reflect 
the degree of diffusion and restriction of water molecules in 
tissues and lesions and is the only non-invasive method for 
detecting water molecule diffusion (29). DTI can reflect the 
direction and anisotropy of water molecule diffusion and 
perform brain white matter fiber tract imaging (30). The 
main difference between DWI and DTI is that DWI only 
needs to apply a diffusion gradient in one direction and can 
image quickly; however, it cannot reflect the diffusion di-
rection and anisotropy of water molecules. DTI requires the 
application of a diffusion gradient in at least six directions and 

Figure 1. The imaging techniques are applied to differentiate TP from PsP. 
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can obtain more information and a higher spatial resolution, 
but has a longer imaging time and is more affected by motion 
artifacts (31). 

Diffusion Weighted Imaging 

A commonly used MRDI technique is DWI, which reflects 
the diffusion of water molecules within relevant tissues by 
utilizing multiple diffusion gradients to measure the magnitude 
of random water molecule movement (32). The most widely 
used quantitative parameter is the Apparent Diffusion Coeffi-
cient (ADC), which is inversely proportional to cell density  
(33). In patients with tumor recurrence, the ADC value tends 
to decrease because of restricted water molecule diffusion 
within the tumor (34). Conversely, PsP of a tumor is associated 
with higher ADC values (35). Studies suggest that among the 
currently used ADC values, including the mean ADC, relative 
ADC, and fifth percentile value, the fifth percentile value is 
considered more suitable for distinguishing TP from PsP. The 
sensitivities were 90% and 80%, the specificities were 90% and 
80%, and the Area Under Curve(AUC) was 0.880 and 0.840, 
respectively (36). Another study demonstrated that diagnostic 
accuracy was enhanced when employing the subtracted histo-
gram mode within a multiparametric framework compared to a 
uniparametric approach, achieving a higher AUC of 0.877, 
with a sensitivity of 81.8% and a specificity of 100% (37). 
However, using the mean ADC value to differentiate TP from 
PSP has certain limitations, as the ADC values of cystic and 
necrotic areas are higher than those of solid tumors (38). 
Overall, although ADC values have a good diagnostic value, 
the practicality of these different ADC parameters requires 
further research. Moreover, the interpretation of ADC values 
can be confounded by the overlapping characteristics of the 
different tissue types. For instance, inflammation or infection 
can also lead to restricted diffusion, mimicking the ADC 
characteristics of a tumor (39). This can lead to false positives in 
the detection of tumor recurrence. Furthermore, the presence 
of edema, which is common in post-treatment brain tissues, can 
artificially elevate ADC values, potentially leading to false-ne-
gatives. In addition, the real-world clinical validity of these 
techniques is further complicated by the heterogeneity of pa-
tient populations and multifactorial nature of disease progression 
and treatment response. 

Another commonly used diffusion imaging technique is 
DTI, which utilizes anisotropic diffusion of water molecules 
for imaging. Fractional Anisotropy (FA) images can display 
the structure and anisotropy of white matter fibers in the 
brain and evaluate their treatment effects (40). In conclusion, 
MRDI techniques have a certain sensitivity in distinguishing 
TTP from PSP, but their specificity is not strong, necessi-
tating a combination of multiple methods for accurate dif-
ferentiation. 

Diffusion Tensor Imaging 

DTI serves as a pivotal tool in distinguishing TP from PsP in 
gliomas, offering insights into the structural integrity and 

organization of white matter tracts (41). In TP, gliomas 
display increased cellularity and invasiveness, disrupting the 
adjacent white matter tracts. DTI visualizes these alterations 
through parameters such as FA, with decreased FA values 
within the tumor region indicating disrupted tracts, which 
may suggest TP (42–43). Conversely, PsP, characterized by 
transient increases in contrast-enhancing regions on MRI 
scans due to treatment effects, can be differentiated by DTI 
through assessment of white matter tract integrity (44). 
Preserved or minimally changed FA values compared to 
baseline scans suggest that contrast enhancement is due to 
treatment effects rather than TP (45). Wang et al. integrated 
DTI with Dynamic Susceptibility Contrast (DSC) suggesting 
that a diagnostic model combining both can distinguish TP 
from non-TP (PsP and mixed). This model comprises FA, 
the linear anisotropy coefficient, and the maximum relative 
cerebral blood volume, resulting in an AUC of 0.905 (46). 

Nonetheless, the interpretation of DTI results should 
consider its limitations. PsP can exhibit decreased FA 
values owing to inflammation, edema, or treatment-in-
duced changes affecting white matter integrity, which can 
mimic the DTI appearance of TP. The location and extent 
of white matter involvement, with certain regions in-
herently having lower FA values, should be considered  
(47). Comparisons with baseline scans and correlation 
with clinical findings are crucial for improving differ-
entiation accuracy. Technical limitations of DTI, such as 
susceptibility artifacts and variability in protocols across 
different centers, can impact data quality and compar-
ability, potentially limiting the generalizability of the study 
results to broader clinical practice. Agarwal's study, which 
included 46 patients, concluded that morphological MRI 
features and DTI play a limited role in differentiating 
between PsP and TP. Thus, while DTI is a promising tool 
for distinguishing glioma progression, its definitive utility 
may require integration with other imaging modalities and 
parameters to enhance its accuracy and reliability, as well 
as the development of standardized protocols to ensure 
consistency across different clinical environments. 

Magnetic Resonance Spectroscopy 

MRS utilizes the phenomenon of magnetic resonance che-
mical shifts to ascertain the molecular composition of a 
substance. It is capable of measuring the concentration of 
various metabolites in the brain tissue and tumors, thereby 
reflecting the distribution of metabolites within the brain 
tissue and facilitating the evaluation of tumor treatment ef-
ficacy (48). The characteristic manifestation of tumor tissue 
in MRS is attributed to an increase in cell density and overall 
cell membrane, resulting in elevated choline (Cho) levels, 
whereas a decrease in neurons leads to a reduction in N- 
acetylaspartate (NAA) (49). Typical proton magnetic re-
sonance spectroscopy (1 H-MRS) exhibits an increase in the 
Cho/NAA and Cho/Cr ratios, with the NAA/Cr ratio ei-
ther remaining normal or decreasing (50). 
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However, the signal-to-noise ratio and image quality of 
MRS can be influenced by factors such as susceptibility ar-
tifacts, motion artifacts, and partial-volume effects. These 
factors can potentially impact the interpretation and com-
parison of MRS ratios, which are also subject to the selection 
of regions of interest, threshold choices, and variability of 
normal values. Despite these challenges, a meta-analysis 
suggested that MRS, among advanced MRI techniques, 
distinguishes between treatment-related changes and tumor 
recurrence. With sensitivity and specificity of 91% and 95%, 
respectively, MRS demonstrates superior diagnostic perfor-
mance (51). However, it is important to note that these 
figures may not be universally applicable because they can 
vary depending on the technical setup and expertise of the 
interpreting radiologists. A study published in Nature Re-
views Clinical Oncology suggests that MRS holds a very 
broad prospect for identifying postoperative glioma TP or 
PsP following temozolomide chemotherapy and radio-
therapy (52). Thust and colleagues' research posits that 
MRS's capability to recognize PsP exceeds that of the Per-
fusion MRI technique, which will be discussed later (53). 
Nonetheless, the real-world application of MRS is limited by 
its availability in clinical settings and the need for standar-
dization in the interpretation of its results. Overall, the use of 
MRS to evaluate early treatment effects during glioma 
therapy has yielded positive results, but further studies are 
required to establish its role in routine clinical practice and to 
determine its effectiveness across diverse patient populations. 

Perfusion Weighted Imaging 

PWI often provides grading and prognostic information and 
can distinguish between TP and PsP (54). PWI includes 
techniques such as DSC MRI, Dynamic contrast-enhanced 
perfusion imaging (DCE) MRI, arterial spin labeling (ASL), 
and multiparametric combinations to differentiate between 
the conditions. Among them, DSC and DCE-MRI are the 
two most common techniques. 

Dynamic Susceptibility Contrasts Magnetic Resonance Imaging 
DSC Perfusion Imaging is a valuable technique for evalu-
ating TP and PsP in gliomas by assessing cerebral blood flow 
and microvascular characteristics. It provides information 
regarding the relative cerebral blood volume (rCBV), which 
can aid in distinguishing between these two conditions (55). 

In TP, gliomas exhibit increased angiogenesis and neo-
vascularization, leading to elevated rCBV values. The 
growth of malignant tissue requires a rich blood supply, and 
as the tumor progresses, new blood vessels are formed to 
support its growth. DSC perfusion imaging can detect these 
changes by tracking the passage of a contrast agent through 
the brain (56,57). The regions with increased rCBV values 
indicated areas of active tumor growth and angiogenesis, 
suggesting TP. PsP, on the other hand, refers to the transient 
increase in contrast-enhancing regions on conventional MRI 
scans due to treatment-related effects rather than actual 

tumor growth (58). In PsP, the extent of angiogenesis and 
neovascularization is typically less pronounced than in TP, 
resulting in lower rCBV values. As a result, DSC perfusion 
imaging may show lower rCBV values in PSP than in TP  
(59,60). The current study confirms the significant value of 
DSC imaging in differentiating TP from PsP. Taylor et al.'s 
systematic review and meta-analysis, comparing various ad-
vanced MRI diagnostic techniques, identified DSC as the 
most clinically promising for high-grade glioma progression, 
with an AUC of 0.93, and sensitivity and specificity of 0.88  
(26). Similarly, another study reported strong sensitivity 
(0.84) and specificity (0.78) for distinguishing TP from PsP 
in high-grade gliomas, with an AUC of 0.85 (61). However, 
there are constraints to be considered when using DSC 
perfusion imaging to differentiate TP from PsP. First, in-
terpretation should consider the timing of the imaging study 
because contrast enhancement patterns can vary at different 
time points after treatment. Additionally, other factors, such 
as inflammation, treatment-induced changes, and ischemic 
effects can also affect rCBV values, leading to potential false 
interpretations (62). Moreover, DSC perfusion imaging re-
lies on the accurate measurement of the arterial input func-
tion and assumes a linear relationship between contrast agent 
concentration and signal intensity. Technical factors, such as 
susceptibility artifacts, partial volume effects, and contrast 
agent leakage, can introduce errors and affect the reliability 
of rCBV measurements. 

In summary, DSC perfusion imaging plays a significant 
role in distinguishing TP from PsP in gliomas by assessing the 
rCBV. While it provides valuable information, careful in-
terpretation of the clinical context, temporal patterns, and 
potential confounding factors is essential. Integration with 
other imaging modalities and clinical data can enhance the 
accuracy of differentiation and guide appropriate manage-
ment. Furthermore, the generalizability of DSC perfusion 
imaging findings is limited by variability in imaging protocols 
and post-processing techniques across different institutions, 
which necessitates the establishment of standardized proce-
dures to ensure consistent and reliable results. 

Dynamic Contrast-Enhanced Perfusion Imaging 
DCE perfusion imaging, an advanced MRI technique, 
measures vascular permeability based on the shortening of 
the T1 relaxation time by gadolinium contrast agents. It 
quantifies parameters, such as Ktrans, extravascular extra-
cellular volume fraction (ve), and vascular plasma volume 
fraction (vp). and the initial area under the contrast uptake 
curve( iAUC), which reflects various aspects of the BBB and 
extracellular extravascular space (EES) (63). In TP, increased 
BBB disruption and leakage lead to elevated Ktrans, ve, vp, 
and iAUC, whereas in PsP, decreased BBB permeability and 
leakage resulted in reduced values of these parameters  
(64,65). Qiu et al.'s meta-analysis of DCE imaging indicated 
that it effectively differentiated glioma TP from PsP, with a 
sensitivity of 0.792, specificity of 0.779, and AUC of 0.846  
(66). Similarly, another meta-analysis published in Neuro- 
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Oncology in 2017 reported that DCE imaging has a sensi-
tivity of 88% and a specificity of 85% for discerning pro-
gression in high-grade gliomas (67). Thus, DCE perfusion 
imaging can differentiate TP from PsP by comparing the 
changes in these parameters within the tumor region and 
surrounding tissue. 

However, the availability and feasibility of DCE may vary 
across different centers and scanners, and it requires the in-
jection of a contrast agent and postprocessing. The signal-to- 
noise ratio and image quality may be compromised by sus-
ceptibility artifacts, motion artifacts, and partial-volume ef-
fects. The interpretation and comparison of DCE parameters 
may be affected by the choice of region of interest, threshold 
selection, and variability of normal values. The specificity 
and sensitivity of DCE perfusion imaging for differentiating 
TP from PsP may also depend on glioma type and grade, 
treatment timing and modality, and the presence of con-
founding factors such as inflammation, infection, or he-
morrhage. Despite these challenges, DCE perfusion imaging, 
when combined with other imaging modalities and para-
meters, holds promise in improving the accuracy and relia-
bility of distinguishing TP from PsP in gliomas. 
Furthermore, similar to other advanced MRI techniques, the 
real-world application of DCE imaging is contingent upon 
the standardization of protocols and calibration of equipment 
across institutions to ensure consistent and reproducible re-
sults. 

Positron Emission Tomography-Computed Tomography 

Positron emission tomography-computed tomography 
(PET-CT) is a metabolic functional imaging technique that 
detects positrons emitted from intravenously injected radio-
active tracers and analyzes their accumulation and distribu-
tion patterns in the body (27). In the oncological context, 
PET provides valuable physiological information beyond 
what traditional MRI and CT imaging can offer, and is 
commonly used for tumor staging, treatment response eva-
luation, and guiding therapy. The most widely used radio-
active tracer is β-2-[ 18 F]-Fluoro-2-deoxy-D-glucose (18 F- 
FDG), a glucose analog that directly measures metabolic rate  
(68). Standardized uptake values can be compared between 
tumor regions and reference regions for the semi-quantita-
tive measurement of metabolic activity, thereby distin-
guishing low-grade and high-grade tumors. This method 
also has some limitations, as the brain inherently has rela-
tively high glucose metabolism, especially in the gray matter. 
Measurements may not reflect the true lesion if they are 
located close to the cortical gray matter. 

Due to increased proliferative activity and amino acid 
transfer in malignant brain tumors, as well as relatively low 
uptake levels of amino acids in normal brain tissue, the 
clinical use of amino acid radiotracers can better delineate 
tumors to some extent (69). Several amino acid-based 
radiotracers have been developed, including 11C-methionine 
positron emission tomography (11C-MET PET) and O-(2- 

[18 F]fluoroethyl)-l-tyrosine (18 F-FET). These two tracers 
have shown comparable performance in differentiating TP 
from PsP; however, 11C-MET PET is less commonly used 
because of its complex synthesis (70–72). With the gradual 
development of PET/MRI, the combination of PET and 
MRI takes full advantage of MRI's excellent soft tissue 
contrast and multi-parametric evaluation capabilities of 
MRI. Studies have demonstrated the potential of PET/MRI 
in evaluating treatment response in glioblastoma; however, 
its ability to monitor immunotherapeutic response in glio-
blastoma warrants further investigation (27). Eddie et al. 
demonstrated that FET-PET CT has strong diagnostic per-
formance for glioma recurrence (sensitivity 93%, specificity 
100%, accuracy 96%) (73). Another FET-PET study corro-
borated the high diagnostic capability of PET for glioma TP 
(sensitivity, 100%; negative predictive value, 100%) (74). A 
study involving 58 glioma cases indicated that combined 
PET/MR with ASL and [18 F]DOPA-PET map analysis 
effectively differentiated between TP and PsP (specificity 
100% and sensitivity 94.1%) (75). 

Since the advent of PET technology, the debate com-
paring PET/CT and PET/MRI modalities has been on-
going. However, to date, there is a paucity of research 
specifically addressing the differentiation between glioma TP 
or PsP using PET/CT or PET/MRI. In the majority of 
oncological applications, the diagnostic performance of 
PET/MRI is comparable to that of PET/CT, yet PET/MRI 
appears to have a superior edge in the detection of head, 
neck, and pelvic tumors, and in identifying tumor recurrence  
(76). Data from a Single-Center Observational Study on 
1003 Sequential Examinations suggest that PET/MRI fa-
cilitates staging on par with PET/CT and enhances lesion 
detectability in selected malignancies, potentially aiding in 
the acceleration of comprehensive local and systemic staging 
in a single procedure, particularly when additional MRI is 
advised. Moreover, the reduced radiation dose associated 
with PET/MRI may confer benefits to younger patients  
(77). Additionally, given MRI's superior capability of MRI 
in delineating neuroanatomical details and its broader selec-
tion of imaging sequences, PET/MRI may hold more pro-
mise than PET/CT for distinguishing PsP from TP. 
However, it is noteworthy that integrating two distinct 
imaging modalities makes PET/MRI technically more 
challenging. 

Amide Proton Transfer Imaging 

Amide Proton Transfer (APT) is a type of chemical exchange 
saturation transfer imaging and derivative technique for 
magnetization transfer. The APT technique selectively pre-
saturates the signal from the amide protons of free proteins 
and polypeptides and detects subsequent signal changes in the 
surrounding free water after exchange with the amide pro-
tons. By collecting signals before and after free water sa-
turation, the APT signal value was indirectly obtained (78). 
Compared to normal cells, tumor cells proliferate abnormally 
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and are metabolically active with increased protein content, 
leading to elevated amide proton concentrations and, thus, 
higher APT signals. Hence, the APT signal intensity within a 
lesion reflects the protein concentration (79). 

Multiple studies have shown that on APT-weighted 
imaging, patients with recurrent tumors demonstrate higher 
signal intensity, while patients with PsP exhibit only mildly 
increased signal intensity (80). A clinical study involving 38 
patients indicated that APT imaging technology can differ-
entiate between TP and PsP with mean and maximum in-
tensity values of 2.42% (sensitivity, 85.0%; specificity, 100%) 
and 2.54% (sensitivity, 95.0%; specificity, 91.7%), respec-
tively (81). Another meta-analysis revealed that for distin-
guishing TP from PsP, individual APT imaging parameters 
had a combined sensitivity of 0.85 and specificity of 0.88. In 
contrast, multiparametric MRI that includes APT showed a 
combined sensitivity of 0.92 and specificity of 0.83 (82). 
These findings suggest that APT imaging can provide valu-
able diagnostic information for distinguishing between 
tumor progression and treatment-related changes. 

However, the interpretation of APT imaging findings 
must be approached with caution. The APT signal is not 
only influenced by protein content, but can also be affected 
by other factors, such as pH changes, tissue temperature, and 
water content, which may vary in different pathological 
conditions. Furthermore, the specificity and sensitivity re-
ported in the literature can be influenced by the hetero-
geneity of patient populations, variability in treatment 
protocols, and differences in APT image acquisition and 
processing across different institutions. These factors can 
potentially limit the generalizability of APT imaging findings 
to broader clinical practice (83). 

Artificial Intelligence Enhances Imaging Diagnostic 
Precision 

The advent of artificial intelligence (AI) in neuro-oncology has 
ushered in a new era of precision in the diagnosis of glioma 
progression. AI-assisted imaging, particularly through machine 
learning and deep learning algorithms, has significantly im-
proved the differentiation between TP and PsP in patients with 
glioma. Deep learning automated segmentation models trained 
on extensive datasets have demonstrated high reproducibility in 
extracting features from DWI and PWI MRI. This reprodu-
cibility is crucial for the reliability of radiomics features across 
different institutions, which in turn enhances the robustness of 
predictive modeling for glioma progression. 

AI models that utilize multiparametric MRI data and in-
tegrate DTI, DSC-PWI, and T1-weighted contrast-enhanced 
imaging (T1CE) have shown superior diagnostic accuracy. Hu 
et al. attempted to use an optimized classifier to perform ma-
chine learning on post-gadolinium T1, T2, and FLAIR data of 
31 glioblastoma patients, achieving an AUC of 0.9434 for PsP 
differentiation, with a sensitivity of 89.91% and a specificity of 
93.72%. Another study integrating multiple MRI parameters 
for quantitative machine learning found that the accuracy of 

PsP prediction reached 87% with an AUC of 0.92. These 
models leverage the complex interplay of the tumor micro-
environment captured in high-dimensional imaging data, of-
fering a more nuanced analysis than traditional imaging 
techniques. For example, convolutional neural network models 
combined with recurrent neural network architectures out-
perform conventional convolutional neural network models. 
They effectively harness temporal and spatial information from 
various MRI sequences, thereby enhancing the accuracy of 
differentiating between TP and PsP. 

Moreover, the integration of AI with clinical data has led to 
more comprehensive models that outperform those based solely 
on imaging or clinical data. This holistic approach not only aids 
in clinical decision-making, but also addresses the challenges of 
limited data availability and the need for interpretability in 
clinical settings. Patel et al. reported that incorporating a ma-
chine learning-based approach with data such as O6-methyl-
guanine-DNA methyltransferase (MGMT) promoter 
methylation status, T1CE, T2WI, and ADC can effectively 
differentiate TP in glioblastoma patients, with an AUC of 0.8, 
sensitivity of 78.2%, and specificity of 66.7%. AI-assisted ima-
ging has also been instrumental in refining the treatment re-
sponse criteria. The RANO criteria have been enriched by 
incorporating AI tools, such as radiomics, radiogenomics, and 
radiopathomics, alongside advanced neuroimaging techniques. 
In a machine learning model involving 44 glioblastoma patients, 
Kebir et al. confirmed that the AUC for predicting PsP, as 
defined by RANO criteria, could reach up to 93%. This in-
tegration aims to provide a more objective and quantifiable 
assessment of the treatment response, which is particularly va-
luable in the early post-treatment phase. 

In summary, owing to the BBB, conventional MRI is 
limited in distinguishing between TP and PsP. Even the 
more advanced MRI techniques currently used clinically 
cannot completely differentiate between them. Among the 
advanced techniques, MRS appears to have superior diag-
nostic performance, with good sensitivity and specificity, 
compared to other techniques. However, it is important to 
note that the diagnostic accuracy of MRS can be influenced 
by the choice of the spectral region of interest, experience of 
the operator, and quality of the equipment used, which may 
limit its generalizability across different clinical settings. 
Clinically, a multi-parametric approach combining DWI and 
perfusion MRI with rCBV and ADC values is preferred, as 
diagnosis based on multiple parameters is more accurate than 
that based on single parameter methods. This approach 
achieved a sensitivity of 82% and specificity of 100%, with 
rCBV being the best predictor for TP. Nevertheless, reliance 
on high-quality imaging and the need for expert inter-
pretation are critical factors that can affect the reproducibility 
of these results in different clinical environments. The 
emergence of AI is a landmark development in the medical 
sector, particularly in pathology and imaging diagnostics, the 
emergence of AI is a landmark development. Integrating AI 
into imaging diagnostics enhances the precision and speed of 
discerning true TP from PsP, offsetting the occasional 

Academic Radiology, Vol xx, No xx, xxxx xxxx DISTINGUISHING TP FROM PSP IN GLIOMAS  

7 



inaccuracies of subjective human interpretations. This in-
tegration is critical for optimizing patient management and 
tailoring treatment strategies. However, the effectiveness of 
AI applications is contingent upon the availability of large 
annotated datasets for training, and the algorithms' perfor-
mance may vary depending on the heterogeneity of the data 
and the complexity of the cases encountered in real-world 
settings. As AI technology advances, it is necessary to re-
define postoperative care for neuroglioma patients, leading to 
more personalized and adaptive therapeutic approaches. 
However, clinical adoption of AI is still in its infancy, and 
further validation studies are required to establish its utility 
and reliability across diverse populations and healthcare sys-
tems. Finally, the advantages and limitations of each imaging 
technique are summarized in Table 1. 

LIQUID BIOPSY FOR DISTINGUISHING TRUE 
PROGRESSION FROM PSEUDOPROGRESSION IN 
GLIOMAS 

Liquid biopsy is another promising technology to differ-
entiate TP from PsP in gliomas. Liquid biopsy is a 

technique that analyzes tumor-derived materials obtained 
from biofluids, such as blood and CSF. Liquid biopsy can 
detect CTCs, cell-free ctDNA, circulating cell-free 
microRNAs and EVs carrying tumor-specific bio-
markers (84). 

Compared to conventional tissue biopsy, liquid biopsy has 
several advantages, including being minimally invasive, more 
accessible, allowing serial sampling, and better capturing 
intratumoral heterogeneity. Liquid biopsy can also provide 
information on tumor presence, molecular profiling, clonal 
evolution, therapeutic response, and prognosis (85). 

Liquid biopsy can aid in distinguishing TP from PsP in 
gliomas by detecting changes in the levels and molecular 
profiles of tumor-derived materials in biofluids (86). For 
instance, increased ctDNA or CTCs counts may indicate TP, 
whereas decreased or stable levels suggest PsP. Similarly, 
alterations in the expression or mutations of tumor-specific 
genes or microRNAs can differentiate TP from PsP. 

However, liquid biopsy also faces some challenges and 
limitations, such as low concentrations of tumor materials in 
glioma patient bloodstreams, technical variability and sensi-
tivity of detection methods, lack of standardization and va-
lidation of biofluid collection/analysis protocols, and 

TABLE 1. The Advantages and Disadvantages of Various Imaging Techniques in Distinguishing TP From PsP     

Imaging Technique Advantages Disadvantages  

Conventional MRI Provides invaluable anatomical data, aiding in the 
assessment of alterations in tumor size, 
morphology, and enhancement patterns. 

The imaging characteristics of TP and PsP can 
overlap, complicating the differentiation based 
solely on morphological changes. 

DWI Reflects the diffusion of water molecules within 
the relevant tissues, providing insights into cell 
density and structure. 

The ADC values of cystic and necrotic areas are 
higher than those of solid tumors, which can 
complicate interpretation. 

DTI Offers insights into the structural integrity and 
organization of white matter tracts. 

PsP can exhibit decreased FA values due to 
inflammation, edema, or treatment-induced 
changes affecting white matter integrity. 

MRS Measures the concentration of various 
metabolites in brain tissue and tumors, 
reflecting the distribution of metabolites within 
the brain tissue. 

The signal-to-noise ratio and image quality of 
MRS can be influenced by factors such as 
susceptibility artifacts, motion artifacts, and 
partial volume effects. 

DSC Assesses cerebral blood flow and microvascular 
characteristics, providing information about 
the rCBV. 

Interpretation should consider the timing of the 
imaging study, as contrast enhancement 
patterns can vary at different time points after 
treatment. 

DCE Measures vascular permeability based on the 
shortening of T1 relaxation time by gadolinium 
contrast agents. 

Its availability and feasibility may vary across 
different centers and scanners, and it requires 
contrast agent injection and post-processing. 

PET-CT Provides valuable physiological information 
beyond what traditional MRI and CT imaging 
can offer and is commonly used for tumor 
staging, treatment response evaluation, and 
guiding therapy. 

Measurements may not reflect the true lesion if 
located close to the cortical gray matter. 

APT Reflects protein concentration, providing insights 
into cell proliferation and metabolic activity. 

The interpretation and comparison of APT 
signals may be influenced by the choice of 
regions of interest, threshold selection, and 
variability of normal values.   
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biological complexity and heterogeneity of tumor-derived 
materials (87,88). 

Biology of Circulating ctDNA 

Cell-free DNA (cfDNA) comprises short DNA fragments 
detectable in plasma, urine, and other bodily fluids, whereas 
ctDNA represents a subset of cfDNA stemming from tumor 
cells or their microenvironment (89,90). Crucially, ctDNA is 
more readily discernible in fluid biopsies than in CTCs, 
which are scarce and challenging to isolate. Over the past 
two decades, numerous ctDNA mutations and detection 
techniques have been identified and developed for diverse 
cancer types, including gliomas, in blood and CSF (91,92). 
Consequently, ctDNA has seen escalating utility as a non- 
invasive means of diagnosis, residual disease monitoring, and 
treatment efficacy assessment in oncology. Biologically, 
ctDNA serves as a vector that conveys the genetic profile of 
solid tumors to peripheral circulation or bodily fluids, mir-
roring tumor heterogeneity and evolution. Owing to its 
tumor cell origin, ctDNA indicates tumor presence and re-
lative burden; however, profiling remains problematic due to 
limited quantities, high fragmentation, and low mutation 
frequencies in the normal cfDNA background. Thus, diag-
nosis via ctDNA currently occurs at advanced stages with a 
high tumor burden and ctDNA levels (93). Advances in 
platforms such as next-generation sequencing (NGS) and 
digital PCR (dPCR) now permit the accurate detection of 
plasma ctDNA alterations (94). Figure 2 shows the differ-
ences between dPCR and NGS results. Serum or fluid 
ctDNA levels correlate with stage, size, residual tumor post- 
treatment, recurrence/progression, and survival (95). 
Moreover, the association between short ctDNA half-life 
and tumor cell turnover produces sharp declines in response 

to radiotherapy, chemotherapy, or targeted therapy (96). 
Additionally, ctDNA enables the detection of minimal re-
sidual disease (MRD), which is strongly linked to recurrence 
and prognosis (97). In summary, ctDNA has emerged as a 
promising noninvasive biomarker for longitudinal tumor 
management. 

Detection Technology of ctDNA 

ctDNA comprises a minute fraction of cfDNA, often less 
than 0.01%. Thus, ctDNA detection requires ultrasensitive 
technologies that are capable of identifying rare somatic 
variants with abundant normal cfDNA. NGS and dPCR are 
the two predominant ctDNA detection platforms (Fig 2)  
(98). NGS, the most common deep sequencing technique, 
provides extensive genomic coverage through millions of 
reads and can identify various ctDNA alterations in plasma, 
including single nucleotide variants (SNVs), insertions/de-
letions (indels), copy number variations (CNVs), and struc-
tural variants (SVs). However, limitations exist, including 
high cost, long turnaround times, complex data analysis, and 
low sensitivity for rare mutations (99). dPCR, the most 
advanced PCR technique, enables the highly sensitive mu-
tant quantification and genotyping of ctDNA. Emulsion- 
based droplet dPCR (ddPCR) and chip-based dPCR com-
prise two main dPCR varieties. dPCR quantifies DNA 
amplification via a Poisson distribution of positive and ne-
gative partitions, furnishing absolute quantification without 
calibration (100,101). Compared to NGS, ddPCR offers 
superior sensitivity, speed, and reliability for MRD tracking. 
As an effective liquid biopsy ctDNA detection method, 
ddPCR is suitable for low ctDNA content samples and 
provides sensitive and specific ctDNA mutation identifica-
tion (102,103). In summary, both platforms have advantages 

Figure 2. Droplet digital PCR vs Next-generation sequencing. Schematic illustration of main methodologies for ctDNA analysis. 
Advantages and limitations for each methodology are indicated. 
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and disadvantages for ctDNA analysis, with the optimal 
choice depending on the clinical context and the available 
resources. 

Clinical Application of ctDNA in Glioma 

CtDNA analysis is a non-invasive alternative to biopsy for 
diagnosing glioma tumor properties. CtDNA reveals het-
erogeneity and evolution, detecting mutations across mul-
tiple tumor deposits in one sample (104). Genomic ctDNA 
profiles closely match tumor tissues, suggesting their utility in 
glioma diagnosis and treatment personalization. As ctDNA is 
released constantly with a short half-life, it enables the early 
detection of recurrence after therapy. 

ctDNA from the blood and CSF has advantages for 
monitoring tumor burden, identifying molecular subtypes, 
detecting resistance, and predicting prognosis. However, the 
BBB limits the passage of tumor cells and DNA from the 
brain to the circulation, so CSF may provide more sensitive 
and specific glioma information than blood (105). Overall, 
ctDNA is a promising non-invasive tool for glioma mon-
itoring and treatment guidance. 

Application of Blood ctDNA in Glioma Monitoring 

Blood ctDNA detection technology is very mature and 
widely used for tumor monitoring. ctDNAs are DNA frag-
ments derived from malignant cells that may contain cancer- 
specific mutations. Some common mutations and epigenetic 
alterations in glioma patients are IDH, Telomerase reverse 
transcriptase(TERT), phosphatase and tensin homolog 
(PTEN), MGMT, and Alu (106,107). In 2013, Majchrzak- 
Celińska et al. analyzed the methylation status of MGMT, 
RASSF1A, p15INK4B, and p14ARF in serum ctDNA of 33 
patients with newly diagnosed central nervous system (CNS) 
tumors, including 17 gliomas, six meningiomas, and 10 
metastatic malignancies. They found that glioma patients 
were characterized by a higher frequency of gene hy-
permethylation, suggesting that DNA methylation is one of 
the most promising biomarkers for glioma diagnosis (108). 
Mutation and methylation of these genes are important 
hallmarks of glioma and could serve as guidance for specific 
treatments and monitoring of treatment efficacy. Noroxe 
et al. reported that the level of ctDNA is principally a 
function of two factors: tumor bulk and tumor cell turnover, 
which results in an increase in serum ctDNA in glioma TP  
(109). As the level of ctDNA correlates with disease pro-
gression, the quantitation of ctDNA is clinically important. 
However, only low amounts of ctDNAs originating from 
brain tumors are present in the plasma because of the BBB. 
The BBB ensures that the CNS maintains a high degree of 
homeostasis by strictly controlling the exchange of en-
dogenous and exogenous substances between the brain and 
the external environment (88). These low concentrations of 
ctDNA are among the main challenges in liquid biopsy for 
the diagnosis of gliomas. Recent developments in sequen-
cing technologies have made the detection and 

quantification of ctDNAs feasible and practical for translation 
into routine clinical practice. For example, Florent Mouliere 
et al. developed a technology in which differences in frag-
ment lengths of circulating DNA could be exploited to 
enhance the sensitivity for detecting the presence of ctDNA 
and for non-invasive genomic analysis of glioma (110). 
Carme et al. found that methylated MGMT, p16, DAPK, 
and RASSF1A were present in serial ctDNA of glioblastoma 
patients, and there was a good correlation between serial 
ctDNA and primary tumor tissue (111). A study including 70 
samples confirmed that serum ctDNA can be used as a 
noninvasive approach for the detection of genetic/epigenetic 
alterations in different grades of glioma during disease (112). 
In addition, serum ctDNA was confirmed to be informative 
for both loss of heterozygosity and aberrant gene promoter 
methylation analysis during glioma progression, with mod-
erate sensitivity and high specificity for both low- and high- 
grade tumors. Gong et al. found that ctDNA isolated from 
plasma had high concordance with MGMT and ALU me-
thylation alterations observed in primary tumors (113). 

Compared to methylation detection, the use of ctDNA for 
the detection of mutations in gliomas has been more chal-
lenging. Bettegowda et al. employed dPCR to identify 
ctDNAs in 640 patients with various types of cancer. They 
found that ctDNA was detectable in >  75% of patients with 
advanced pancreatic, ovarian, colorectal, bladder, melanoma, 
and head and neck cancer but was detectable in only <  10% 
of patients with gliomas (n = 27) (114). With improvements 
in detection technology, the detection rate of ctDNA mu-
tations in the blood of patients with glioma is increasing. 
Mair et al. reported that the dPCR detection of plasma 
tumor mitochondrial DNA (tmtDNA), an alternative to the 
detection of nuclear ctDNA, improved the plasma DNA 
detection rate (82% vs 24%), and allowed detection in CSF 
and urine (115). Jonathan et al. developed a technology of 
INtegration of VAriant Reads (INVAR) pipeline, which 
combines custom error-suppression methods and signal-en-
richment approaches based on biological features of ctDNA  
(116). Using this approach, the ctDNA mutation detection 
limit in each sample can be estimated independently based on 
the number of informative reads sequenced across multiple 
patient-specific loci. Using NGS technology, Liang et al. 
detected multiple mutations in the blood ctDNA of 47.6% of 
glioma patients, including 1p/19q, MDM2, ERBB2, IDH1, 
CDKN2A, CDK4, PDGFRA, CCNE1, and MET (117). 
Pacia et al. developed focused ultrasound (FUS) - enabled 
liquid biopsy technology, which improved the diagnostic 
sensitivity of brain tumor-specific genetic mutations com-
pared to conventional blood-based liquid biopsy (118). 
Furthermore, studies have reported that a high concordance 
exists between detection of mutations in tissue tumors and 
serum ctDNA, such as IDH, TERT, and H3K27M muta-
tions (119,120). Santiago et al. used bead, emulation, am-
plification, and magnetics (BEAMing) technology to 
evaluate the concordance between ctDNA and tissue NGS 
in glioma patients with paired sequencing. BEAMing 
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detected IDH1 mutations in the plasma of patients with 
gliomas with modest clinical sensitivity (true positivity rate) 
but 100% clinical specificity, with complete agreement be-
tween the mutant loci detected in tumors and plasma (118). 
Moreover, if ctDNA is present after curative treatment, the 
risk of relapse increases significantly. In addition, Pan et al. 
found a significant decrease in H3K27M plasma ctDNA 
agreed with MRI assessment of tumor response to radio-
therapy in 83% (10/12) of brainstem glioma patients (121). 
In 2021, Muralidharan et al. developed a novel ddPCR assay 
that incorporates features to improve sensitivity and allows 
for the simultaneous detection and longitudinal monitoring 
of two TERT promoter mutations (C228T and C250T) in 
ctDNA from the plasma of patients (122). This study was 
based on novel ddPCR technology to verify that peripheral 
TERT-mutant allele frequency reflects the clinical course of 
the disease, with levels decreasing after surgical intervention 
and therapy and increasing with tumor progression (123). 

Overall, the detection of hallmark ctDNA mutations or 
methylation is of great significance in the detection of blood 
ctDNA in TP gliomas. Due to the low abundance of ctDNA 
in the blood, more accurate sequencing technology is re-
quired to improve the detection sensitivity of blood ctDNA. 

Application of CSF ctDNA in Glioma Monitoring 

Currently, the CSF tumor DNA enables selective profiling 
of glioma molecular subtypes at the first clinical presentation  
(124). Meanwhile, the RANO group suggested CSF ctDNA 
to monitor residual disease after surgery, distinguish pro-
gression from PSP, and predict the outcome (125). Owing to 
the existence of the BBB as a unique physiological barrier, 
the CSF should theoretically contain higher levels of ctDNA, 
particularly for primary tumors of the nervous system, such as 
gliomas. The presence of the BBB may filter out potentially 
diagnostic macromolecules from the blood. However, CSF 
collection is more invasive than blood collection and may be 
associated with risks and complications. Compared to the 
tissue gold standard, the sensitivity and specificity of serum 
biomarkers for detecting gene methylation were 50% and 
100%, respectively. The low concentration of tumor-specific 
ctDNA in the serum is likely responsible for the relatively 
poor sensitivity of these nucleic acid biomarkers for detecting 
intracranial tumors and suggests that CSF analysis may im-
prove false-negative rates given the difference in con-
centrations. The presence of tumor DNA in CSF was first 
reported in 1995 by Rhodes et al., who used allele-specific 
PCR to detect tumor-derived p53 DNA in the CSF of a 
glioblastoma patient (126). In 2015, Pan et al. extracted 
ctDNA from the CSF of seven patients with solid brain 
tumors, six (85.7%) of whom had detectable tissue-con-
cordant mutations in at least one of the following genes: 
NF2, AKT1, BRAF, NRAS, KRAS, and EGFR. They 
demonstrated that the concentration of ctDNA from brain 
tumors was higher in the CSF than in the serum. This im-
plies that CSF ctDNA can be used to detect mutations in 

brain tumors (127). Another study isolated ctDNA from the 
CSF of 12 patients with brain tumors and found that the 
mutant allelic frequency was significantly higher in CSF than 
in serum (128). However, mutations in EGFR, PTEN, 
ESR1, IDH1, ERBB2, and FGFR2 were readily detected in 
CSF ctDNA with a sensitivity of 58%, compared to 0% for 
serum (129). Wang et al. identified detectable levels of CSF 
ctDNA in 74% of the cases (130). All medulloblastomas, 
ependymomas, and HGGs abutting the CSF space were 
detectable (100% of 21 cases), whereas no CSF ctDNA was 
detected in patients whose tumors were not directly adjacent 
to a CSF reservoir (131). In medulloblastoma, CSF ctDNA 
can predict TP before it is radiographically detected (132). 
These results suggest that CSF ctDNA has the potential to 
distinguish between TP and PsP in patients with glioma. 

Similarly, ctDNA detection can be effectively used for 
glioma diagnosis. In 2016, Pentsova et al. sequenced 341 
cancer-associated genes in cfDNA from CSF obtained through 
routine lumbar puncture of 53 patients with suspected or 
known CNS involvement in cancer (133). This study found 
that the examination of ctDNA extracts from gliomas un-
covered patterns of tumor evolution, including temozolomide- 
associated mutations. In 2019, Pan et al. detected CSF ctDNA 
in 57 patients with brainstem glioma, and found that at least one 
tumor-specific mutation was detected in over 82.5% of CSF 
ctDNA samples. In cases with primary tumors harboring mu-
tations, alterations were identified in the CSF ctDNA in 97.3% 
of the cases (36/37). In over 83% (31/37) of the cases, all 
primary tumor alterations were detected in the CSF, and in 
91.9% (34/37) of the cases, at least half of the alterations were 
identified. Among the 10 patients found to have primary tu-
mors that were negative for mutations, 30% (3/10) had de-
tectable somatic alterations in their CSF. However, mutation 
detection using plasma ctDNA is less sensitive than that using 
CSF ctDNA sequencing (38% vs 100%, respectively) (134). In 
the same year, another group identified H3K27M in the CSF 
and plasma of 88% of patients with diffuse midline glioma, with 
CSF being the most enriched for ctDNA (121). In 2021, Fu-
jioka et al. established a novel, non-invasive molecular diag-
nostic method using a chip-based dPCR system targeting 
ctDNA derived from CSF with high sensitivity and specificity  
(135). This study detected either of the diagnostic mutations in 
tumor DNA samples from 28 of 34 patients and precisely di-
agnosed WHO grade 3 or 4 diffuse gliomas using lumbar CSF 
obtained from six (87%) of seven patients with tumors har-
boring any mutation. These studies suggest that CSF ctDNA 
can provide valuable information for glioma diagnosis, espe-
cially for tumors that are difficult to biopsy or have low mu-
tation rates in the plasma ctDNA. 

Therefore, CSF ctDNA monitoring could be a useful bio-
marker for glioma recurrence and PsP. Fujita et al. confirmed 
that the IDH1 p.R132H mutation by ddPCR and increased D- 
2-hydroxyglutarate (D-2HG) levels in the CSF may help 
identify IDH-mutant gliomas. In addition, this study also sug-
gested that the D-2HG level and D/L-2HG ratio correlate with 
tumor volume in patients with IDH-mutant gliomas and could 
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be used as surrogate markers for tumor burden and response to 
treatment (136). This study revealed that it is possible to 
monitor glioma volume and progression using CSF. In 2019, Li 
et al (137). demonstrated that the overall minor allele frequency 
of CSF ctDNA was associated with earlier stages of glioblastoma 
compared to that of plasma ctDNA when the tumor burden 
was immediately released through surgical resection. Further-
more, disease status can be tracked by monitoring key muta-
tions in cells representing the tumor burden of the CNS, 
MRD, or both. In 2020, Zhao et al. reported that CSF ctDNA 
mutations in PTEN and TP53 are commonly detected in pa-
tients with recurrent gliomas. Furthermore, IDH mutations 
were detected in most CSF ctDNAs derived from IDH-mutant 
diffuse astrocytomas, whereas CSF ctDNA mutations in RB1 
and EGFR were found in IDH-wild-type glioblastoma (128). 
Recently, Miller et al. sequenced the ctDNA of patients with 
CNS tumors of different types and ages, including glioma, and 
confirmed that ctDNA from CSF can be used as an effective 
auxiliary means for monitoring tumor prognosis and ther-
apeutic effects (138). In summary, these studies indicate that 
CSF-derived ctDNA assays are highly sensitive for tumor tissue 
genotyping. ctDNA analysis demonstrates usability in dynamic 
monitoring procedures because ctDNA can be repeatedly ob-
tained even after resection of the primary tumor. Compared to 
blood ctDNA, analysis of ctDNA in the CSF may be more 
appropriate for the early detection of gliomas that harbor spe-
cific oncogenic mutations (Table 2 and Fig 3). 

Application of miRNAs and Extracellular Vesicles in 
Glioma Monitoring 

Circulating miRNAs are 18–25 nucleotide non-coding 
RNAs that regulate tumor growth and immune invasion. 

miRNAs can cross the BBB and stably exist in the per-
ipheral blood, making them ideal glioma biomarker can-
didates (139). Although miRNAs have been widely 
studied as diagnostic and postoperative monitoring bio-
markers in glioblastoma, research on distinguishing PsP 
from TP is limited. 

One study found no change in serum miR-320e levels in 
two glioblastoma patients with possible PsP on MRI, sug-
gesting that miR-320e reflects glioblastoma volume, but not 
PsP inflammation and edema (139). However, the small 
sample size limits reliability, necessitating larger validation 
studies. 

EVs are small membrane-bound particles released by cells 
into the extracellular environment. EVs can carry various 
molecules such as proteins, lipids, and nucleic acids, which 
reflect the characteristics and status of the parent cells. 
Compared to PsP, TP patients have a higher plasma EVs 
content (140). For example, microvesicles (MVs) are 
100–1000 nm EVs formed by cell membrane budding. MVs 
are significantly elevated in the blood of patients with TTP 
versus PSP patient blood (141). However, EV quantification 
lacks specificity for tumor-derived EVs, limiting their diag-
nostic utility (142). 

A digital SWARM algorithm demonstrated higher tumor- 
educated platelet (TEP) scores in suspected TP versus PsP 
glioblastoma patients, potentially related to the platelet-im-
mune axis in glioblastoma progression, although the me-
chanism is unclear (143). Overall, liquid biopsies have 
limited sample sizes and specificity, cannot replace standard 
imaging, and lack CSF research to distinguish PsP from TP. 
Further clinical studies and biosamples are needed to identify 
reliable liquid biopsy techniques involving miRNAs, EVs, 
and other molecules. 

TABLE 2. The Advantages and Disadvantages of Traditional Biopsy and ctDNA in Blood and CSF     

Biopsy Type Advantages Disadvantages  

Traditional biopsy   
1. Mature technical method  
2. The gold standard for tumor diagnosis   

1. Special parts are not suitable for aspiration 
biopsy  

2. Some patients are unsuitable for surgery  
3. Clinical risks in aspiration biopsy 

Blood-ctDNA biopsy   
1. Convenient sampling, noninvasive  
2. Realize dynamic monitoring  
3. Suitable for special parts, avoiding 

repeatedly aspiration biopsy   

1. CtDNA abundance is low and the detection 
means are limited  

2. Low accuracy  
3. No corresponding targeted drugs for the 

mutations detected  
4. Lack of unified criteria 

SCF-ctDNA biopsy   
1. Convenient sampling, minimal invasive  
2. Realize dynamic monitoring  
3. High ctDNA abundance, high sensitivity 

and specificity  
4. Suitable for special parts, avoiding 

secondary surgery   

1) No corresponding targeted drugs for the 
mutations detected  

2) Lack of unified criteria   
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Insights From Combined Imaging and Liquid Biopsy in 
Glioma Management 

The confluence of imaging and liquid biopsy in cancer pa-
tient management is an area ripe with potential, yet research 
is scant at present. Drawing from current studies on other 
cancer types, we aim to shed light on therapeutic manage-
ment for glioma patients. A 2023 study on leukemia, which 
involved 84 patients with Follicular Lymphoma, highlighted 
the efficacy of tracking mutated gene expression levels via 
liquid biopsy in tandem with PET/CT imaging and 
Deauville scoring. This approach successfully identified pa-
tients who were undergoing disease progression during 
treatment, with a sensitivity of 88% and a perfect specificity 
of 100% (144). The study highlighted the significance of 
continuous, personalized monitoring of mutated genes 
through liquid biopsy coupled with PET/CT for tracking 
patient diseases. Further research, including studies on 102 
patients with metastatic castration-resistant prostate cancer  
(145) and 84 patients with advanced non-small cell lung 
cancer (68), corroborated that monitoring total ctDNA levels 
alongside PET/CT imaging could accurately reflect patient 
treatment responses, enabling prognostic scoring or risk 
stratification for tailored patient management. Thus, whether 
it involves mutation-based monitoring or total ctDNA level 
assessment, their integration with imaging techniques posi-
tively affects the evaluation of cancer treatment effects or 
outcomes. Given that these studies were predominantly 
conducted in patients with systemic metastatic malignancies, 
where PET/CT is crucial, and that gliomas seldom metas-
tasize beyond the CNS, the prospect of combining advanced 
MRI with liquid biopsy is expected to be particularly pro-
mising. 

CONCLUSION 

The advantages and challenges in the utilization of imaging 
techniques and liquid biopsy for distinguishing TP from PsP 
in gliomas are the focus of this review. Imaging modalities 
such as conventional MRI, advanced MRI, CT, and PET 
offer detailed visualization of the brain and tumor. Among 
the relevant imaging technologies, particular attention 
should be paid to MRS, DTI, DSC, and PET. In the current 
literature, these modalities have demonstrated higher sensi-
tivity and specificity in differentiating glioma progression, 
especially when used in conjunction with other MRI para-
meters, which can significantly enhance the diagnostic ac-
curacy. Liquid biopsy, a less invasive approach, involves 
sampling tumor-derived material from biofluids, such as 
blood and CSF. It enables the detection of ctDNAs, CTCs, 
and EVs that carry tumor-specific molecular markers. The 
most common targets for testing are MGMT methylation, 
IDH1 status, p53 mutation, and the genetic markers EGFR, 
TERT, 1p/19q co-deletion, and PTEN. However, technical 
and biological challenges, such as low concentrations of 
tumor-derived DNA in the bloodstream of glioma patients, 
technical variability and sensitivity of detection methods, 
lack of standardization and validation of biofluid collection 
and analysis, and biological complexity and variability of 
tumor-derived materials, impede its application. 

Both imaging and liquid biopsy have advantages and dis-
advantages in the diagnosis of glioma, TP, and PSP. Imaging 
techniques, such as advanced MRI technologies, are widely 
accessible in most hospitals equipped with MRI machines, 
circumventing the need for additional investment in equip-
ment. The synergy of different MRI modalities can enhance 
the accuracy of TP versus PSP for gliomas. On the other 

Figure 3. Liquid biopsy. A schematic representation of the application of ctDNA from blood and cerebrospinal fluid of patients with 
glioblastoma. 
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hand, liquid biopsy, owing to the unique nature of the CNS, 
demands higher technical and equipment standards, in-
cluding dPCR platforms. However, the current state of li-
quid biopsy is predominantly single-center studies with a 
lack of a uniform genetic testing scope and standardized 
criteria, which significantly hampers its development. 

Although imaging and liquid biopsy differ in their acces-
sibility and reliability, they also face common challenges in 
the interpretation of results. Conversely, while imaging di-
agnostics have established protocols, the interpretation of 
results poses a challenge because of the variability in pro-
fessional backgrounds (e.g., radiologists vs neurosurgeons) 
and the individual expertise and experience of diagnosing 
physicians, which can lead to divergent interpretations of 
imaging data. By contrast, liquid biopsies often rely on 
changes in gene expression levels or binary positive results, 
theoretically offering higher objectivity and reproducibility. 
This is considered to be a major advantage of liquid biopsy 
over imaging. AI is emerging as a transformative force in this 
field, with the capability to learn and analyze complex 
imaging data through algorithms, thereby reducing the 
variability of physicians' subjective interpretations, and po-
tentially revolutionizing the imaging diagnosis of glioma TP 
and PSP. 

However, the future of glioma diagnostic technology is 
not an 'either/or' scenario. The convergence of imaging and 
liquid biopsy techniques to improve the diagnostic accuracy 
for glioma TP and PSP represents a trend of future ad-
vancements. The integration of these modalities, supported 
by AI, could lead to a more comprehensive and precise di-
agnostic approach, ultimately benefiting patient outcomes 
through tailored and timely therapeutic intervention. 

In conclusion, although imaging and liquid biopsy hold 
promise for distinguishing TP from PsP in gliomas, further 
development and refinement are necessary before their 
widespread adoption in routine clinical practice. This review 
aims to offer a comprehensive overview and insight for re-
searchers and clinicians interested in this topic, and to sti-
mulate further research and innovation in this field. 
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