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Highlights 

⚫ Raman spectroscopy enables a rapid, accurate, and label-free approach to glioma 

detection. 

⚫ Introduced the applications of Raman spectroscopy in glioma identification and 

classification. 

⚫ Discussed the main challenges in the clinical application of Raman spectroscopy. 

⚫ The article could provide some references for the further development of Raman 

spectroscopy in glioma diagnosis. 
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Abstract: 

Glioma is the most common primary tumor of the nervous system. Conventional 

diagnostic methods for glioma often involve time-consuming or reliance on externally 

introduced materials. Consequently, there is an urgent need for rapid and reliable 

diagnostic techniques. Raman spectroscopy has emerged as a promising tool, offering 

rapid, accurate, and label-free analysis with high sensitivity and specificity in 

biomedical applications. In this review, the fundamental principles of Raman 

spectroscopy have been introduced, and then the progress of applying Raman 

spectroscopy in biomedical studies has been summarized, including the identification 

and typing of glioma. The challenges encountered in the clinical application of Raman 

spectroscopy for glioma have been discussed, and the prospects have also been 

envisioned. 
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1. Introduction 

Glioma is the most common primary brain tumor arising from abnormal 

proliferation of glial cells, accounting for 30% of all brain tumors and 80% of all 

malignant brain tumors [1]. Patients with glioma suffered from low survival rates, 

with only 5.6% of glioblastoma patients surviving five years after diagnosis [2, 3]. 

Accurate diagnosis of glioma is crucial for prolonging the overall survival. Although 

histopathological methods such as hematoxylin-eosin [4] and immunohistochemical 

staining [5], along with advanced imaging methods such as computed tomography 

[6], magnetic resonance imaging [7], and positron emission tomography [8], are used 

to diagnose glioma and explore its mechanisms, these methods are often labor-

intensive, time-consuming, and reliant on externally introduced materials [9]. 

Consequently, researchers are dedicated to developing new rapid and accurate 

methods for glioma detection. 

Raman spectroscopic technique is a rapid, accurate, and label-free technique that is 

widely used in various fields [10, 11]. In the biomedical field, its rapid and accurate 

characteristics make it ideal for disease detection, and its label-free nature 

                  



demonstrates the potential for in vivo detection. During disease progression, 

substantial changes in the chemical compositions and structural characteristics 

promote tumor growth. Considerable details regarding the chemical compositions and 

structural characteristics are provided by Raman spectroscopy, which is thus able to 

detect changes during the onset and progression of disease [12, 13]. Over the past few 

decades, researchers have explored applications of Raman spectroscopy in tumor 

detection [14, 15], tumor imaging [16, 17], and tumor typing [18, 19] for glioma. 

These efforts have shown that Raman technology is a promising tool for glioma 

detection. 

In this review, we introduced the fundamental principles of Raman spectroscopy, 

and then presented the applications of Raman spectroscopy in biomedical studies, 

including glioma identification and typing. Discussed the challenges encountered in 

the clinical application of Raman spectroscopy for glioma, and also explored the 

future prospects. 

 

2. Raman spectroscopy techniques 

Scattering phenomena occur across a broad spectrum, encompassing ultraviolet, 

visible, and near-infrared regions. When monochromatic radiation interacts with a 

substance, most photons are spontaneously scattered or dispersed at the same 

wavelength as the incident light, this process is known as elastic scattering [20]. In 

contrast, a small number of photons undergo inelastic scattering or Raman scattering, 

resulting in scattered photons with different wavelengths than the incident light [20]. 

Scattering phenomena involve the interaction of a photon with a molecule, resulting 

in a transition of the molecule’s vibrational energy state. This energy exchange can 

lead to the emission of photons at different frequencies, categorized as Stokes and 

anti-Stokes Raman scattering [21, 22]. Stokes Raman scattering involves photons with 

frequencies lower than the incident light, while anti-Stokes Raman scattering involves 

photons with higher frequencies. The variation in photon frequency arises from 

energy exchange with the material, which is closely related to its molecular 

composition and structural properties. Notably, Raman scattering differs from infrared 

absorption, even though both processes involve transitions between vibrational energy 

states. The different scattering types and energy variations are shown in Fig. 1a. 

Initially, Raman spectroscopy exhibited weak signals and low signal-to-noise 

ratios, which severely limited its applications [23, 24]. With the in-depth study of 

spectral theory by scientists and the rapid development of instruments, several novel 

Raman spectroscopy techniques have emerged. Those include surface-enhanced 

Raman spectroscopy [25, 26], micro-confocal Raman spectroscopy [27, 28], Coherent 

anti-Stokes Raman spectroscopy [21, 29], stimulated Raman spectroscopy [22, 30], 

and resonance Raman spectroscopy [31, 32]. These techniques have significantly 

improved the signal-to-noise ratio, reduced fluorescence interference, provided high-

resolution images, and offered spatial information [33-35]. As a result, Raman 

spectroscopy has broader applications in biomedicine. The workflow for Raman 

spectroscopy collection is shown in Fig.1b. Peak assignment of biological samples 

was provided in Table 1 [44, 46, 48-53]. 

                  



 

Fig. 1. (a) The different scattering types of elastic scattering, Raman scattering, and infrared 

absorption. Raman scattering is an inelastic process in which energy is exchanged between the 

incident photon and the vibrational states of the material, leading to the shifted frequencies of 

photons. (b) The workflow on Raman spectroscopy collection. Obtain tissue slices from brain 

surgery, collect information through Raman spectroscopy, transfer it to a computer, and map a 

Raman spectrum. Created with BioRender.com. 

 

Table 1. Peak assignment of biological samples 

Raman shift(cm-1) Assignment 

425 cholesterol 

450 ring torsion of phenyl 

474 glycogen and polysaccharides 

498 nucleic acids, characteristic for DNA 

547 cholesterol 

596 phosphatidylinositol 

612 cholesterol 

620 C−C twist aromatic ring 

624 phenylalanine 

640 C−S stretching of cystine 

642 C−C twisting mode of tyrosine 

683 nucleic acids, characteristic of DNA 

700 C−O stretching 

719 C−N+ stretching of choline 

727 nucleic acids, characteristic of DNA 

757 protein, hemoglobin 

782 DNA or RNA 

825 phosphodiester 

829 tyrosine 

852 C−C stretching of tyrosine, collagen 

                  



857 protein, collagen 

877 cholesterol 

893 phosphodiesters 

925 C−C bonds of the peptide backbone 

933 proline, hydroxyproline 

936 C−C stretching of Proline, valine, collagen 

941 glycogen 

961 cholesterol 

968 lipids 

1003 C−C phenylalanine ring breathing mode 

1031 phenylalanine 

1062 O−P−O stretch DNA  

1081 lipids 

1086 nucleic acid 

1097 nucleic acid 

1127 cytochrome c 

1129 fatty acids 

1159 carotenoids 

1174 nucleic acid 

1208 phenylalanine 

1225 hemoglobin 

1247 amide III 

1250 nucleic acid 

1269 amide II and III 

1296 cholesterol and phospholipids 

1313 lipids, collagen 

1340 Tryptophan, nucleic acids 

1370 nucleic acid 

1397 lipids 

1404 melanin 

1439 proteins and lipids 

1447 aliphatic amino acids 

1486 nucleic acids 

1523 carotenoids 

1546 oxygenated hemoglobin 

1578 nucleic acid 

1585 hemoglobin 

1596 melanin 

1603 cytosine, phenylalanine and tyrosine 

1614 aromatic amino acids 

1616 C−C stretching of tyrosine and tryptophan 

1623 hemoglobin 

1657 lipids 

1660 protein and lipids 

1661 amide II and III 

1667 amide 

1735 cholesterol 

 

3. Identification of glioma 

                  



The identification of glioma from normal brain tissue is important and is a 

prerequisite for the accurate outlining of glioma boundaries. Accurate delineation of 

glioma boundaries is critical in guiding surgeons to achieve precise resection, thereby 

reducing the recurrence rate of gliomas. Surgical resection is the first step in the 

multimodal treatment of gliomas, aimed at maximizing safe resection [36, 37]. The 

boundaries of surgical resection are determined by preoperative cranial magnetic 

resonance imaging and intraoperative microscopy. These methods offer an initial 

estimate of the glioma boundary. When faced with challenges in defining the tumor 

boundary, surgeons may resort to obtaining small tissue samples for rapid frozen 

pathological examination Based on the examination results, the surgeons can then 

accurately define the tumor boundary and subsequently remove the remaining tumor 

[38, 39]. Despite their limitations, these methods have become the optimal and most 

widely adopted method in current medical practice.  

Raman spectroscopy has emerged as a powerful tool for probing molecular 

differences between tissues, aiding in the precise removal of gliomas by clearly 

defining their boundaries. It is well-established that biomolecular content and 

structure differ between glioma and normal brain tissues [15, 40, 41]. Recent studies 

have utilized Raman spectroscopy to demonstrate those differences at the cellular 

level, including in nucleic acids, proteins, and lipids [42, 43]. Mizuno et al. identified 

distinct molecular vibrational fingerprints at 1664 cm-1 (amide I), 1442 cm-1 (CH2 

deformation), 2885 cm-1 (CH2 asymmetric stretching), and 2938 cm-1 (CH3 

symmetric stretching) [44]. Similarly, Zhou et al. revealed significant peaks at 1157 

cm-1(carotenoids), 1521 cm-1 (carotenoids), 1588 cm-1 (tryptophan), 1640 cm-1 (amide 

Ⅰ), 1550 cm-1 (amide Ⅱ), 1306 cm-1 (amide Ⅲ), 2934 cm-1 (protein), and 2885 cm-1 

(lipid) [45]. Additionally, Kast et al. identified peaks at 985 cm-1 (calcifications), 1250 

cm-1(hemoglobin), 1159 cm-1 (carotenoids), 1585 cm-1 (hemoglobin), 1523 cm-1 

(carotenoids ), and 1739 cm-1 (cholesterol) [46]. These findings highlight the potential 

of Raman spectroscopy to effectively delineate glioma boundaries.  

Peak intensities and peak ratios in Raman spectroscopy also reveal differences 

between glioma and normal tissue [47-49]. Ji et al. quantified tissue cell density, axon 

density, and protein: lipid ratios in gliomas and normal tissues, and found that the cell 

density and axon density of glioma were increased in gliomas, while protein: lipid 

ratios of glioma were decreased in gliomas [50]. Similarly, Lu et al. observed that cell 

density was highest in glioblastomas, intermediate in grade III gliomas, and lowest in 

normal brain tissue [51]. Additionally, Vrazhnov et al. noted an increase in lactate, 

tryptophan, fatty acids, and lipids in the mouse brain [52]. Iturrioz-Rodríguez et al. 

highlighted that the proliferation rate and mitochondrial content were increased in 

cancer cells, which was related to DNA/RNA and cytochrome c [47]. This increase in 

cell density and biomolecules during the development of glioblastoma can be detected 

by Raman spectroscopy imaging, which can distinguish between tumor and peripheral 

tissue based on differences in peak intensity and ratios. As shown in Figure 2, a clear 

boundary can be observed between the tumor and the peripheral tissue, highlighting 

distinct morphological characteristics between viable tumor tissue and necrosis. 

                  



 

Fig. 2, Paired SRS and H&E staining imaging from the glioblastoma tissue boundaries. (A) 

Few tumors (labeled with T) and large areas of necrosis (labeled with N). (B) Central tumor and 

large peripheral area of necrosis. (C) Mixed distribution of tumor and necrosis. (B, D, F) showed 

zoom images of (A, C, E), respectively. Scale bars: (A, C, E), 500 μm; (B, D, F), 100 μm. Images 

reproduced with permission from Ref [51]. 

 

To rapidly delineate the boundaries of glioma, Raman spectroscopy is applied to 

fresh, unprocessed samples, aiding in precise surgical resection [31, 53-56]. 

Traditional methods such as complete immunohistochemical staining examination of 

glioma typically take more than one week and lack intraoperative guidance. Although 

rapid frozen histological examination can provide a quick diagnosis in about fifteen 

minutes, it is often less accurate. In contrast, Raman spectroscopy quickly detects 

glioma boundaries. Orringer et al. utilized stimulated Raman histology to map Raman 

shifts (2845 cm-1 and 2930 cm-1) in fresh, unstained specimens from 101 

neurosurgical patients, revealing cellular and structural features (cell density, vascular 

pattern, and nuclear structure) akin to H&E staining [57]. Hollon et al. proposed a 

new parallel workflow that combines stimulated Raman histology with deep 

convolutional neural networks, significantly reducing testing time for fresh samples. 

This workflow also achieves higher accuracy compared to traditional 

histopathological examination (94.6% vs. 93.9%) [58]. Di et al. studied 21 glioma 

                  



cases using stimulated Raman imaging, revealing a significant reduction in detection 

time compared to frozen sections (9.7 vs. 43 minutes) [59]. Therefore, utilizing fresh, 

unprocessed samples enables rapid and precise delineation of glioma boundaries.  

 

4. Typing of glioma 

4.1 Histological typing 

Histological typing is crucial for the diagnosis and treatment of glioma. According 

to the 2021 World Health Organization classified central nervous system tumors, 

glioma can be categorized into adult-type diffuse glioma, pediatric-type diffuse low-

grade glioma, pediatric-type diffuse high-grade glioma, circumscribed astrocytic 

glioma, and ependymal tumors [60]. Each category exhibits distinct prognoses and 

survival rates. Recent studies have increasingly focused on utilizing Raman 

spectroscopy to explore the histological features of glioma [61-63]. Ospanov et al. 

demonstrated differences in the histologic features among Raman spectra of 

glioblastoma, oligodendroglioma, and astrocytoma, using Raman spectroscopy 

combined with clustering and dimensionality reduction algorithms for differentiation 

[64]. The principal components of the Raman spectra were primarily influenced by 

phenylalanine, proteins, hemoglobin, lipids, and cholesterol. Hollon et al. analyzed 33 

cases of brain tumors to identify key histologic features using stimulated Raman 

histology [65]. Pilocytic astrocytoma (grade I) exhibited unique hair-like protrusions, 

ganglioma presented giant neoplastic ganglion-like cells, and diffuse midline glioma 

(grade IV), displayed dysplasia and microvascular proliferation. Quesnel et al. 

developed a glycosylation database covering glucose, fucose, galactosamine, 

galactose, glucosamine, mannose, and neuraminic acid, and the accuracy of glioma 

grades was 80% (II vs III), 85% (III vs IV), and 75% (II vs IV), separately [66]. Li et 

al. established a surface-enhanced Raman scattering with an enhancement factor of up 

to 1.37 x 109 using silver nanoparticles modified silver nanorods as substrates [67]. 

They successfully differentiated glioma grades II, III, and IV using Raman spectra 

combined with principal component analysis. The accuracy of the classification 

ranged from 75 to 100% [28, 63, 65, 66, 68, 69]. Therefore, the precise differentiation 

of glioma grades and subtypes using Raman spectroscopy could serve as a stepping 

stone toward high-precision neurosurgery. Figure 3 illustrates the unique histologic 

features of glioma, including hypercellularity, nuclear atypia, microvascular 

proliferation, axonal disruption, and perineuronal satellitosis. 

                  



 

Fig. 3. MRI-based paired SRS and H&E staining imaging. (A) Glioblastoma shows ring 

enhancement on MRI. (B) Cellular proliferation and nuclear atypia of the live tumor are evident in 

both SRS (left) and H&E (right) staining. (C) Microvascular proliferation forms twisted vascular 

complexes (arrowheads). (D) Images of mitosis (arrowheads). (E) Low-grade oligodendroglioma 

(arrowhead). (F) Axonal disruption (left), corresponding to neurofilament immunostaining (right). 

(G) "Chicken wire" blood vessels (arrowheads). (H) Perineuronal satellitosis is visible in SRS 

(left) and H&E staining (right). Images reproduced with permission from Ref [50]. 

 

To facilitate real-time intraoperative histologic assessment of glioma, a specially 

designed and optimized Raman spectroscopy with a probe system was developed for 

in vivo measurements, marking a significant advancement [70-73]. Desroches et al 

                  



reported the successful in vivo measurement of Raman spectra using a hand-held 

probe system in normal brain tissue, necrotic tissue, and tumor tissue. They collected 

a total of 70 spectra from 10 patients and achieved an accuracy of 87%, sensitivity of 

84%, and specificity of 89% using a leave-one-out cross-validation approach with the 

Boosted Trees algorithm [74]. Similarly, Jermyn et al. developed a hand-held contact 

Raman spectroscopy probe system capable of distinguishing between normal brain, 

dense cancer, and normal brain invaded by cancer cells, with a sensitivity of 93% and 

a specificity of 91%. This probe can also detect previously undetectable diffuse 

invasive glioma cells at cellular resolution [73]. Han et al. further enhanced Raman 

scattering probe sensitivity, achieving a detection limit of 5.0 pM in aqueous solution 

[75]. This probe offers higher resolution than MRI for defining glioma boundaries, 

potentially reducing glioma recurrence rates. These advancements in hand-held probe 

Raman spectroscopy systems could offer a high signal-to-noise ratio, high resolution, 

high accuracy rate, high sensitivity rate, and high specificity rate, significantly 

enhancing surgical guidance and patient outcomes. As can be seen in Figure 4, the 

Raman spectroscopy system probe can be integrated with MRI localization and H&E 

staining images to accurately differentiate between tumor and normal brain tissues. 

                  



 
Fig. 4. Raman spectroscopy probe system for glioma detection. (A) Photograph of the hand-

held contact Raman probe. (A) T2-weighted MRI images. (C) H&E staining images of dense 

cancer (P1), invasive cancer (P2), and normal brain (P3), corresponding to (B), respectively. (D) 

Raman spectroscopy image of tumor tissues with normal brain tissues. Images reproduced with 

permission from Ref [73]. 

 

Notably, Nicolson et al. demonstrated the first Raman imaging of gliomas in mice 

through intact skulls using surface-enhanced spatially offset resonance Raman 

spectroscopy, promising high precision in outlining glioma boundaries in vitro [63]. 

This study indicates the potential for seamless integration of Raman spectroscopy into 

the neurosurgical workflow. Consequently, this technique is expected to facilitate the 

detection of both glioma boundaries and histologic subtypes in vitro. 

 

4.2 Molecular typing 

Molecular typing is becoming increasingly vital for the diagnosis and treatment of 

glioma. In 2007, the World Health Organization classified central nervous system 

                  



tumors into main groups, which included astrocytic tumors, oligodendroglial tumors, 

oligoastrocytic tumors, ependymal tumors, and neuronal and mixed neuronal-glial 

tumors [76]. According to the 2016 World Health Organization criteria, the 

classification of glioma requires a combination of histologic features and molecular 

subtypes [77]. The 2021 World Health Organization criteria further emphasize the 

significance of molecular subtypes [60]. These molecular subtypes include isocitrate 

dehydrogenase (IDH) mutations, O6-methylguanine-DNA methyltransferase 

(MGMT) promoter methylation, chromosome 1p/19q deletion, telomerase reverse 

transcriptase (TERT) promoter mutations, epidermal growth factor receptor (EGFR) 

amplification, alpha thalassemia retardation syndrome X-linked (ATRX) mutations, 

TP53 mutations, and others [60]. Identifying these biologically and prognostically 

significant molecular subtypes has led to new categorizations of glioma [78, 79].  

Spectral features of IDH-mutant glioma were investigated using Raman 

spectroscopy. The isocitrate dehydrogenase (IDH) family of enzymes catalyzes the 

conversion of isocitrate to α-ketoglutarate while converting nicotinamide adenine 

dinucleotide phosphate (NADP+) to reduced NADP+ (NADPH), both as part of the 

Kreb cycle and in the cytoplasm [80]. In glioma, most mutations are caused by amino 

acid substitutions from arginine to histidine at position 132 of IDH1 (R132H) and 

from arginine to lysine at position 172 of IDH2 (R172K) [81]. In adult patients, IDH 

mutations serve as positive prognostic markers with notable significance [82]. IDH-

mutants are early changes in glioma formation and can be identified by Raman 

spectroscopy [48, 83, 84]. Uckermann et al. identified five Raman peaks at 498, 826, 

1003, 1174, and 1337 cm-1 to differentiate between IDH1-mutant and IDH1-wildtype 

from 36 glioma cases, using Raman spectroscopy [85]. They revealed an increase in 

the intensity of the DNA bands and a significant decrease in the intensity of the lipid 

molecule bands in the Raman spectrum in IDH1-mutant gliomas. Livermore et al. 

used Raman spectroscopy to explore the spectral features peaks at 1445 cm-1 and 

1660 cm-1 of IDH-mutant and IDH-wildtype from 62 fresh tissue samples. The most 

significant differences in peaks were found for lipids (853, 1059, 1087,1266, 1445, 

and 1660 cm-1), phenylalanine (1003 cm-1), and DNA (1207 and 1342 cm-1). The 

classification model achieved a sensitivity of 0.91, a specificity of 0.95, and an 

accuracy of 0.98 [86]. Sciortino et al. used Raman spectroscopy to distinguish IDH-

mutant from IDH-wildtype from 38 unprocessed samples. They demonstrated a 

decrease in the intensity of both the amide III peaks (1225, 1245, 1250, 1265, and 

1275 cm-1 ) and the heme blood (1454 cm-1 ) peaks in the IDH-mutant [87]. The 

Raman spectra of IDH-mutant indicated an increase in the intensity of peaks in DNA 

and proteins and a decrease in the intensity of peaks in lipids, amides, and heme. As 

can be seen in Figure 5, based on the spectral information acquired from glioma, the 

DeepGlioma predictions system can predict IDH mutations versus IDH-wildtype for 

molecular markers of gliomas, similar to the molecular subgroup heatmaps. Further 

research is warranted to expand the current understanding of distinguishing between 

IDH-mutant and IDH-wildtype, as existing literature on this topic remains limited. 

                  



 
Fig. 5. Molecular marker and molecular subgroup heatmaps. (A) SRH image of a patient with 

molecular oligodendroglioma, IDH-mutant, 1p19q-codel. (B) SRH image of a patient with 

molecular astrocytoma, IDH-mutant, 1p19q-intact, and ARTX-mutation. (C) Glioblastoma, IDH-

wildtype tumor. Images reproduced with permission from Ref [30]. 

 

Raman spectroscopy was employed to explore spectral features of MGMT 

promoter methylation in glioma. MGMT promoter methylation is frequently 

associated with IDH mutations. The DNA repair gene O6-methylguanine-DNA 

methyltransferase (MGMT) is the most significant epigenetically silenced gene in 

gliomas [88]. In glioma, MGMT repairs the most toxic damage caused by alkylating 

                  



agents O6-methylguanine, reflecting the fact that patients with an unmethylated 

MGMT do not benefit from concomitant and adjuvant radiotherapy with 

temozolomide [89, 90]. Higher levels of MGMT are thought to lead to temozolomide 

resistance and MGMT methylation status has become the first predictive biomarker in 

neuro-oncology [91]. Wang et al. utilized Raman spectroscopy to detect lipid droplets, 

i.e. triglycerides and cholesterol esters, in MGMT. Their findings indicated 

significantly lower levels in lipid droplets and cholesterol esters in MGMT 

unmethylated compared to MGMT methylated (MGMT methyl ≥15%) [92]. This 

study underscores the association between MGMT methylation and lipid 

accumulation in glioma, presenting potential avenues for diagnosing and treating 

temozolomide-resistant gliomas. Additional studies utilizing Raman spectroscopy are 

needed to clarify the correlation between clinical prognosis and MGMT promoter 

methylation. 

Other molecular markers of glioma are also essential for treatment and prognosis 

[93-97]. Chromosome 1p/19q co-deletion has been known as a diagnostic and 

prognostic marker for oligodendroglioma [98, 99]. ATRX is a crucial component of a 

multiprotein complex containing death-associated protein 6 (DAXX) [100]. ATRX 

protein loss and ATRX gene mutations are genomically unstable and often found in 

astrocytomas, IDH mutant [101]. The TERT gene encodes the catalytic reverse 

transcriptase subunit of telomerase, which is essential for maintaining telomere length 

[102]. Approximately 70% of adult primary glioblastomas contain TERT promoter 

mutations [103]. TERT promoter mutations are a poor prognostic factor but occur 

predominantly in IDH wild-type gliomas [104]. However, there are no relevant 

studies utilizing Raman spectroscopy, which will be the focus and gap of future 

research. 

 

5. Challenges and prospects 

Raman spectroscopy, recognized for its rapid, accurate, and label-free 

characteristics, has emerged as a promising tool for detecting glioma. However, 

several challenges remain before it can be widely adopted in clinical practice. 

First, detection workflows based on Raman spectroscopy vary considerably across 

studies. There is a lack of uniformity among different studies, including the setting of 

spectrometers, the acquisition of spectra, and the pre-processing of data [105-107]. 

This means that different protocols in different laboratories analyzing the same 

biological samples may have differences in the spectra. Therefore, establishing a 

unified and standardized workflow based on Raman spectroscopy is essential. 

Second, detection programs for biological samples are different [108-110]. The 

selection of biological samples includes fresh tissue, frozen sections, and paraffin 

sections, depending on the specific goals of the study. Most studies utilize in vitro 

tissues, with only a few involving in vivo analyses. Key metrics such as accuracy, 

sensitivity, and specificity should be further considered in vitro detection. To fully 

support the use of Raman spectroscopy in clinical practice, additional large-scale 

clinical trials and multicenter studies in vivo are necessary to validate the quantitative 

and qualitative findings.  

                  



Third, the acquisition time of large-area spectral imaging takes a relatively long 

time. Although Raman spectroscopy techniques are generally considered rapid, 

acquiring large-area spectral images can be time-consuming. This is because typical 

spectra of biological samples require large-area imaging spectra from multiple 

locations. In vivo detection may further extend procedure times, potentially 

compromising patient safety. Therefore, clinical practice must carefully consider the 

balance between acquisition time and spectrum quality. 

Last, the signal of Raman spectroscopy may affect both the spectroscopic devices 

and the biological tissue. Due to its inherently weak nature, the Raman signal can be 

easily interfered with by background noise from the measurement device or the tissue 

itself. Enhancing signal-to-noise ratios through adjustments to laser power or 

integration time is not suitable for in vivo detection. Patient safety is paramount, and 

it is crucial to avoid damage to normal brain tissue during detection, and rigorous 

safety testing must be conducted before implementing this technique in clinical 

practice. 

In conclusion, glioma detection based on Raman spectroscopy has a promising 

application prospect. With the rapid development of modern technology and the 

continuous improvement in spectroscopic instruments, we have reason to believe that 

the above challenges of Raman spectroscopy will gradually be addressed. Raman 

spectroscopy provides a reliable method for the digital diagnosis and treatment of 

glioma, making a significant contribution to enhancing people's quality of life and 

overall health. 
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