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A B S T R A C T

Glioblastoma, a highly malignant intracranial tumor, has acquired slow progress in treatment. Previous clinical
trials involving targeted therapy and immune checkpoint inhibitors have shown no significant benefits in
treating glioblastoma. This ineffectiveness is largely due to the complex immunosuppressive environment of
glioblastoma. Glioblastoma cells exhibit low immunogenicity and strong heterogeneity and the immune
microenvironment is replete with inhibitory cytokines, numerous immunosuppressive cells, and insufficient
effective T cells. Fortunately, recent Phase I clinical trials of CART therapy for glioblastoma have confirmed its
safety, with a small subset of patients achieving survival benefits. However, CART therapy continues to face
challenges, including blood-brain barrier obstruction, antigen loss, and an immunosuppressive tumor microen-
vironment (TME). This article provides a detailed examination of glioblastoma’s immune microenvironment,
both from intrinsic and extrinsic tumor cell factors, reviews current clinical and basic research on multi-targets
CART treatment, and concludes by outlining the key challenges in using CART cells for glioblastoma therapy.

1. Introduction

Glioblastoma (GB) is the most prevalent primary high-grade brain
tumor. Glioblastoma has an incidence rate of 0.59–3.69 per 100,000 in
worldwide and 3.21 per 100,000 in the United States, typically mani-
festing around the median age of 65 years [1–3]. Owing to its highly
invasive and aggressive nature, complete surgical removal of the tumor
is challenging. Despite aggressive treatment including surgery, post-
operative concurrent chemoradiotherapy, and adjuvant chemotherapy,
the 5-year survival rate for glioblastoma patients remains at only 9.8 %,
with a median survival time of 12–15 months [4–6]. In 2018, the Na-
tional Comprehensive Cancer Network (NCCN) included Tumor Treat-
ing Fields (TTFields) as a first-line treatment for newly diagnosed
glioblastoma, extending the median survival time to approximately 20
months [7]. Tumor recurrence remains the primary cause of mortality,
with glioblastoma typically recurring within 8–9 months [8]. For

recurrent glioblastoma, bevacizumab (BEV), a humanized monoclonal
antibody targeting VEGF, is approved by the NCCN as a first-line
treatment to reduce tumor blood flow and volume, thereby extending
progression-free survival (PFS) [9]. Even with timely administration of
bevacizumab (BEV), the median overall survival (OS) for recurrent
glioblastoma patients is only about 6 months [10,11]. Moreover, BEV
can remodel glioblastoma blood vessels, rendering the tumor more
tolerant to hypoxia and resistant to treatment [12]. Recent clinical trials
demonstrated that vorasidenib significantly improves progression-free
survival (PFS) in patients with IDH-mutant low-grade glioma, marking
it as the first exclusive targeted therapy for glioma in two decades [13].
However, targeted therapies have made little progress in glioblastoma.

Chimeric antigen receptor (CAR) T cells, engineered from peripheral
blood, are genetically modified to recognize specific tumor-associated
antigens (TAAs) [14]. These cells are amplified in vitro and then rein-
fused into patients to target and kill tumor cells. The CAR structure
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primarily includes an extracellular domain, which comprises a
single-chain variable fragment (scFv) for recognizing and binding tumor
antigens, a hinge for connection, a transmembrane domain, and an
intracellular domain that includes costimulatory and signaling domains
[15,16]. The scFv component endows T cells with the capability to
specifically recognize and bind tumor-associated antigens (TAAs), in-
dependent of MHC antigen presentation [17]. Additionally, sometimes
cytokine cDNA can also be used for recognizing tumor antigens [18].
The hinge connects the scFv and transmembrane domains and its length
is crucial for the activation of CAR-T cells. It positions the CAR-T cells
optimally from tumor cells, thus avoiding CAR signal inhibition by
phosphatases during antigen-antibody binding [19,20]. The trans-
membrane domain links CAR’s extracellular domain with the intracel-
lular signal domain and anchors the receptor to the T cell membrane.
This domain commonly derives from CD8, CD8α, CD28, among others
[21]. The costimulatory domain, typically derived from the CD28 re-
ceptor family (e.g., CD28, ICOS) or the tumor necrosis factor receptor
family (e.g., 4-1BB, OX40, CD27), activates T cells to proliferate and
release cytokines, enhancing their anti-tumor capabilities [15]. The
signaling domain, derived from TCR/CD3ζ or the FcεRI γ chain, contains
immunoreceptor tyrosine-based activation motifs (ITAMs) [15].

Traditionally, CAR-T cells are classified into three generations based
on the presence of costimulatory domains. The first-generation CAR
lacks a costimulatory domain, which leads to rapid exhaustion and a
short lifespan [21]. The second-generation CAR includes a costimulatory
domain from CD28 or 4-1BB, enabling continuous T cell proliferation
and cytokine release, thus enhancing antitumor activity [22]. The su-
periority of specific domains remains a topic of debate among re-
searchers. CD28 exhibits faster and stronger signaling activity, whereas
4-1BB is slower and milder. However, 4-1BB potentially extends T cell
lifespan, reduces cell exhaustion, and sustains the anticancer effects of
CART cells [23–26]. The third-generation CAR integrates both advan-
tages by featuring two costimulatory domains, derived from the CD28
and 4-1BB families. Some preclinical studies suggest that
third-generation CAR-T cells surpass the second generation in cell pro-
liferation and antitumor activity, however, many clinical trials have not
shown improved outcomes with the third generation, sometimes per-
forming even worse than the second generation [27–29]. The
fourth-generation CAR incorporates a cytokine receptor domain or
cytokine gene (e.g., IL-12) along with a costimulatory domain, enabling
the secretion of cytokines upon activation. This promotes enhanced T

cell proliferation and cytotoxic activity, leading to more potent thera-
peutic effects [30,31]. Recently, the development of the fifth-generation
CAR-T has included the addition of a cytoplasmic IL-2Rβ domain, which
possesses a binding site for STAT3/5. Upon activation, this configuration
triggers TCR costimulatory signals and cytokines concurrently,
providing three synergistic signals that enhance T cell proliferation,
survival, and antitumor efficacy [32]. (Fig. 1 and Supplementary
Table 1).

CART therapy has achieved significant breakthroughs in treating
hematological malignancies, particularly in cases of recurrent or re-
fractory acute B-cell leukemia, diffuse large B-cell lymphoma, and
chronic B-cell leukemia [21,33]. Numerous clinical trials have validated
the effectiveness of anti-CD19 CAR-T cells in treating relapsed/re-
fractory B-cell malignancies [34]. A long-term phase 1–2 trial of axi-
cabtagene ciloleucel, an autologous anti-CD19 CART cell therapy,
demonstrated that 83% (84 out of 101) of patients achieved an objective
response, with 58 % (59 out of 101) experiencing a complete response
[35]. In a global study, tisagenlecleucel—an anti-CD19 CART cell
therapy—achieved durable remission in children and young adults with
relapsed/refractory B-cell lymphoblastic leukemia, with long-term
persistence [36]. Additionally, tisagenlecleucel elicited satisfactory du-
rable responses in adults with relapsed/refractory diffuse large B-cell
lymphoma [37]. In a clinical trial, CD19 CAR-T cells treated relapse-
d/refractory chronic lymphoblastic leukemia (CLL) and small lympho-
blastic leukemia (SLL) in 22 evaluable patients, with 82 % achieving
overall responses and 45 % achieving complete responses [38]. How-
ever, CART therapy has not yielded satisfactory results in the treatment
of solid tumors [39,40].

Recent years have seen slow progress in glioblastoma treatment,
primarily limited to physical therapy and chemotherapy. Previous
clinical trials have demonstrated that targeted therapy and immune
checkpoint blockade for recurrent glioblastoma have not yielded posi-
tive outcomes [41]. CART therapy has shown promising results in small
samples of recurrent glioblastoma [42]. Consequently, this review will
examine the complex suppressive immune microenvironment of glio-
blastoma, as well as the current status, limitations, and future prospects
of CART therapy for glioblastoma.

2. Glioblastoma immunosuppressive microenvironment

Glioblastoma is known as a “cold tumor,” notoriously insensitive to

Fig. 1. The structure of the 5 generations of CART cells. The intracellular domain of the 1st generation of CART cells only contains CD3ζ, and T cells are prone to
exhaustion and have a short lifespan; the 2nd generation of CART cells contains a CD28 or 4-1BB co-stimulatory domain, which enhances the cytotoxic and pro-
liferative abilities of T cells; the 3rd generation of CART cells has two co-stimulatory domains, but its efficacy needs further verification compared to the 2nd
generation; the 4th generation of CART cells can synthesize or secrete receptors or cytokines, which enhances the cytotoxic and proliferative abilities of T cells; the
5th generation of CART contains IL-2Rβ domain, and the three signals synergistically increase anti-tumor efficacy.
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immunotherapy. The underlying reasons are multifaceted, generally
stemming from both tumor-cell-intrinsic and tumor-cell-extrinsic fac-
tors, such as low tumor cell immunogenicity, suppressive cytokines,
limited effective T cells, and extensive suppressive immune cell infil-
tration. Collectively, these factors contribute to the formation of an
immunosuppressive microenvironment in glioblastoma.

2.1. Glioblastoma is characterized by a low tumor mutational load
(TML), limited neoantigens, and few mismatch repair (MMR) mutations

TML, neoantigen presence, and MMR mutations may influence
tumor immunogenicity and responsiveness to immunotherapy. Recent
studies indicate that glioblastoma exhibits a lower tumor mutational
load (TML) compared to NSCLC and melanoma, which typically display
higher TML levels [43–45]. Hodges et al. conducted an analysis of TML
in 198 glioblastoma patients using next-generation sequencing (NGS),
finding that only 3.5 % (7 out of 198) exhibited high TML, defined as
more than 20 mutations per 1.4 Mb, and 10 % (20 out of 198) displayed
moderately elevated TML, defined as 10–20 mutations per 1.4 Mb. In
contrast, low-grade gliomas (WHO I-II) exhibited even lower TML levels
[43]. Neoantigens, defined as mutant proteins absent in normal human
tissues and associated with TML abundance, are tumor-specific mutant
antigens and could potentially indicate immunotherapy response [46].
However, unlike melanoma and lung squamous carcinoma, which have
high neoantigen expression, glioblastoma typically shows only “occa-
sional” neoantigen expression, defined as less than 1 mutation per 1 Mb
[47,48]. Recent studies have confirmed that mismatch repair (MMR)
functionality is correlated with clinical responses to immune checkpoint
inhibitors. Le [49] observed that colorectal cancer patients proficient in
mismatch repair exhibited poorer responses to PD-1 treatment in terms
of both progression-free survival (PFS) and overall survival (OS)
compared to those deficient in mismatch repair. Particularly, biallelic
mismatch repair deficiency, associated with higher rates of exonic mu-
tations and neoantigen presence in glioblastoma, can enhance the
therapeutic response to PD-1 antibodies [50]. Additionally, the expres-
sion of mismatch repair proteins is evident in glioblastoma, although
complete loss occurs infrequently: 6.7 % (2 out of 30) for MLH1, 10 % (3
out of 30) for MSH2, 13.3 % (4 out of 30) for MSH6, and 6.7 % (2 out of
30) for PMS2. Rare MMR mutations in glioblastoma are positively
correlated with higher TML [43]. Further research suggests that muta-
tions in polymerase epsilon (POLE) are indicative of mismatch repair
deficiency status and are closely associated with the presence of neo-
antigens [51]. In glioblastoma, POLE mutations may lead to giant-cell
glioblastomas, which generally have a favorable prognosis [52]. How-
ever, POLE mutations are rare in glioblastoma and exclusively occur in
patients with high TML [43]. These findings demonstrate that glio-
blastoma is a malignancy with infrequent mutations, stable genomic
features, and low immunogenicity, explaining its resistance to standard
immunotherapy.

2.2. Molecular expressions in glioblastoma inhibit immune responses

2.2.1. IDH status
The IDH gene encodes isocitrate dehydrogenase, which normally

catalyzes the conversion of isocitrate to α-ketoglutaric acid (α-KG). Upon
mutation, it produces a significant amount of the carcinogenic metab-
olite D-2-hydroxyglutarate (D-2HG) [53]. IDHmutations serve as crucial
prognostic markers for gliomas, influencing the tumor microenviron-
ment (TME) through the regulation of the oncometabolite D-2HG within
tumor cells [54]. Compared to mutant IDH cells, IDH wild-type tumors
contain a greater number of immune cells [55], including activated
CD4+ and CD8+ T lymphocytes [56,57], as well as inhibitory cells like
Treg cells [54] and monocyte-derived macrophages (MDM) [58]. It is
evident that IDH wild-type tumors exhibit higher proliferation and
activation of CD4+ and CD8+ T lymphocytes compared to IDH mutant
tumors [59]. Additionally, IDH mutations can increase microglia

populations [60,61] and decrease dendritic cell infiltration [62]. IDH
wild-type tumors show greater infiltration of immature NK cells,
whereas IDH mutant tumors demonstrate more cytotoxic NC cell infil-
tration [60]. Previous studies have demonstrated that IDH-mutated tu-
mors promote DNA hypermethylation of the CD274 promoter, resulting
in reduced PD-L1 expression compared to IDH wild-type cells [55,63].

2.2.2. TP53
Inactivation of the TP53 pathway is common in glioblastoma,

affecting approximately 90 % of patients. This often results from up-
stream ARF deletions, TP53 mutations/deletions, and MDM2/4 ampli-
fications [64]. Cancer-associated fibroblasts (CAFs) harboring TP53
mutations exert pro-inflammatory and pro-tumorigenic effects, pri-
marily through increased secretion of chemokines and cytokines,
including CXCL12 [65]. In tumor cells, TP53 pathway inactivation pri-
marily regulates chemokine and cytokine secretion, thereby exerting
pro-inflammatory and carcinogenic effects on the tumor microenviron-
ment (TME) [66]. Earlier research has shown that TP53 deficiency or
mutation can recruit tumor-infiltrating myeloid populations, influence
microglia and monocyte infiltration via CCL2 and TNFA [67], alter the
function of tumor-associated macrophages (TAMs) through the CSF1
pathway [68,69], and attract tumor-related polymorphonuclear leuko-
cytes (PMNs) through increased secretion of CXCL17 [70]. Furthermore,
TP53 pathway inactivation can hinder the infiltration and functionality
of CD4+ and CD8+ T cells by upregulating CXCR3/CCR2 expression,
thus augmenting the suppressive role of Treg cells [71].

2.2.3. NF1
NF1 gene inactivating mutations or deletions, which not only pre-

cipitate neurofibromatosis but are also prevalent in 23 % of glioblas-
toma cases, act as suppressor genes in human glioblastoma [64]. Recent
studies have demonstrated that NF1 deletions recruit tumor-associated
macrophages and microglia in glioblastoma, thereby facilitating tumor
progression [72]. Additionally, it has been confirmed that low-grade
NF1 gliomas are characterized by increased T cell infiltration and
enhanced CD8+ T cell activation [73].

2.2.4. PTEN
The PTEN gene, a recognized tumor suppressor, plays a critical role

in activating the RTK/PI3K pathway when deleted, a phenomenon
occurring in nearly 90 % of glioblastomas [64]. PTEN deletion con-
tributes to a suppressive tumor microenvironment (TME). This involves
complex mechanisms: PTEN deficiency activates Gal-9/Tim-3 and in-
creases M2-type TAM infiltration [74]. Additionally, PTEN deletions
reduce CD8+ T-cell infiltration and cytotoxicity by inhibiting the
c-Gas/STING pathway and upregulating PD-L1 expression [75,76]. In
addition, research has also shown that PTEN deletion also promotes
infiltration of Treg cells and M2 macrophages in the TME [77]. It trig-
gers macrophage infiltration via YAP1/LOX overexpression, enhancing
SPP1 secretion and angiogenesis [78]. Moreover, PTEN deletion in-
creases HIF-1a expression, directly stimulating angiogenesis in the TME
[79].

2.2.5. RB signaling
Inactivation of the RB signaling pathway is common in glioblastoma,

affecting approximately 80 % of cases. RB pathway inactivation is pri-
marily due to CDKN2A/B/C deletions, CDK4/CDK6/CCND2 amplifica-
tion, and RB mutations or deletions [64]. The RB pathway primarily
influences the cell cycle and significantly impacts cell proliferation.
However, recent studies indicate that it also affects the tumor micro-
environment (TME). Li et al. demonstrated that RB pathway inactivation
promotes the formation of an inhibitory tumor microenvironment by
increasing CCL2 secretion, which recruits TAMs, MDSCs, and Foxp3+
Treg cells [80]. Additionally, Orozco et al. reported that RB mutations
and RAS overexpression in glioblastoma induce resistance to the cyto-
toxic effects of NK cells [81] (Fig. 2).
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Other dysregulated pathways in tumor cells also suppress the TME.
For example, the over-activated JAK/STAT pathway in glioblastoma can
lead to a suppressive microenvironment and induce the recruitment of
dysfunctional CD8+ T cells, MDSCs, immature DCs, and macrophages,

thus promoting tumor progression [82,83].

Fig. 2. The molecular characteristics of glioblastoma change the tumor microenvironment. IDH wt can recruit more CD8+ T cells, CD4+ T cells, monocyte-derived
macrophages (MDMs), Treg cells, and immature NK cells compared to IDH mutations. Inactivation of the TP53 pathway recruits more tumor-associated macrophages
(TAMs), monocytes, T lymphocytes, and tumor-related polymorphonuclear leukocytes (PMNs) through section of cytokines. Deletion of NF1 leads to increased TAMs
in the TME and decreased CD8+ T cell infiltration. PTEN gene deletion can increase the expression of tumor cell surface receptors, thus recruiting TAMs, Treg cells,
and angiogenesis; reducing CD8+ T cell infiltration. Inactivation of the RB pathway can recruit TAMs, MDSCs, and Treg cells.

Fig. 3. The role of cytokines in the TME. The IL-8/CXCL2/CXCR2 axis recruits macrophages, MDSCs, and promotes tumor proliferation and angiogenesis; the CCL2/
CCR2 axis recruits macrophages, microglia, and MDSCs; CXCL12/CXCR4 can recruit MDSCs, Treg, and reduce CD8+ T cell infiltration. CCL5/CCR5 can promote
microglia M2 polarization and promote tumor cell proliferation and invasion; CXCL16/CXCR6 can promote tumor growth, recruit TAMs, and reduce T cell infil-
tration; CX3CL1/CX3CR1 can promote TAM infiltration and increase tumor angiogenesis.
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2.3. Cytokines and chemokines play a critical role in inhibiting the
immune response in glioblastoma

As a “cold tumor,” glioblastoma exhibits significant alterations in the
quality and quantity of these molecules within the TME, impacting
tumor progression, recurrence, and metastasis. Immunosuppressive
factors in glioblastoma include IL-8, IL-10, CCL2, EGF, VEGF, CXCL2,
and CXCL12, among others, while immune-activating factors include IL-
2 and IFN-γ [42]. These factors interact with their receptors to alter the
immune microenvironment of glioblastoma, promoting tumor prolifer-
ation, growth, angiogenesis, and metastasis [84] (Fig. 3).

2.3.1. CXCL2/IL8/CXCR2 axis
IL-8, a significant inhibitory cytokine, is highly expressed in glio-

blastoma tissues. Research shows that tumor cells promote proliferation
via autocrine secretion [85]. In addition, Liu et al. demonstrated that
IL-8, by binding to CXCR2, recruits MDSCs in the TME and promotes
angiogenesis. Inhibiting the IL-8/CXCR2 axis can enhance the effec-
tiveness of PD-1 inhibitors in glioblastoma [86]. Hypoxic conditions in
the TME induce IL-8 secretion, which recruits TAMs and consequently
promotes tumor progression [87]. Regarding the CXCL2/IL8/CXCR2
signaling axis, CXCL2 is highly expressed in tumor tissues and facilitates
tumor angiogenesis via its receptor CXCR2 [88]. This research indicates
that the CXCL2/IL8/CXCR2 axis, which is highly expressed in tumors, is
associated with poor prognosis and promotes tumor growth through
several mechanisms, including TME inhibition [84].

2.3.2. CCL2/CCR2 axis
The CCL2/CCR2 axis plays a crucial role in driving glioblastoma

progression. Deng et al. demonstrated that high CCL2 expression in
tumor tissues correlates positively with the infiltration of CD4+ T cells,
macrophages, neutrophils, and myeloid dendritic cells in the TME [89].
Research indicates that tumor cells, microglia, and macrophages secrete
CCL2, with CD163+ macrophages being the primary source of CCL2 in
tumors [90]. The CCL2/CCR2 signaling axis recruits TAMs, including
infiltrating macrophages and resident brain microglia, within the glio-
blastoma immune microenvironment, facilitating tumor progression
[91–93]. Flores et al. have shown that the CCL2-CCR2 axis recruits
MDSCs, and inhibiting CCR2 receptors can enhance CD8+ T cell func-
tionality in the TME and increase the sensitivity of PD-1 inhibitors in
treating tumors [94].

2.3.3. CXCL12/CXCR4 axis
The CXCL12/CXCR4 signaling axis plays an important tumorigenic

role in gliomas. Previous literature has reported that CXCL12 and its
receptor CXCR4 are overexpressed in various types of gliomas [95],
promoting tumor invasion and angiogenesis [96,97]. CXCR7 is a sub-
stitute receptor for CXCL12, which is also highly expressed in glioma
cells, endothelial cells, and microglia, and mediates tumor angiogenesis
[98]. In addition, the CXCL12/CXCR4 axis can also mediate radio-
therapy and chemotherapy resistance in glioblastoma [99,100].
Alghamri et al. recently reported that using nanomaterials to encapsu-
late CXCR4 antagonists can inhibit tumor cell proliferation, induce
tumor immunogenic death, and reduce infiltration of CXCR4+ mono-
cellular myoid derived suppressor cells (M-MDSCs) into the TME [101].
What’s more, Wei et al. also confirmed that blocking the
CXCL12/CXCR4 signaling pathway enhances CD8+ T cell infiltration
and reduces the presence of tumor-associated myeloid cells (TAMCs)
and Treg cells in the TME [102].

2.3.4. CCL5/CCR5 axis
CCR5 is overexpressed in glioblastoma and negatively correlated

with patient prognosis [103] and its ligand CCL5 is generally believed to
be secreted by monocytes/macrophages and T lymphocytes [104].
Previous studies have confirmed that The CCL5/CCR5 signaling axis
promotes glioblastoma proliferation, migration, and invasion via

autocrine and paracrine mechanisms, primarily by activating the
PI3K/AKT pathway [103,105]. In addition, recent studies have indi-
cated that CCL5, originating from peripheral blood cells, can enhance
tumor cell resistance to temozolomide [106]. Inhibiting CCR5 can pre-
vent the polarization of M2 microglia, subsequently reducing their
migration [107].

2.3.5. CXCL16/CXCR6 axis
The cytokine CXCL16 is highly expressed in tumors, microglia, and

endothelial cells, while its receptor CXCR6 is only expressed on a group
of cells with stem-like proliferation capacity in glioblastoma [108]
which suggests that CXCL16/CXCR6 can promote tumor proliferation.
In addition, previous studies have reported that the CXCL16/CXCR6 axis
facilitates glioma cell migration and invasion [109]. What’s more,
tumor-derived CXCL16 facilitates the transformation of
glioma-associated microglia/macrophages (GAMs) into a pro-tumor
phenotype, thereby enhancing glioblastoma growth, migration, and
invasion [110]. Chia et al. demonstrated that the transmembrane cyto-
kine CXCL16, expressed on the surface of tumor-associated myeloid cells
(TAMCs), impairs T cell function in the tumor microenvironment (TME).
Interestingly, the CXCL16-CXCR6 axis displays dual characteristics: it
promotes T cell immune responses and T cell infiltration in the early
stages, but inhibits T cell function during later stages [111].

2.3.6. CX3CL1/CX3CR1 axis
The role of the CX3CL1-CX3CR1 signaling axis is subject to debate.

Several studies highlight CX3CL1 as one of the most abundantly
expressed chemokines in the central nervous system, facilitating
communication between neurons, glial cells, and microglia [112]. The
ligand CX3CL1, expressed on tumor cells, is involved in cell adhesion,
transendothelial migration, and mobilization [112]. CX3CR1 protein
and mRNA are highly expressed in low-grade gliomas and glioblastomas
[113,114], recruiting tumor-associated macrophages/microglia (TAMs)
in the TME that upregulate the expression of MMP2, 9, and 14 [107]. Lee
et al. reported that CX3CR1 promotes angiogenesis in low-grade gliomas
by increasing CCL2 andMMP9 expression, contributing to the malignant
transformation of these tumors [115]. On the other hand, it has been
shown that IDH mutations have been shown to increase CX3CL1
expression in glioblastoma cells, subsequently recruiting NK cells within
the TME [116]. Liu et al. observed a slight increase in tumor growth in
CX3CR1− /− mice, although this did not significantly affect the cellular
components of the TME [117]. Sciumè et al. also demonstrated that
CX3CL1 may inhibit glioma invasion by promoting tumor cell aggre-
gation [118].

2.3.7. CXCL9/CXCL10/CXCL11/CXCL4/CXCR3 axis
The CXCR3 receptor, highly expressed in glioblastoma, serves as an

independent prognostic factor for patients [119]. The main ligands of
CXCR3 vary due to its different isoforms. For CXCR3-A, the primary li-
gands are CXCL9, CXCL10, and CXCL11; for CXCR3-B, they are mainly
CXCL10 and CXCL4 [120,121]. CXCR3 is predominantly expressed on
Th1 cells, CD8+ T cells, and NK cells [104]. Zhao et al. confirmed that
FGL2 recruits CD69+ CD8+ brain resident memory T cells via CXCL9/10
and CXCR3 chemokines [122]. Wang et al. reported that oncolytic
adenovirus (oAds) expressing CXCL11 can recruit CAR-T cells,
enhancing therapeutic efficacy. CXCL11 boosts the infiltration of CD8+

T lymphocytes, NK cells, and M1-polarized macrophages, while
reducing the presence of MDSCs, Tregs, and M2-polarized macrophages
[123].

2.4. The immune cell composition in glioblastoma contributes to an
immunosuppressive tumor microenvironment (TME)

Compared to intracranial metastases, glioblastoma—particularly
IDH wild-type glioblastoma—exhibits a “cooler” immune microenvi-
ronment. Literature indicates that glioblastoma exhibits increased
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numbers of tumor-associated macrophages (TAMs) and monocytes
compared to intracranial metastases, including melanoma and non-
small cell lung cancer. Glioblastoma shows significantly lower T cell
levels compared to metastases (13 % ± 10 % vs 50 % ± 16 %). Addi-
tionally, plasma cells are moderately present in glioblastoma, while
their expression is elevated in metastases. Specifically, microglia counts
are significantly lower in metastatic tumors, while the presence of
mononuclear-derived macrophages (MDM) is significantly higher
compared to gliomas. The monocyte count remains essentially un-
changed. Additionally, there is a notable increase in immature NK cells
in glioblastoma compared to metastatic tumors. However, the trend for
cytotoxic NK cells is the opposite [124].

Sun et al. confirmed the presence of numerous invasive immune
cells, including T cells, mast cells, and macrophages, in brain metastatic
lung adenocarcinoma, whereas astrocytes and microglia are signifi-
cantly more prevalent in gliomas. Similarly, they observed a higher
proportion of MDMs in metastatic tissue, whereas microglia were
abundant in glioma tissue [125].

Klemm et al. demonstrated an increase in myeloid cells and a sig-
nificant decrease in lymphocytes in gliomas compared to brain metas-
tases. Specifically, microglia were most abundant in IDH mutant
gliomas, followed by IDH wild-type gliomas, with reduced counts in
metastatic tumors. The highest concentration of MDMs was observed in
IDH wild-type gliomas. Additionally, CD4+ and CD8+ T lymphocytes
were more prevalent in metastatic tumors, particularly melanoma,
compared to gliomas. B lymphocytes were also more prevalent in met-
astatic tumors [126].

In summary, it is clear that TAM cells occupy a dominant position in
glioma, with some studies suggesting they comprise up to 50 % of the
total cellular composition [127]. However, T lymphocytes, especially for
CD4+ and CD8+ T cells, were significantly reduced in gliomas. And Tregs
comprise up to 30 % of infiltrating lymphocytes in GBM which suppress
T-cell responses [128]. The number of cytotoxic NK cells is also reduced
in gliomas. The complexity of this immune microenvironment arises
from factors such as the characteristics of tumor cells, secretion of spe-
cific cytokines, and the presence of the blood-brain barrier.

2.5. Immune checkpoints suppresses the tumor immune microenvironment

2.5.1. PD-1/PD-L1 and CTLA-4
PD-1/PD-L1 checkpoints have been demonstrated to significantly

inhibit CD8+ T cells, thereby suppressing the TME [129]. The incidence
of PD-L1 expression in GBM patients is frequent, similar to other ma-
lignancies that have been profiled for PD-L1 expression and higher
expression of PD-L1 is correlated with worse outcome [130]. The
expression of CTLA-4 is notably increased in GBM patients with IDH
wild type and mesenchymal gliomas. Overexpression of CTLA-4 can
induce the infiltration of immune cells (including CD8+ T cells, Treg,
macrophages, etc.), and the survival of glioma patients with low CTLA-4
expression is significantly prolonged [131].

2.5.2. TIM-3
TIM-3 is overexpressed in glioblastoma, and its expression is posi-

tively correlated with IDH wild-type and mesenchymal glioblastoma,
and negatively correlated with patient prognosis. TIM-3 was closely
related to T cell mediated immune response to tumor cell [132]. Recent
studies have also shown that activation of TIM-3 checkpoint in glio-
blastoma can promote macrophage M2 polarization and promote tumor
progression [133,134].

2.5.3. B7-H3
B7-H3 is overexpressed in glioblastoma, and B7-H3 is associated

with mitotic cell cycle and cell proliferation, which promotes the pro-
liferation of tumor cells. It also acts as an immune checkpoint to inhibit T
cell activity, resulting in a suppressive TME. Higher B7-H3 expression
indicates a worse prognosis for glioma patients [135].

2.5.4. LAG-3
A recent study has showed that LAG-3 is only rarely expressed on T

lymphocyte in IDH-wildtype glioblastoma and LAG-3 expression was
correlated with the presence of CD3+, CD8+, PD-1+ T lymphocytes, and
PD-L1+ tumor cells [136]. Bookman et al. [137] also showed that
anti-LAG-3 antibody alone or in combination with anti-PD-1 antibodies
prolonged mouse survival. What’s more, the literature also suggests that
the human leukocyte antigen (HLA)-II is highly expressed in GBM and is
associated with increased infiltration of LAG-3+ CD4+ T cells.
Furthermore, HLA-II high LAG-3 high was associated with worse patient
survival. Combined anti-LAG-3 and anti-IL-10 treatment inhibited
tumor growth in a mouse brain tumor model [138].

3. Clinical and basic research on CART therapy in glioblastoma

To date, no breakthroughs have been achieved in treating glioblas-
toma with immune checkpoint inhibitors or tumor vaccine therapy [42].
CART therapy has shown some progress in a limited number of cases.
Therefore, we searched PubMed and ClinicalTrials.gov for ongoing
CART clinical trials and compiled them into Table 1. We summarize the
therapeutic progress and safety studies of each target as follows.

3.1. EGFRvIII

EGFRvIII, resulting from the deletion of exons 2 to 7 in the EGFR
gene, leads to the loss of 267 amino acids in the extracellular domain
and activates the tyrosine kinase activity of the intracellular domain
independent of ligand binding. Approximately 40 % of newly diagnosed
glioblastoma patients exhibit EGFR amplification, and about 50 % of
these have EGFRvIII mutations. Although prior literature has suggested
that EGFRvIII can promote the proliferation, invasion, and angiogenesis
of glioma cells in vitro [139], Felsberg et al. have confirmed that
EGFRvIII has no effect on the prognosis of EGFR-amplified glioblastoma
patients [140].

In 2017, the first CART therapy targeting EGFRvIII was intravenous
administered to glioblastoma patients. O’Rourke et al. [141] collected
10 patients with recurrent glioblastoma and treated them with
EGFRvIII-CART therapy. Among them, 7 patients underwent secondary
surgery. One patient, followed for more than 18 months, maintained a
stable condition. Observations revealed that T cells and EGFRvIII-CART
cells, exhibiting proliferative and cytotoxic capabilities, were present in
the tumor immune microenvironment two weeks after CART cell infu-
sion, suggesting an improvement in the patient’s TME due to CART
therapy. Recently, results from another clinical trial were announced,
where EGFRvIII-CART cells, combined with the PD-1 monoclonal anti-
body pembrolizumab, were intravenous administered to seven newly
diagnosed glioblastoma patients. No dose-limiting toxicity was
observed. However, the trial did not extend the patients’
progression-free survival (PFS) (5.2 months; 90 % CI 2.9–6.0 months) or
overall survival (OS) (11.8 months; 90 % CI 9.2–14.2 months). The
presence of CART cells was also detected within the tumor. Analysis of
the TME in three patients revealed no significant changes in the overall
immune composition of the tumor post-treatment, although there was
an increase in IFN-stimulated T cells [142].

Additionally, several ongoing clinical trials involving EGFRvIII-
CART have been suspended (Table 1). According to available data,
only a few patients have seen successful outcomes [143]. (including one
recurrent glioblastoma patient who survived for 36 months), but due to
the small sample size, we are unable to accurately analyze the efficacy of
this target. However, the majority of patients have not experienced
favorable outcomes.

Several experimental approaches have been tested in animal studies
to enhance the efficacy of EGFRvIII-CART, achieving preliminary re-
sults. Considering that the expression of PD-1 after CAR-T treatment is
clearly correlated with PFS in recurrent glioblastoma [144], some
literature reported that PD-1 knockout [145] or aPD-1 monoclonal
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Table 1
Clinical trials of CART in glioblastoma.

Trials No. Arms Characteristic Target Phase Outcome Delivery
routes

Toxicity State

NCT04185038 90 Biological: SCRI-
CARB7H3(s); B7H3-
specific chimeric
antigen receptor
(CAR) T cel

Central Nervous
System Tumor;
Diffuse Intrinsic
Pontine Glioma/
Diffuse Midline
Glioma/Glioma

B7-H3 I One patient had
sustained clinical
and radiographic
improvement
through 12
months on study

ICV No dose-limiting
toxicities

Recruiting

NCT04385173 12 Drug: B7-H3 CAR-T;
Drug: Temozolomide

Recurrent/
Refractory
Glioblastoma

B7-H3 I NA IT/ICV NA Recruiting

NCT04077866 40 Biological: B7-H3
CAR-T; Drug:
Temozolomide

Recurrent/
Refractory
Glioblastoma

B7-H3 I NA IT/ICV NA Recruiting

NCT05366179 36 Drug: CAR.B7-H3T
cells infusion

Glioblastoma
Multiforme

B7-H3 I NA IT NA Recruiting

NCT05835687 36 Drug: B7-H3-CAR T
cells

Diffuse Midline
Glioma, H3 K27M-
Mutant/High Grade
Glioma/
Glioblastoma

B7-H3 I NA locoregional
(LR)

NA Recruiting

NCT05474378 39 Drug: B7-H3 CART Brain and Nervous
System

B7-H3 I NA locoregional
(LR)

NA Recruiting

NCT05241392 30 Biological: B7-H3-
targeting CAR-T cells

Glioblastoma B7-H3 I NA locoregional
(LR)

NA Recruiting

NCT06221553 9 Biological: B7H3
specific CAR T cell
with IL-7Ra signaling
domain

DIPG Brain Tumor/
Diffuse Intrinsic
Pontine Glioma

B7-H3 with
IL-7Ra

I NA IT NA Not yet
recruiting

NCT05768880 72 Biological: SC-
CAR4BRAIN

Diffuse Intrinsic
Pontine Glioma/
Diffuse Midline
Glioma

B7-H3,
EGFR806,
HER2, and
IL13-zetakine

I NA ICV NA Recruiting

NCT05660369 21 Drug: CARv3-TEAM-
E T cells

Recurrent/
Recurrent Glioma

CARv3-
TEAM-E

I Radiographic
tumor regression
was dramatic and
rapid, occurring
within days after
receipt of a single
intraventricular
infusion, but the
responses were
transient in two
of the three
participants.

IT/ICV NO grade 3 or
dose-limiting
toxic effects

Recruiting

NCT04045847 31 Biological: CD147-
CART

Recurrent
Glioblastoma,
CD147 Positive

CD147 I NA IT/ICV NA Unknown
status

NCT05353530 18 Biological: Ex-Vivo
expanded autologous
IL-8 receptor
(CXCR2) modified
CD70 CAR (8 R-
70CAR) T cells

Glioblastoma
Multiforme

CD70 I NA IV NA Recruiting

NCT03941626 50 Biological: CAR-T/
TCR-T cells
immunotherapy

Glioma EGFRvIII I NA IV NA Unknown
status

NCT02209376 11 Biological: CART-
EGFRvIII T cells

Patients With
Residual or
Reccurent
EGFRvIII + Glioma

EGFRvIII I PFS:80day
（28–159days,
SD = 39）

IV NA Terminated

NCT03283631 2 Biological: EGFRvIII-
CARs

Recurrent/
Recurrent
Gliosarcoma

EGFRvIII I NA ICV NA Terminated

NCT02844062 20 Biological: anti-
EGFRvIII CAR T cells;
Drug:
cyclophosphamide;
Drug: Fludarabine

Glioblastoma
Multiforme

EGFRvIII I NA IV NA Unknown
status

NCT03726515 7 Biological: CART-
EGFRvIII T cells;
Biological:
Pembrolizumab

Glioblastoma EGFRvIII I median
progression-free
survival (5.2
months; 90 %
confidence
interval (CI),

IV No dose-limiting
toxicity

Completed

(continued on next page)
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Table 1 (continued )

Trials No. Arms Characteristic Target Phase Outcome Delivery
routes

Toxicity State

2.9–6.0 months)
and median
overall survival
(11.8 months; 90
% CI, 9.2–14.2
months).

NCT06186401 2 Biological: E-SYNC T
Cells

Recurrent
Glioblastoma/
MGMT-
Unmethylated
Glioblastoma

EGFRvIII I NA IV NA Not yet
recruiting

NCT01454596 18 Biological: Epidermal
growth factor
receptor (EGFRv)III
Chimeric antigen
receptor (CAR)
transduced PBL;
Drug: Aldesleukin;
Drug: Fludarabine;
Drug:
Cyclophosphamide

Malignant Glioma EGFRvIII I/II pfs:1.1m–2.7m,
ORR:0 %

IV 2 events ≥ Grade
3

Completed

NCT05802693 22 Drug: Targeted
Epidermal Growth
Factor Receptor
Variant III(EGFRvIII)
autochimeric antigen
receptor T cell
injection

Recurrent
Glioblastoma

EGFRvIII I NA locoregional
(LR)

NA Not yet
recruiting

NCT05063682 10 Biological: EGFRvIII-
specific hinge-
optimized CD3
ζ-stimulatory/41BB-
co-stimulatory
Chimeric Antigen
Receptor autologous
T-lymphocytes

Malignant Glioma EGFRvIII I NA ICV NA Unknown
status

NCT02664363 3 Biological: EGFRvIII
CAR T cells

Malignant Glioma EGFRvIII I 1 case have
Serious Adverse
Events

IV NO Dose-limiting
Toxicity (DLT)

Terminated

NCT03423992 100 Biological: chimeric
antigen receptor T
cells

Malignant Glioma EGFRVIII,
IL13R2, Her-
2, EphA2,
CD133, GD2

I one patient
reported SD and
two patients
reported PD, with
overall survival
ranging from 86
to 181 days

IV In two patients,
there was grade 2
cytokine release
syndrome
accompanied by
pulmonary
edema, which
resolved
completely with
dexamethasone
medication.

Unknown
status

NCT02575261 0 Biological: CAR-T
cell immunotherapy

EphA2 Positive
Malignant Glioma

EphA2 I NA IV NA Withdrawn

NCT03252171 0 Biological: CAR-T
cell immunotherapy

GD2 Positive
Glioma

GD2 I NA IV NA Withdrawn

NCT04406610 0 Biological: GD2 CAR-
T immunotherapy

Glioma of Brain GD2 I NA IV NA Withdrawn

NCT04099797 34 Genetic: C7R-GD2.
CART cells

Diffuse Intrinsic
Pontine Glioma|
High Grade Glioma

GD2 I NA IV NA Recruiting

NCT04196413 54 Drug: GD2 CAR T
cells; Drug:
Fludarabine; Drug:
Cyclophosphamide

Glioma of Spinal
Cord|Glioma of
Brainstem

GD2 I Three of four
patients
exhibited clinical
and radiographic
improvement.

IV Toxicity was
largely related to
the location of
the tumor and
was reversible
with intensive
supportive care.
On-target, off-
tumor toxicity
was not
observed.

Recruiting

NCT05544526 12 Biological: GD2 CAR
T cells

Diffuse Midline
Glioma, H3 K27M-
Mutant

GD2 I NA IT NA Recruiting

(continued on next page)
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Table 1 (continued )

Trials No. Arms Characteristic Target Phase Outcome Delivery
routes

Toxicity State

NCT05298995 54 Biological: GD2-
CART01 (iC9-GD2-
CAR T-cells)

Brain Tumor,
Pediatric/
Medulloblastoma,
Childhood/
Embryonal Tumor/
High Grade Glioma

GD2 I NA IV NA Recruiting

NCT01109095 16 Biological: HER.CAR
CMV-specific CTLs

Glioblastoma
Multiforme (GBM)

HER-2 I NA IV NA Completed

NCT03500991 10 Biological: HER2-
specific chimeric
antigen receptor
(CAR) T cell

Glioma HER-2 I no dose-limiting
toxicity

ICV No dose-limiting
toxicity

Active, not
recruiting

NCT02713984 0 Biological: Anti-
HER2 CAR-T

Glioma HER-2 I/II NA IV NA Withdrawn

NCT03389230 29 Biological: HER2
(EQ)BBζ/CD19t + T
cells/Other:
Laboratory
Biomarker Analysis/
Procedure:
Leukapheresis

Glioblastoma/
Recurrent/
Refractory Glioma

HER-2 I NA IT/ICV NA Active, not
recruiting

NCT05768880 72 Biological: SC-
CAR4BRAIN

Diffuse Intrinsic
Pontine Glioma/
Diffuse Midline
Glioma/Recurrent
CNS Tumor, Adult/
Recurrent, CNS
Tumor, Childhood/
Refractory Primary
Malignant Central
Nervous System
Neoplasm

HER-2 I NA IT NA Recruiting

NCT05752877 12 Biological: Targeted
IL-13 Rα2 UCAR-T
cell injection;
Biological: Targeted
B7-H3 UCAR-T cell
injection

Advanced Glioma/
Complication of
Chimeric Antigen
Receptor (CAR-T)
Cell Therapy

IL13Ralpha2/
B7-H3

I NA IT/ICV NA Recruiting

NCT02208362 82 Biological:
IL13Ralpha2-specific
Hinge-optimized 4-
1BB-co-stimulatory
CAR/Truncated
CD19-expressing
Autologous TN/MEM
Cells

Recurrent
Glioblastoma/
Recurrent
Malignant Glioma/
Recurrent WHO
Grade II Glioma/
Recurrent WHO
Grade III Glioma

IL13Ralpha2 I 50 % (29/58) of
patients, with
two partial
responses, one
complete
response and a
second complete
response, median
overall survival
for all patients
was 7.7 months
and for arm 5 was
10.2 months.

IT/ICV No dose-limiting
toxicities,
Probable
treatment-related
grade 3+
toxicities were
one grade 3
encephalopathy
and one grade 3
ataxia.

Active, not
recruiting

NCT04661384 30 Biological:
IL13Ralpha2-specific
Hinge-optimized
41BB-co-stimulatory
CAR Truncated
CD19-expressing
Autologous T-
Lymphocytes

Glioblastoma IL13Ralpha2 I NA ICV NA Recruiting

NCT04003649 60 Biological:
IL13Ralpha2-specific
Hinge-optimized 4-
1BB-co-stimulatory
CAR/Truncated
CD19-expressing
Autologous TN/MEM
Cells

Recurrent/
Refractory
Glioblastoma

IL13Ralpha2 I NA IV NA Recruiting

NCT06186401 20 Biological: E-SYNC T
Cells; Drug:
Cyclophosphamide
(non-
investigational);
Drug: Fludarabine
(non-
investigational);

Glioblastoma IL13Ralpha2 I NA IV NA Not yet
recruiting

(continued on next page)
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antibody [146] in animal experiments can enhance the efficacy of
EGFRvIII-CART, but this approach has failed in clinical trials [142]. In
addition, Dong et al. [147] reported that, compared to sole
EGFRvIII-CART cell therapy, the addition of an anti-mouse VEGF anti-
body (B20) enhances CAR T cell infiltration and distribution in GBM
TME, suppresses tumor growth, and extends survival in GBM mouse
models. Swan et al. [148] demonstrated that CART cells modified to
express IL7 not only increased their abundance but also improved
overall survival rates in tumor-bearing mice. Agliardi et al. [149] also
reported that IL-12 enhances the cytotoxicity of CART cells and re-
models the TME, resulting in increased CD4+ T-cell infiltration, reduced
Treg cell numbers, and extended survival in mice. But these methods
have not yet been used in the clinic.

3.2. B7-H3

B7-H3 (CD276), part of the B7 family, has been identified as a novel
immunotherapy target for refractory blood cancers and solid tumors
[150,151]. B7-H3 is overexpressed in gliomas, with expression levels
rising as tumor grade increases [152,153]. Overexpression of B7-H3
promotes tumor cell proliferation and invasion [154]. Furthermore,
B7-H3 contributes to a suppressive immune microenvironment and
promotes tumor angiogenesis [153,155]. In a clinical trial, 38 patients
with high-risk or recurrent primary or metastatic CNS malignancies,
including neuroblastoma, retinoblastoma, medulloblastoma, and rhab-
domyosarcoma—all exhibiting high B7-H3 expression—received
compartmental radioimmunotherapy (cRIT) using radioactive
anti-B7H3 murine monoclonal antibody 131I-omburtamab by intraven-
tricular administration. The results indicated that the combination
therapy was safe and significantly prolonged survival in neuroblastoma
patients, with a median progression-free survival (PFS) of 7.5 years
[156].

Several ongoing clinical trials are investigating the combination of
radioimmunotherapy and CART therapy for recurrent intracranial
neuroblastoma, ependymoma, and diffuse intrinsic pontine glioma
(DIPG). Recently, clinical trials involving B7-H3 CART for treating
recurrent glioblastoma have been initiated, as summarized in Table 1.
However, most of these trials have yet to yield results. A report noted
that a patient with recurrent glioblastoma, exhibiting overexpression of
B7-H3, experienced rapid tumor regression lasting 50 days following
intracerebral administration of B7-H3 CART via the ommaya device.
Regrettably, the tumor recurred after six infusion cycles, leading to the
patient’s withdrawal from the study during the seventh cycle [157].
Nonetheless, B7-H3 CART treatment effectively inhibited tumor growth
in mouse models bearing tumors [152,158].

3.3. IL13Rα2

IL13Rα2 is overexpressed in glioblastoma [159], with database an-
alyses revealing that 40 % of glioblastoma patients exhibit mRNA
overexpression of this receptor [160]. IL13Rα2 overexpression is asso-
ciated with poor patient prognosis and contributes to tumor resistance to
temozolomide [161]. IL13Rα2 can promote tumor growth and metas-
tasis through the PI3K/Akt/mTOR pathway [162].

Previous clinical trials have shown that IL13Rα2-CART treatment is
safe for 3 patients with recurrent glioblastoma, achieving locally
controlled responses after intracranial administration. Antitumor effects
were observed in 2 patients [163]. Brown et al. also reported a clinical
trial of IL13Rα2-CART therapy for inoperable recurrent glioblastoma.
Six patients received intracranial administration of modified
glucocorticoid-resistant CART cells, and four patients showed signs of
transient tumor shrinkage and/or tumor necrosis [164].

A recent clinical study indicated that IL13Rα2 CART therapy has
yielded some significant results. This clinical trial involved 65 patients

Table 1 (continued )

Trials No. Arms Characteristic Target Phase Outcome Delivery
routes

Toxicity State

Procedure:
Leukapheresis;
Procedure: Surgical
resection

NCT04510051 18 Drug:
Cyclophosphamide;
Drug: Fludarabine;
Biological:
IL13Ralpha2-specific
Hinge-optimized
41BB-co-stimulatory
CAR Truncated
CD19-expressing
Autologous T-
Lymphocytes

Malignant Brain
Neoplasm/
Recurrent
Malignant Brain
Neoplasm/
Refractory
Malignant Brain
Neoplasm

IL13Ralpha2 I Additionally, of
the five patients
evaluable for
disease response,
three
experienced
transient
radiographic
and/or clinical
benefit not
meeting protocol
criteria for
response.

ICV No dose limiting
toxicities (DLTs)

Recruiting

NCT05540873 18 Drug: YYB-103 Recurrent
Malignant Glioma

IL13Ralpha2 I NA IV NA Recruiting

NCT04214392 36 Biological:
Chlorotoxin (EQ)-
CD28− CD3zeta-
CD19t-expressing
CAR T-lymphocytes
(via ICT delivery)

Recurrent/
Recurrent
Malignant Glioma

MMP2 I NA ICV NA Recruiting

NCT02617134 20 Biological: anti-
MUC1 CAR-T cells

Malignant Glioma
of Brain

MUC1 I NA IV NA Unknown
status

NCT05131763 3 Biological: NKG2D-
based CAR T-cells

Glioblastoma NKG2D I NA IV NA Unknown
status

NCT04717999 20 Biological: NKG2D
CAR-T

Recurrent
Glioblastoma

NKG2D Not
Applicable

NA IT/ICV NA Unknown
status

NCT04270461 0 Biological: NKG2D-
based CAR T-cells

Glioblastoma NKG2D I NA IV NA Withdrawn

IV:intravenous. IT:intratumoral.ICV: intracerebroventricular.LR:locoregional.
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with recurrent high-grade glioma, treated via various routes of locore-
gional T cell administration. The trial reported probable treatment-
related grade 3+ toxicities, including one instance each of grade 3 en-
cephalopathy and ataxia. 50 % of patients (29 out of 58) achieved stable
or improved conditions. The median overall survival for all patients was
7.7 months, while for the arm 5 group (Tn/mem manufacturing and
local/intraventricular administration), it was 10.2 months. The increase
in inflammatory cytokines (including IFNγ, CXCL9, and CXCL10) in the
central nervous system is related to the administration and biological
activity of CAR-T cells [165]. In a case of multifocal glioblastoma, both
intracranial and spinal lesions regressed following dual administration,
with the regression maintained for 7.5 months and a survival period
extending beyond 11 months [162].

Besides, recent researches suggested that altering the structure of
IL13Rα2 CART cells, such as combining the CD28 transmembrane
domain [166], humanized scFv domain [167] or 4-1BB domain [168],
can improve the efficacy of CART therapy for glioblastoma. Addition-
ally, clinical trials involving other third-generation CART cells are
currently in the patient recruitment stage (seen in Table 1).

3.4. HER2

HER2, a member of the epidermal growth factor receptor family, is
overexpressed in many types of tumors, including 80 % of glioblastomas
[169]. Ahmed et al. demonstrated that HER2-CART cells exhibit potent
anti-tumor activity against autologous HER2-positive tumors, including
stem cells, leading to the sustained regression of GBM xenografts in
severe combined immune deficiency mice [170]. In another study,
CART cells targeting HER2 and IL13Rα2 showed reduced antigen
escape, enhanced anti-tumor efficacy, and improved survival in animal
models [171]. HER2-CART cells exhibit potent, antigen-specific cyto-
toxicity and cytokine secretion to patient-derived diffuse intrinsic
pontine glioma (DIPG) cells. In addition, HER2 CAR-T cells showed
significant regression in intracranial DIPG xenograft tumors [172].

A clinical study involving 17 recurrent glioblastoma patients re-
ported good tolerance to intravenous HER2-CART cell therapy, with no
dose-limiting toxic effects observed. Among the 16 evaluable patients,
one experienced partial remission for over 9 months, seven had stable
disease ranging from 8 weeks to 29 months, and eight showed disease
progression. Three patients with stable disease remained progression-
free for 24–29 months during follow-up. Across the cohort, the me-
dian overall survival post-first T-cell infusion was 11.1 months (95 % CI
4.1–27.2 months), and post-diagnosis, it was 24.5 months (95 % CI
17.2–34.6 months) [173]. In another clinical trial, HER2 CART cells
were administered to children and young adults with recurrent or re-
fractory CNS tumors, including diffuse midline glioma. Following local
treatment via CNS catheter (into either the tumor cavity or the ven-
tricular system), three patients exhibited no dose-limiting toxicity and
showed clinical and laboratory evidence of localized central nervous
system immune activation. However, the results of this trial have not yet
been published [174]. There is also a clinical study using HER2 CAR-NK
cells to treat patients with HER2-positive recurrent glioblastoma, which
achieved certain clinical effects [175]. Additionally, several clinical
trials are ongoing, and results have yet to be published (Table 1).

3.5. GD2

Disialoganglioside (GD2), a subtype of gangliosides, is highly
expressed in nervous system tumors, including neuroblastoma, retino-
blastoma, and glioma [176]. In 2015, the FDA approved the first
anti-GD2 antibody for neuroblastoma treatment [177]. Most GD2-CART
treatments target H3K27M-mutated diffuse midline gliomas (DMGs),
including diffuse intrinsic pontine glioma (DIPG)—a highly malignant
intracranial glioma predominantly affecting children and young adults.
Mount et al. [178] reported that GD2-CART cells effectively killed
patient-derived H3K27m-mutant glioma cells both in vitro and in vivo.

However, it is noteworthy that peritumoral neuroinflammation during
the acute phase of antitumor activity led to hydrocephalus, which
proved lethal in some of the animals.

A study of GD2-CART treatment in patients with DMGs confirmed its
safety. Following intravenous and intracranial administration of GD2-
CART cells, three out of four patients showed clinical and radio-
graphic improvements. No on-target, off-tumor toxicity was observed
[179]. A recent clinical trial involved eight patients with newly diag-
nosed, high-GD2-expressing glioblastoma, treated either with
post-operative intravenous administration alone or in combination with
intracavitary administration of GD2-CART therapy. Of the eight evalu-
able patients, four experienced a partial response between 3 and 24
months, three showed disease progression between 6 and 23 months,
and one remained stable at four months post-infusion. The median
overall survival across the cohort was 10 months post-infusion. Both
single and combined infusions of GD2-CART cells targeting GBM were
safe, well-tolerated, and free of severe adverse events. However, the
treatment did not extend overall survival [180]. In summary, clinical
GD2-CART therapy has been extensive and has made some progress
against neuroblastoma, but less breakthrough has been made against
high-grade gliomas and most clinical trials are ongoing (Table 1).

3.6. Other targets

In recent years, numerous new targets have been explored for
treating glioblastoma, with some progress noted in both clinical trials
and basic research. Choi et al. [181] reported on a clinical trial utilizing
CARv3-TEAM-E T cells to treat recurrent glioblastoma. CARv3-TEAM-E
T cells, engineered to target both the tumor-specific antigen EGFRvIII
and the wild-type EGFR protein, function through the secretion of a
T-cell-engaging antibody molecule (TEAM). This therapy resulted in no
grade 3 adverse events or dose-limiting toxic effects. Although tumor
regression was dramatic and rapid, as shown radiographically, the re-
sponses were transient in two of the three participants. Weiss et al. [182]
reported the construction of NKG2D-CART cells, which have been used
to treat various solid tumors [183], and demonstrated that these cells
exhibit synergistic efficacy with radiotherapy in treating glioblastoma
and prolonging survival in mice. Jin et al. [184] discovered that while
CD70 was not detected in normal brain tissues, it was overexpressed in
IDH wild-type primary low-grade gliomas, glioblastomas, and recurrent
tumors. Overexpression of CD70 was also associated with poor survival.
They developed CD70-CART cells and demonstrated that these cells can
kill glioblastoma cells in vitro and in vivo, and also extend the survival of
mice. Lin et al. [185] published results from a clinical trial using
EphA2-CART for treating recurrent glioblastoma, where three patients
received an intravenous infusion of CART cells. Two patients experi-
enced grade 2 cytokine release syndrome, accompanied by pulmonary
edema, which fully resolved following dexamethasone treatment.
Among these three patients, one had stable disease (SD) and two had
progressive disease (PD), with overall survival times ranging from 86 to
181 days. Yang et al. [186] confirmed that CD147, also known as the
extracellular matrix metalloproteinase inducer, is overexpressed in
glioblastoma. This overexpression significantly correlates with poor
patient prognosis and serves as an independent prognostic marker for
overall survival in GBM patients. Clinical trials targeting these markers
have been conducted, but the results have not yet been published.

In summary, most innovative CART therapies are currently in phase
1 clinical trials or are still recruiting participants. Some results indicate
that CART therapy is safe, whether administered intravenously or
intracranially. Grade 3 adverse reactions occurred in a few cases but
were all reversible following treatment. Regarding therapy effective-
ness, most CART treatments have not significantly improved patient
survival on a broad scale. However, the small sample sizes and varied
administration methods preclude a precise evaluation of CART treat-
ment effects. Nevertheless, it is encouraging that some patients still
benefit from CART treatment.
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4. The challenges and future of CART therapy

4.1. Blood-brain barrier impediments

Comprised of vascular endothelial cells, pericytes, basement mem-
branes, and astrocytes, the blood-brain barrier effectively prevents most
foreign substances, including various immune cells, from entering brain
tissue. Over 98 % of molecules are unable to penetrate the central ner-
vous system. Drugs that conform to the Lipinski’s rules—molecular
weight under 500 Da, no more than five hydrogen bond donors, fewer
than ten hydrogen bond acceptors, and a log P not exceeding 5—are
exceptions that can cross the blood-brain barrier [187]. The brain pa-
renchyma lacks traditional lymphatic vessels, and the blood-brain bar-
rier stringently regulates the entry of immune cells into the central
nervous system. This limits the presence of leukocytes in the brain,
preventing inflammation and maintaining internal stability [188]. The
occurrence of brain tumors, whether gliomas or metastatic, disrupts the
integrity of the blood-brain barrier, evident in the incomplete coverage
by pericytes, dysfunctional astrocytes, and ruptured basement mem-
branes [189,190], allowing some leukocytes to penetrate the
blood-brain barrier. This also explains why there are fewer leukocytes in
the immune microenvironment of low-grade gliomas, as low-grade gli-
omas have less damage to the blood-brain barrier. However, despite the
varying degrees of blood-brain barrier disruption in GBM, achieving
uniform and effective drug concentrations within the tumor tissue re-
mains challenging, and T cells continue to face barriers to intracranial
entry [191].

Recent clinical trials have demonstrated that intratumoral, intra-
ventricular, and intrathecal injections of CART cells increase their
intracranial content, potentially enhancing their antitumor effects.
Brown et al. found that a combination of intravenous and intraventric-
ular administration of IL13Rα2-CART yielded superior antitumor ef-
fects, indicating that intraventricular infusion is more effective than
intravenous infusion alone [165]. Phase I clinical trials have confirmed
the safety and effectiveness of this approach. However, local CART
therapy is strongly discouraged for patients who have not undergone
surgical treatment, as it may increase intracranial pressure and pose a
risk to patient safety. Similarly, GD2-CART cell therapy for DMGs has
shown that CART cell-induced brain stem inflammation can cause
obstructive hydrocephalus, increased intracranial pressure, and haz-
ardous tissue displacement [179]. In addition, local CART therapy can
cause seizures, sterile inflammation, fever, and more serious complica-
tions such as cytokine release syndrome (CRS) and immune effector
cell-associated neurotoxicity syndrome (ICANS) [192].

4.2. Heterogeneity and antigen loss in glioblastoma

Glioblastoma exhibits significant heterogeneity in both its tumor
cells and the tumor immune microenvironment [193]. Moreover,
changes in the surface antigens of tumor cells are observed in glioma
patients, both within the same patient pre- and post-treatment. Tradi-
tionally, glioblastoma cells are classified into four types: neural,
pro-neural (PN), classical (CL), and mesenchymal (MES), each express-
ing distinct molecular characteristics. The classical type exhibits 100 %
amplification of chromosome 7 coupled with deletion of chromosome
10, genetically manifesting as amplification of the EGFR gene and
deletion of the PTEN gene. In addition, the deletion rate of
CDKN2A/CDKN2B gene is the highest in the classical type, and RB1 gene
deletion is the lowest. In the mesenchymal type, deletions of the NF1
gene are more common than in other types, along with frequent de-
letions of the PTEN, CDKN2, and RB1 genes. The mesenchymal type has
the poorest prognosis and is resistant to treatments. The pro-neural
subtype of glioblastoma is primarily characterized by PDGFRA alter-
ations and IDH1 point mutations. Neural subtypes typically express
neuronal markers, including NEFL, GABRA1, SYT1, and SLC12A5.
Heterogeneity among subtypes is evident, with only about 38 %

exhibiting NF1 gene deletion and 95 % showing EGFR amplification,
though only 29 % display high-level amplification [194]. Recent
single-cell sequencing has confirmed that glioblastoma typically com-
prises these subtypes, rather than homogeneous populations [195]. Yu
et al. utilized multi-site biopsy samples for single-cell sequencing and
discovered significant heterogeneity in the initiation, progression, and
interaction with the TME of glioblastoma [196]. Recently, Mathur et al.
[197] conducted an analysis of intratumoral heterogeneity in glioblas-
toma using single-cell sequencing and 3D technology, finding that
transcriptome and chromatin heterogeneity correlate with diverse cells
of origin. Additionally, it has been observed that under certain condi-
tions, PN can transform into MES. For instance, Xiong et al. recently
demonstrated that macrophages with high GPNBB expression can
induce PN to MES transformation in glioblastoma, as evidenced by
single-cell sequencing [198]. Furthermore, as previously discussed,
glioblastoma’s low tumor mutational load (TML) and limited neo-
antigen presence diminish the cytotoxic effectiveness of T cells.

The phenomenon of antigen loss, observed in previous clinical trials,
was evident in seven patients who received EGFRvIII-CART therapy
followed by secondary surgery; five of these patients exhibited signifi-
cantly reduced antigen expression, which impaired the cytotoxic activ-
ity of the CART cells [141]. Similarly, in a clinical trial of IL13Rα2-CART
therapy, one of three patients demonstrated a decrease in overall
IL13Rα2 expression within the tumor following T cell therapy [163].
More recently, Liu et al. observed a loss of GD2 antigen during
GD2-CART therapy for glioblastoma [180].

Multi-target CAR-T therapy aims to prevent tumor recurrence due to
target antigen loss and tumor heterogeneity. This therapeutic approach
has been clinically tested in various hematologic and solid malignancies,
demonstrating promising efficacy [199]. For glioma, multi-target CART
therapy has been employed and tested in clinical trials. For instance,
ongoing clinical trials such as those combining B7H3 CART with
IL-7RαCART, and IL-13 Rα2/B7H3 CART, are implementing
double-target treatments for glioblastoma [Table 1]. However, the ef-
ficacy of this approach remains to be validated by clinical trial
outcomes.

4.3. Suppression of CART therapy by the tumor microenvironment

Previously, we discussed the factors contributing to the suppressive
tumor immune microenvironment in glioblastoma. These include the
overexpression of various inhibitory factors, a tumor-associated mac-
rophages (TAMs)-dominated immune environment, and a scarcity of T
lymphocytes, predominantly Treg cells. When CART cells infiltrate the
tumor, they encounter inhibitory cells and chemokines or cytokines that
can induce T cell dysfunction. However, research is still limited
regarding which specific mechanism predominantly influences this
effect.

Larson et al. demonstrated that deletion of IFNγR1 in glioblastoma
cells diminished CAR-T cell activity, IFNγR signaling in glioblastoma
was required for sufficient adhesion of CAR T cells to mediate productive
cytotoxicity [200]. To mitigate the adverse effects of the tumor micro-
environment on T cells in glioblastoma, cytokine administration has
been used to enhance CART cell activity. Zhu et al. [201] confirmed that
stimulating IFN-γ release with oncolytic herpes simplex virus-1
(oHSV-1) enhances the anti-tumor effect of CD70-CART on intracra-
nial tumors in mice. Additionally, incorporating cytokines or chemokine
receptor structures into CART cells (4th generation CART) can enhance
their anti-tumor efficacy. One of the most commonly targeted cytokines
is IL-15. Zannikou et al. [202] demonstrated that IL15-modified
IL13Rα2-CART cells target GBM tumor cells and myeloid-derived sup-
pressor cells (MDSCs), exerting potent anti-tumor effects. In addition,
literature suggests that IL15-modified GD-2 [203] and IL13Rα2-CART
[204] can improve T cell proliferation, persistence, and cytokine pro-
duction, resulting in better anti-tumor effects.

What’s more, receptor-modified CAR-T cells can improve the
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inhibitory TME to increase their invasion in solid tumors. Liu et al. [205]
confirmed that CXCR2-modified CAR-T cells can significantly accelerate
in vivo trafficking and tumor-specific accumulation due to high ex-
pressions of CXCR2 ligands in hepatocellular cancer. Sun et al. [206]
found that CXCR4-modified CAR-T cells targeting CLDN18.2 could
traffic more into tumor sites and suppress MDSC migration in pancreatic
cancer. Trinh et al. [207] also reported that CX3CR1-overexpressed
CAR-T cells targeting NKG2D increased their infiltration in hepatocel-
lular cancer. The application of this option in glioblastoma requires
more basic and clinical experimental support.

In addition, the hypoxic microenvironment in glioblastoma can lead
to the failure of immunotherapy. Recent studies [208] have confirmed
that elevated PHGDH expression in glioblastoma endothelial cells pro-
motes tumor hypoxia and angiogenesis via metabolic pathways,
contributing to tumor resistance to CAR-T therapy. Previous studies
have demonstrated that anti-angiogenic therapy can enhance the effi-
cacy of CART treatment [209].

Of course, CART therapy faces several challenges, including main-
taining T cell activity, ensuring infiltration in solid tumors, ensuring
safety post-CAR modification, identifying new targets, managing tumor
resistance and recurrence, and reducing the costs associated with CART
therapy [210]. All these issues require further research (Fig. 4).

5. Conclusion

Glioblastoma is a highly malignant intracranial tumor and the cur-
rent treatment progress is very slow. Previously, targeted therapy and
immune checkpoint blockade have shown no significant benefit, which
is closely related to the complex and suppressive immune microenvi-
ronment of glioblastoma. Fortunately, recent CART therapy has shown a
reliable safety in Phase I clinical trials and some cases have achieved
survival benefits, which has become a hope for future treatment of
glioblastoma. Recent research indicates that CAR-T therapy has the
potential to improve the TME. Alizadeh et al. [211] illustrated that

IL13Rα2-CART cells could activate patient-derived endogenous T cells
and monocytes/macrophages via IFNγ signaling, inducing
tumor-specific T-cell responses in GBM patients. CAR-T cell therapy
could potentially modulate the TME, creating an environment that al-
lows for the initiation of endogenous antitumor immunity. However,
similar to other immunotherapies, CART therapy also faces with the
tumor immunosuppressive microenvironment, the strong heterogeneity
of tumor cells, and other problems. We still have a long way to go.
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