
Citation: Meléndez-Vázquez, N.M.;

Gomez-Manzano, C.; Godoy-Vitorino,

F. Oncolytic Virotherapies and

Adjuvant Gut Microbiome

Therapeutics to Enhance Efficacy

Against Malignant Gliomas. Viruses

2024, 16, 1775. https://doi.org/

10.3390/v16111775

Academic Editors: Arianna Calistri

and Sandra Tuyaerts

Received: 11 October 2024

Revised: 8 November 2024

Accepted: 11 November 2024

Published: 14 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Oncolytic Virotherapies and Adjuvant Gut Microbiome
Therapeutics to Enhance Efficacy Against Malignant Gliomas
Natalie M. Meléndez-Vázquez 1 , Candelaria Gomez-Manzano 2 and Filipa Godoy-Vitorino 1,*

1 Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus,
San Juan, PR 00918, USA; natalie.melendez2@upr.edu

2 Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center,
Houston, TX 77030, USA; cmanzano@mdanderson.org

* Correspondence: filipa.godoy@upr.edu; Tel.: +1-787-758-2525 (ext. 2096)

Abstract: Glioblastoma (GBM) is the most prevalent malignant brain tumor. Current standard-of-care
treatments offer limited benefits for patient survival. Virotherapy is emerging as a novel strategy
to use oncolytic viruses (OVs) for the treatment of GBM. These engineered and non-engineered
viruses infect and lyse cancer cells, causing tumor destruction without harming healthy cells. Recent
advances in genetic modifications to OVs have helped improve their targeting capabilities and
introduce therapeutic genes, broadening the therapeutic window and minimizing potential side
effects. The efficacy of oncolytic virotherapy can be enhanced by combining it with other treatments
such as immunotherapy, chemotherapy, or radiation. Recent studies suggest that manipulating
the gut microbiome to enhance immune responses helps improve the therapeutic efficacy of the
OVs. This narrative review intends to explore OVs and their role against solid tumors, especially
GBM while emphasizing the latest technologies used to enhance and improve its therapeutic and
clinical responses.

Keywords: viroimmunotherapy; therapeutic efficacy; gut microbiome; glioblastoma; combinatory
therapies

1. Introduction

Glioblastoma (GBM) is the most common primary malignant brain tumor and one of
the most invasive cancers worldwide. Current therapies against GBM, including surgical
resection, chemotherapy, and radiation, have proven to be relatively ineffective, resulting in
a median survival of 15 months post-diagnosis [1–3] and a 5-year survival rate of 6.8% [3].
Treatment advances against this solid tumor include several types of immunotherapies and
targeted therapies. Among these, immune checkpoint inhibitors (ICIs) have proven to be
quite unsuccessful in patients with GBM [4,5].

To target the poor survival prognosis associated with malignant gliomas, the develop-
ment of new therapies is imperative. To tackle this problem, a special type of immunother-
apy known as oncolytic viral therapy has shown promising results in preclinical and clinical
studies [6]. Advances in the oncolytic viral therapy field have led to US Food and Drug
Administration (FDA) approval of talimogene laherparepvec (T-VEC), a modified herpes
simplex virus (HSV) type 1 with cancer selectivity, to treat another type of solid tumor,
metastatic melanoma [7]. Although oncolytic viruses (OVs) are promising bio-therapeutic
agents [8], an important challenge arises with their efficacy due to their high immuno-
genicity leading to rapid clearance [9]. This paradigm shift has led to the transition from
monotherapy to combinatorial therapies, where some enhancement in efficacy and overall
survival has been observed when combining OVs with chemotherapy, ICIs, and targeted
therapy [10].

Several biological factors may contribute to determining a patient’s responsiveness to
cancer therapies. Given the expansion of human microbiome studies in the past 12 years,
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we now know that the gut microbiota is associated with a myriad of diseases. The inte-
gration of the human gut microbiota into the hallmarks of cancer underscores its pivotal
role in shaping overall human health [11]. It is, therefore, an important biological factor to
consider when proposing new anti-cancer therapeutics. In particular, a close relationship
between the gut microbiota and immunotherapy efficacy has been described [12–15]. The
bacterial taxa Bifidobacterium has been associated in preclinical [13] and clinical [16] settings
with an anti-PD-L1 treatment response. Specifically, a higher gut diversity and an increase
in Ruminococcaceae and Faecalibacterium have been associated with anti-PD-L1 therapy
response in melanoma patients [17]. In addition, Bifidobacterium supplementation has
been assessed regarding the response to immunotherapy [13,18–21] and oncolytic virother-
apy [22]. In the context of oncolytic adenoviruses, Bifidobacterium supplementation has also
been associated with therapeutic response in a melanoma preclinical model [22]. Some
other studies have also found the role of the mycobiota (fungal communities) in cancer
therapy response [23,24]. Antibiotic-induced bacterial depletion in an animal model led to
overgrowth of commensal fungi, thereby impairing response to radiotherapy [23]. Likewise,
suppression of tumor growth and metastasis has been observed with the yeast Saccharomyces
cerevisiae on in vitro assays and animal models from colon cancer and melanoma [25,26].
This narrative review explores the potential association between gut microbial communities
and oncolytic viral therapy efficacy, while also assessing modulation strategies that may
enhance this synergistic relationship.

2. Malignant Gliomas: The Problem and Current Therapeutic Approaches
2.1. Epidemiology of Glioblastoma

GBM, also known as glioblastoma, IDH-wildtype, is a diffuse astrocytic glioma with
no mutation in the isocitrate dehydrogenase 1 (IDH1) or IDH2 genes [27]. Although little
is known about its etiology, there are some risk factors associated with its development
which include (1) increasing age, (2) ionizing radiation therapy, (3) individuals with a rare
genetic syndrome (e.g., Turcot syndrome, Lynch syndrome, and Li-Fraumeni syndrome),
and (4) people with familial history for brain tumors may develop the same kind of
tumors [28,29]. The clinical presentation will vary according to tumor location; however,
the most predominant symptoms are cognitive impairment, seizures, persistent headaches,
dysphagia, drowsiness, and confusion [30].

GBM is the most common primary malignant brain tumor and has a worldwide
incidence of 1.6%, being more predominant in males than females [3]. These brain tumors
are associated with a median survival of 15 months post-diagnosis in spite of the standard
of care, which consists of surgical resection, chemotherapy, and radiotherapy [1,2,31].
Recurrence is virtually inevitable for this cancer, highlighting the poor survival prognosis
of patients, where only 6.8% survive more than 5 years [3]. In the United States (USA), GBM
has an incidence rate of 3.27 per 100,000 population, accounting for 50.9% of all central
nervous system (CNS) malignant tumors [3]. Recently, more studies have delved into the
applications of different immunotherapies. In the following sections, we discuss in more
detail the treatment options currently available for GBM.

2.2. Treatment Options for GBM

Surgical resection is the initial approach of standardized care to tackle GBM [2]. Its goal
is to effectively eliminate as much of the tumor as possible while preserving neurological
function [32]. Evidence underscores the association between the maximization of surgical
resection and longer life expectancy for low- and high-grade gliomas [33]. Nonetheless, it is
not a stand-alone therapy as surgery cannot completely eradicate GBM, and recurrence oc-
curs in approximately 80% of the patients [34]. Radiation therapy (RT) is typically followed
by resection, optimally within 3–5 weeks after surgery [35], enhancing local control while
minimizing the risk of neurotoxicity [32]. It also decreases symptom severity while improv-
ing patient social functioning [36–38]. In an effort to improve the overall survival of GBM
patients, several chemotherapeutic drugs have been developed, including the most used
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temozolomide (TMZ), bevacizumab, lomustine, and carmustine [39]. Since FDA approval
in 2005, the alkylating agent TMZ has been the current standard of care for newly diagnosed
GBM. Even with positive outcomes, given the mutagenic and heterogenic nature of GBM,
TMZ resistance is acquired by the tumor which limits the efficacy of the treatment [40,41].
Moreover, with the introduction of the Stupp regimen, which combines TMZ with RT, an
increase in overall survival has been achieved [1,42]. However, the 5-year survival rate
still shows no apparent enhancement [43]. In the case of bevacizumab, an anti-angiogenic
chemotherapeutic agent, it has become a popular second-line treatment, although it has
provided limited benefits, improving only progression-free survival (PFS) [44–47]. Lastly,
both lomustine and carmustine are non-specific alkylating agents that cause DNA/RNA
crosslinking and are commonly used for high-grade malignant gliomas [39]. These non-
tumor-specific therapies lead to several adverse events such as nausea, vomiting, fatigue,
body pain, and bleeding gums [34].

Due to the limited benefits offered by the previously mentioned therapies, clini-
cal efforts have shifted towards advancing immunotherapies against solid tumors. Im-
munotherapy approaches can be divided into active and passive immunotherapy. The two
strategies under active immunotherapy that have shown promising progress against GBM
are peptide-based therapy [48] and cell-based therapy, specifically with dendritic cell (DC)-
based vaccines mediated through immunogenic cell death [49–51]. These vaccine therapies
targeting tumor-associated antigens and tumor-specific antigens have been tested against
GBM in phase I, II, and III clinical trials [52–54]. On the other hand, passive immunother-
apy showcasing potential avenues for enhancing GBM prognosis include monoclonal
antibodies, such as ICIs [55,56], and adaptive immunity through chimeric antigen receptor
(CAR) T-cell therapy. Specifically, CAR T-cell therapy targets tumor surface molecules
such as epidermal growth factor receptor variant III (EGFR variant III) [57], interleukin
13 receptor subunit alpha 2 (IL13Rα2) [58], and human epidermal growth factor receptor 2
(HER2) [59]. A case report from a phase I clinical trial with CAR T-cell therapy targeting
IL13Rα2 observed tumor regression in a recurrent multifocal GBM patient [60]. The final
results of this clinical trial showed disease stability in 50% of the patients, including two
partial responses and one complete response with an increase in inflammatory cytokines
such as IFNγ, CXCL9, and CXCL10 [58]. Another phase I clinical trial that is currently
undergoing published preliminary results from three recurrent GBM patients being treated
with CARv3-TEAM-E T cells; these are CAR T cells that target EGFR variant III and the
wild-type EGFR protein through the secretion of a T-cell–engaging antibody molecule
(TEAM) [61]. Even though tumor regression in this subset of patients was rapid, after one
sole dose, and only days after treatment, the response was limited as tumors tended to
reappear [61]. Immune checkpoint blockade is a modulatory immunotherapeutic approach
that encompasses anti-PD1, anti-PD-L1, and anti-CTLA-4. These ICIs target specific tumor
surface antigens, reducing off-target toxicity when compared to traditional chemother-
apy [56]. Preclinical and clinical studies [62–64] have demonstrated substantial positive
outcomes, and a notable surge of FDA approvals for cancer immunotherapies against
several malignancies has been occurring for years [65]. However, since the efficacy of ICIs
is restricted to only a subset of patients, with 60–70% remaining unaffected, this highlights
the need for combinatorial therapies [66,67]. In the GBM context, several studies have been
conducted to better understand the benefits of ICIs. Both in vitro and in vivo GBM assays
showed that PD-1 blockade monotherapy induced long-term response, and combination
therapy with either TMZ or RT underscored the enhanced efficacy [68,69]. While preclinical
models show promise, clinical trials do not showcase the same efficacy [4,70–73]. Still,
there are currently a few phase II clinical trials ongoing, including a study evaluating
pembrolizumab, another anti-PD1 drug, in combination with RT in patients with recurrent
GBM (Clinical Trial ID: NCT04977375). Although CTLA-4 and PD/PD-L1 are the most
studied ICIs, research is also exploring other pathways targeting lymphocyte activation
gene-3 (LAG-3) and T-cell immunoglobulin and mucin-3 (TIM-3) [74,75].
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GBM is described as a cold tumor due to several factors that contribute to immune
system evasion (Figure 1). One of these factors is the high expression of indoleamine-
2,3-dioxygenase (IDO), a tryptophan-degrading enzyme that converts tryptophan to
kynurenines [76]. This metabolic shift in the ratio of tryptophan and kynurenines re-
sults in immunosuppression through the recruitment of regulatory T cells (Tregs) as well as
apoptosis of T-cells and antigen-presenting dendritic cells (DCs) [77–79]. Downregulation
of IDO, through IDO inhibitors such as indoximod, has shown promising enhancement
in the survival prognosis of GBM patients [80–83]. Epacadostat, another IDO inhibitor,
has been evaluated in patients with other solid tumors, yielding inconsistent outcomes
across studies [84,85]. It is currently being tested in a phase II clinical trial for recurrent
GBM (Clinical Trial ID: NCT03532295). Despite these advancements, the limited success in
improving GBM survival remains a persistent challenge. Thus, to address the poor survival
prognosis of malignant gliomas, the development of novel therapies is imperative.
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Figure 1. OV-mediated cold tumor transformation into hot tumor exhibits immunological features
that may enhance the response to immunotherapeutic agents against glioblastoma. Created in
BioRender. [Laboratory, M. (2024) BioRender.com/m60l030 (accessed on 28 October 2024).]

3. Oncolytic Viruses in the Fight Against Malignant Gliomas
3.1. What Are Oncolytic Viruses?

To tackle the poor survival prognosis of malignant gliomas, a special type of im-
munotherapy known as oncolytic viral therapy has been under the spotlight, showing
promising results in preclinical and clinical studies [86–92]. OVs can be lab-engineered and
non-engineered viruses that potentiate antitumor immunity through direct and indirect
mechanisms. They selectively replicate within tumor cells, resulting in the destruction of
the cancerous tissue [93]. This leads to the liberation of more viral particles, which continue
the infection of adjacent tumor cells and the release of tumor- and viral-associated antigens
that are presented to T cells by neighboring DCs [94]. They also release cytokines such
as type I interferons (IFNs), tumor necrosis factor-α (TNFα), and interleukin-12 (IL-12),
which promote antigen-presenting cell (APC) maturation [93]. Thus, activating and migrat-
ing tumor- and virus-specific CD8+ T cells to the tumor, where chemokines also enhance
immune cell infiltration, leads to immune-mediated tumor destruction [95]. Therefore,
an immune response is mounted against both the tumor and the virus, highlighting the
limited time frame of direct oncolysis the therapy executes. This TME remodeling facilitates

BioRender.com/m60l030
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the transformation of immunogenically cold tumors, like GBM, into hot tumors; thus,
enhancing the therapy response rate [96].

Several viruses, from DNA and RNA genetic backbone, have been proposed as po-
tential OVs including adenoviruses [97], poliovirus [98], poxviruses [99], HSV-1 [97],
coxsackieviruses [100], reovirus [101,102], measles virus [103], and Newcastle disease
virus [104,105]. Many are currently being tested in both preclinical and clinical studies
against solid tumors as monotherapy or in combination with other therapies [101,106].
Oncolytic virotherapy has been extensively studied for metastatic melanoma, resulting in
FDA approval of the first OV to treat this solid tumor in 2015—a modified HSV-1 with
cancer-selectivity named T-VEC [7].

3.2. Viroimmunotherapy Advancements in Gliomas

These replication-competent viruses are also being extensively tested against GBM
and show encouraging results [90–92,107], being the most common adenoviruses [95],
poliovirus [98], and HSV-1 [108]. Among the adenoviruses, Delta-24-RGD (DNX-2401)
emerges as a pivotal therapeutic in several clinical trials. DNX-2401 is a tumor-selective,
replication-competent oncolytic adenovirus, encompassing a mutation in the retinoblas-
toma protein-binding region of the early region 1A (E1A) and the insertion of the peptide
motif RGD-4C in the HI-loop of the fiber to enhance infectivity [109]. Particularly, the
oncolytic adenovirus Delta-24-RGD induced complete tumor regression in 20% of patients
with recurrent GBM in a phase I clinical trial [90]. Additional clinical trials with Delta-
24-RGD against adult and pediatric patients with malignant gliomas or diffuse intrinsic
pontine gliomas (DIPGs) have shown encouraging results (Clinical Trial ID: NCT02798406
and NCT03178032) [91,92]. Specifically, 56.2% of patients showed either stable disease or
clinical responses with a combination of Delta-24-RGD and pembrolizumab, with an ex-
tended survival of up to 60 months in a subset of patients [92]. Similarly, in the clinical trial
using Delta-24-RGD with standard-of-care RT in pediatric patients with a new diagnosis of
DIPG, a reduction in tumor size was reported in 9 patients, partial or stable responses in 11
of the 12 patients, and a median survival of 17.8 months [91]. To improve the efficacy of
Delta-24-RGD, a new generation of adenovirus, named Delta-24-RGDOX, was developed
to express the immune costimulatory OX40 ligand (OX40L), which enhances tumor-specific
T cell activation as well as the antigen-presenting capabilities of tumor cells [110]. Similarly,
preclinical studies with Delta-24-RGDOX (clinically known as DNX-2440) have demon-
strated a more robust anti-tumor T cell response than Delta-24-RGD in GBM and metastatic
melanoma mice models [111,112].

Another promising candidate is an oncolytic polio-rhinovirus recombinant agent
named PVS-RIPO. To decrease the neuropathogenicity of the poliovirus, its internal ribo-
somal entry site (IRES) was exchanged with that of the human rhinovirus type 2 [113].
This allowed for viral replication within GBM cells as the human poliovirus receptor,
CD155, is commonly expressed in glioma tumor cells [114,115]. A phase I clinical trial of
PVS-RIPO in patients with recurrent grade IV malignant glioma resulted in a survival rate
of 24–36 months in 21% of patients, with two surviving more than 69 months (Clinical Trial
ID: NCT01491893) [116]. It has also been tested in pediatric high-grade gliomas for safety
and toxicity, showcasing a median survival of 4.1 months and one patient surviving beyond
22 months (Clinical Trial ID: NCT03043391) [117]. The University of California at San
Francisco is currently undergoing a phase II clinical trial with PVS-RIPO against recurrent
malignant glioma to assess safety and efficacy (Clinical Trial ID: NCT02986178). Moreover,
an active clinical study, which is still awaiting the start of recruitment, involves the combi-
nation of PVS-RIPO with pembrolizumab to treat recurrent GBM patients (Clinical Trial ID:
NCT04479241).

HSV-based therapies are some of the most studied for OV development due to three
main reasons: (1) the small-sized genomes, which make it easy to manipulate, (2) modified
surface glycoproteins that can target cell receptors, and (3) because viral replication is easily
manageable with specific anti-viral drugs [108]. The most known oncolytic HSV is T-VEC,
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the first FDA-approved OV against inoperable melanoma [7]. This paved the way for the
development of more robust and safer oncolytic HSVs against solid tumors, including GBM.
Teserpaturev, also known as HSV-1 G47∆, has three main modifications: (1) the deletion of
the γ34.5 gene, which allows for a decrease in viral pathogenicity; (2) an insertion on the
UL39 gene which promotes viral replication on dividing cells; and (3) the deletion of the
α47 gene and US11 promoter region, enhancing viral replication [118–120]. In a phase I/II
clinical study with HSV-1 G47∆ against progressive glioma, the median overall survival
from the initial diagnosis was 30.5 months and 7.3 months from the last dose of the therapy,
where 3 out of 13 patients survived more than 46 months [121]. Further advancement from
a phase II clinical trial of 19 patients with GBM found a one-year survival rate of 84.2%
and a median overall survival of 20.2 months after HSV-1 G47∆ treatment, where three
patients survived for more than 3 years [122]. These encouraging results led the regulatory
agency of Japan to grant conditional and time-limited approval to teserpaturev (G47∆;
Delytact) for the treatment of patients with malignant glioma. rQNestin34.5v.2, also known
as rQNestin, is another oncolytic HSV-1 that is currently in the recruiting stage of the
phase I clinical trial for recurrent glioma (Clinical Trial ID: NCT03152318). M032-HSV-1 is
another oncolytic virus modified to express the subunits p35 and p40 of IL-12, stimulating
an anti-angiogenic effect [123,124]. Currently, there are two ongoing phase I clinical trials to
test the efficacy and safety of this therapy, both in children and adults, against brain tumors
(Clinical Trial ID: NCT02457845 and NCT02062827, respectively). In June 2024, in vitro and
in vivo studies assessed the safety and efficacy of a new generation of the oncolytic HSV-1
C5252, armed with anti-PD-1 and IL-12 [125]. Researchers found a promising therapeutic
prospect against GBM [125], highlighting the need for further clinical translational studies.

One of the latest oncolytic viral candidates against GBM is the Newcastle disease
virus (NDV). This avian paramyxovirus is non-pathogenic to humans and its oncolytic
potential comes naturally from its preference to replicate within cancerous cells [126]. A
preclinical study with an orthotopic syngeneic murine GL261 GBM model treated with NDV
showcased long-term survival in 50% of the animals through the induction of immunogenic
cell death [127]. Another study performed in vitro and in vivo GBM models to assess
the recombinant NDV (rNDV) expressing the human phosphatase and tensin homolog
(PTEN) gene (rNDV-PTEN) [128]. Viral treatment with rNDV-PTEN to the GBM cell line
U87-MG showed a reduction in cell proliferation and migration as well as induction of
apoptosis [128]. Similar results were also seen in the orthotopic GBM murine model, where
viral therapy reduced tumor size and enhanced survival [128]. An athymic nude GBM
mice model treated with the recombinant NDV Anhinga strain, carrying the tumor necrosis
factor-related apoptosis-inducing ligand (TRAIL), achieved a significant reduction in tumor
growth when compared to controls [129]. Furthermore, in vitro studies have assessed the
potential of combination therapies. Specifically, TMZ-loaded polylactic-co-glycolic acid
(PLGA) nanoparticles alongside NDV therapy against the GBM cell line AMGM5 revealed
synergistic enhancement of the anti-cancer immune response [130]. Similar findings were
also observed with the NDV LaSota strain in combination with TMZ [131]. Although
preclinical findings have been promising with NDV against GBM, clinical studies have
been limited [132,133].

Although OVs are promising bio-therapeutic agents [8], tumor immune heterogene-
ity, fast clearance by the immune system [9], and the immunosuppressive state of the
TME [134,135] affect therapy efficacy. Therefore, there is a window of opportunity to im-
prove this therapy by combining OVs with other strategies such as chemotherapy, ICIs,
targeted therapies, and gut microbiota modulation [10].

4. Potential of Gut Microbiome Modulation to Enhance Viroimmunotherapy
4.1. Role of the Gut Microbiota in Cancer

The gut microbiome is essential to human health and an important immunomodula-
tory agent. It is involved in physiological processes that impact nutrition uptake, immune
system development and regulation, pathogen protection, maintenance of gut integrity, and
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anti-inflammatory properties [136]. The impact of modernization through a low-fiber diet
with high-carb and sugar intake, antibiotic abuse, sanitation, and chemical antimicrobials
has led to, in some cases, permanent dysbiosis—an imbalance of these microbial commu-
nities and major bacterial extinctions [137]. During the last decade, the gut microbiome
has been extensively studied and its association with disease development and therapeutic
efficacy has started to be identified [137,138]. Recent advancements have pinpointed the
importance of the human gut microbiota, resulting in its integration into the hallmarks
of cancer [11]. New technologies are being developed to help us decipher the role of the
microbiota in cancer. For instance, the development of a 3D quantitative in situ intratumoral
microbiota imaging strategy facilitates the detection of bacterial lipopolysaccharide (LPS)
inside human glioma tissue [139]. These findings help provide insight into the intrinsic
communication occurring between microbial populations and the TME.

Most research on the associations between gut microbiota and cancer has prioritized
the bacterial component, with relatively few studies examining fungi and other gut com-
mensals. One of the most studied bacteria in association with cancer is Helicobacter pylori.
It is the only bacteria in the International Agency for Research on Cancer (IARC) list of
carcinogens [140]. Even though H. pylori is an indigenous stomach bacterium that evolved
with humans and lowered its prevalence due to urbanized lifestyles [141,142], studies have
found a causative role in cancer development [143]. Notably, the eradication of H. pylori
has provided a risk reduction in gastric cancer [144]. Other bacteria, notably Fusobacterium
nucleatum, have been associated with colorectal cancer and have been identified in rectal
biopsies [145]. Furthermore, F. nucleatum can promote liver metastasis, underscoring the
important role of the microbiome in cancer progression [146]. In a like manner, the gut
microbiome may be involved with glioma formation and regulation through the bidirec-
tional communication that exists between the gut–brain axis. GBM mouse models have
shown how tumor presence can induce shifts in the gut microbiota, including an increase
in the Firmicutes/Bacteroidetes ratio—a marker for gut dysbiosis [147,148]. Researchers
also evaluated GBM growth according to the gut microbiome, finding that the tumor devel-
opment rate in mice was lower in those that received antibiotic treatment followed by a
fecal matter transplant (FMT) compared to the controls [148]. In animals that received only
antibiotics, FOXP3 levels in the brain were downregulated due to gut microbial dysbiosis,
leading to glioma growth [148]. These results highlight the necessity for balanced gut
microbial dynamics on GBM progression. Two Mendelian randomization studies also un-
covered a potential protective role of the family Ruminococcaceae against GBM development,
highlighting a higher abundance of these bacteria is associated with reduced risk [149,150].

In terms of the gut mycobiota, very little is known about their role in GBM. One of the
biggest studies to characterize the cancer mycobiome tested over 17,000 patient samples
across 35 cancer types to define specific fungal signatures per each cancer [151]. Interest-
ingly, they discovered most identified fungal species resided intracellularly, and for GBM
the detected taxa were Malasseziomycetes, Saccharomycetes, and Diothideomycetes [151]. One
of the few studies on gut fungal communities exploring the changes in colorectal adenomas
revealed a higher abundance of Phoma and Candida compared to adjacent non-adenoma
tissue [152]. Specifically, Candida albicans has been associated with a more immunosup-
pressive state through an increase of PD-1+CD8+ T cells [23] and inducing neutrophilic
myeloid-derived suppressor cells [153]. Other opportunistic fungal pathogens, such as
Malassezia globosa, have been found to promote pancreatic oncogenesis via complement
cascade activation and IL-33 secretion [154,155], as well as shorten overall survival in breast
cancer [151]. Moreover, tumor growth and metastasis inhibition have been seen in both
in vitro and preclinical models with the yeast Saccharomyces cerevisiae [25,26].

In addition to bacterial and fungal taxa, microbial metabolites influence the host
metabolism and immune system in both direct and indirect mechanisms [156–161]. Col-
ibactin, a potent genotoxin produced by Escherichia coli and other members of the Enter-
obacteriaceae family, is one of the major contributors to colorectal cancer development [162].
Another metabolite is short-chain fatty acids (SCFAs), which are formed from carbohydrate
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fermentation by gut commensals such as Lactobacillus and Bifidobacterium [163]. Among
SCFAs, the most represented are acetate, propionate, and butyrate. These organic molecules
can circulate through the body and regulate microglia maturation and function [164]. One
of the most studied microbial metabolites in relation to cancer therapy response is butyrate.
This SCFA has been associated with tumor suppression and clearance in different can-
cers via the regulation of apoptosis, autophagy, as well as onco- and tumor-suppressor
genes [165–168]. Butyrate has also been associated with CD8+ T cell function modulation
and antitumoral properties [157,159]. Dietary tryptophan metabolism is also regulated
by gut bacterial communities, which leads to the production of aryl hydrocarbon recep-
tor (AHR) agonists [169]. The AHR is a ligand-activated transcription factor involved
in the regulation of several physiological processes including the immune system. As
mentioned previously, GBM produces high levels of kynurenines, which cause an immuno-
suppressive state. One of the mechanisms by which kynurenines achieve this is through
the activation of AHR on tumor-associated macrophages (TAMs), promoting antitumoral
immune dysfunction [170]. Therefore, gut microbial communities can help disrupt this
immunosuppression with the production of AHR agonists. Moreover, in the context of
fungal metabolites, in vitro assays have discovered several Aspergillus, Penicillium, and Ta-
laromyces-derived metabolites displaying cytotoxic activity against several cancer cell lines,
including GBM [171]. These filamentous fungi are producers of anticancer metabolites
belonging to diverse compound families such as alkaloids and polyketides [171]. Similarly,
the anti-cancer effect on in vitro studies against GBM cells has been tested with edible mush-
rooms [172]. Specifically, when evaluating four different fungal extracts, Coprinus comatus
and Lactarius delicious showcased the most cytotoxic activity mediated in a dose-dependent
manner against the human GBM cell lines U87MG and LN-18 [172].

Overall, these studies suggest a potential impact of the bacteriome and mycobiome
on the host immune response, highlighting their crucial role in cancer biology. It also
underscores the delicate balance and co-existence between fungi and bacteria. This em-
phasizes the need for more in-depth research to continue understanding their synergistic
relationship, as they also provide potential targets for therapeutics.

4.2. Gut Microbiome Association with Different Cancer Treatment Responses

Several studies have exhibited the close relationship between gut bacterial and fungal
communities with cancer therapy response [12–15,23–26]. Antibiotic-driven bacterial de-
pletion in preclinical solid tumor models resulted in the overgrowth of commensal fungi,
including Saccharomyces and Candida, which hindered RT response [23]. In addition, in the
breast cancer preclinical model, the presence of Dectin-1 in the tumor tissue recognizing the
β-glucan of the fungal cell wall after RT supports the hypothesis that through this ligand-
receptor interaction, the response rate of RT is modulated [23]. These findings showcase the
importance of both bacterial and fungal components of the gut microbiome in regulating
gut homeostasis and anti-cancer immunity after treatment. On the other hand, phase II
clinical trials have shown that the systemic administration of β-glucan, one of the most
abundant polysaccharides in the fungal cell wall, has resulted in enhanced cancer monother-
apy treatment such as monoclonal antibodies [173,174]. For chemotherapeutic drugs, the
gut microbiome has also been linked to modulating its efficacy. Cyclophosphamide (CTX),
a common alkylating agent, causes microbial dysbiosis with a reduction of Lactobacilli and
Enterococci in melanoma and sarcoma-bearing animals [175]. This microbial disruption
affected the response of “pathogenic” Th17 (pTh17) cells, which consequently drove CTX
resistance [175]. Another study with the chemo drug gemcitabine found that intratumoral
Gammaproteobacteria, mainly from the Enterobacteriaceae and Pseudomonadaceae families,
conferred drug resistance by its metabolization, which was dependent on the presence of
a long isoform of the bacterial enzyme cytidine deaminase (CDDL) [176]. A study with
C57BL/6 mice implanted with a GL261 GBM tumor highlighted that the induction of
Akkermansia and Bifidobacterium may contribute to the anti-tumor effect of the chemo drug
TMZ [177].



Viruses 2024, 16, 1775 9 of 23

Baseline stool samples from 42 metastatic melanoma patients, prior to immunotherapy
initiation, unveiled an association between the gut microbiome and clinical response [12].
PD-1 and CTLA-4 blockade responders (16/42; 38%) revealed higher levels of Bifidobac-
terium longum, Collinsella aerofaciens, and Enterococcus faecium, while non-responders (26/42;
62%) exhibited more abundance of Ruminococcus obeum and Roseburia intestinalis [12]. A
study on melanoma-bearing mice treated with anti-PD-L1 also found an association be-
tween the gut commensal bacteria Bifidobacterium and anti-tumor T-cell response [13]. When
evaluating the bacterial communities of anti-PD-1 therapy responding patients (30/43;
70%), researchers found a higher gut microbiome diversity associated with significantly
increased PFS [17]. Fecal sample assessment between responders and non-responders
to anti-PD-1 identified enrichment of Ruminococcaceae and Faecalibacterium in responders,
while Bacteroides thetaiotaomicron, Escherichia coli, and Anaerotruncus colihominis in non-
responders [17]. Moreover, the use of taxonomic level categorization to assess therapy
response uncovered that those patients with a high abundance of Faecalibacterium had
prolonged PFS compared to those with a low abundance [17]. On the other hand, patients
with high levels of Bacteroidales were associated with reduced PFS compared to those with
low levels [17]. Similar findings were also seen with anti-CTLA-4, where patients’ base-
line gut microbiota that had enriched Faecalibacterium had longer PFS compared to those
with higher baseline levels of Bacteroidales [178]. Furthermore, immune response analysis
showcased those patients with higher levels of Faecalibacterium had elevated density of
immune cells, including more effector CD4+ and CD8+ T cells, and markers of antigen
processing and presentation [17]. This is contrary to patients with a higher abundance of
Bacteroidales who had Tregs and myeloid-derived suppressor cells (MDSCs), compromising
anti-tumoral immune response [17]. Faecalibacterium has been associated with positive
responses to immune checkpoint inhibitors across multiple cancer types, improving dys-
biosis of inflammatory bowel disease [179] and suggesting its potential as a new probiotic
in many cancer treatments [180]. Similarly, previous studies have focused on the anti-
inflammatory role of Akkermansia muciniphila in the colon [181] and its association with
better response to PD-1 blockade therapy [14,182]. Patients treated with CAR-T cell therapy
who had a higher abundance of Akkermansia muciniphila have also been associated with
increased PFS, whereas a larger abundance of Bacteroides was linked to lower PFS [183].
It is currently observed that immunotherapy response varies according to Akkermansia
levels, where absence or overabundance can result in treatment unresponsiveness [182].
For anti-CTLA-4 therapy, broad-spectrum antibiotic administration has compromised the
anti-tumoral effects of the treatment [15]. Likewise, solid tumor preclinical models adminis-
tered an antibiotic cocktail of vancomycin, imipenem, and neomycin, showed impairment
of CpG-oligonucleotide immunotherapy, which affected tumor growth, survival, TNF, and
cytokine production [184]. Moreover, antibiotic exposure prior to starting immunotherapy
has been associated with reduced PFS and overall survival [183]. An assessment of fungal
communities across multiple geographical locations and cancer types revealed potential
biomarkers of ICI response [24]. A machine learning predictive model, considering datasets
across four human cohorts, identified 20 fungal species enriched in responders and 6 in
non-responders to anti-PD-1 [24]. An evaluation of the multi-kingdom network identified
Schizosaccharomyces octosporus as one of the most prominent potential biomarkers for anti-
PD-1 response and was found to have an excellent predictive performance with an average
receiver operating characteristic (ROC) of 0.87 [24].

Studies regarding gut microbiome association with oncolytic viral therapy efficacy
have been limited. Previously, a study found a higher abundance of Bifidobacterium and
Akkermansia associated with response to the oncolytic adenovirus Delta-24-RGDOX along
the gut–glioma axis [147]. In this preclinical GBM model, responders to the OV had similar
richness and diversity to that of naive animals when compared to untreated mice [147].
We also assessed the role CD4+ T cells had on gut microbiota modulation associated with
Delta-24-RGDOX efficacy. CD4+ T cell depletion resulted in less survival and a higher
Firmicutes/Bacteroidetes ratio compared to the OV-treated group with functional CD4+
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T cells [147]. In addition, we observed a reduction in Bifidobacterium as well as other
anti-inflammatory taxa such as Lactobacillus, Ruminococcaceae, and Lachnospiraceae due to
the depletion [147]. Another study with melanoma-bearing animals undergoing van-
comycin administration and oncolytic viral therapy with Ad5D24-CpG showcased faster
tumor growth and reduced IFN-γ-producing CD8+ T cells compared to the OV-treated
animals [22]. Interestingly, melanoma progression was very similar between the combina-
tion therapy group (OV and antibiotic) when compared with the mice group administered
only the antibiotic, highlighting the use of antibiotics affects viroimmunotherapy effi-
cacy [22]. Although these findings are encouraging, further studies are needed to assess
the intrinsic communication that exists between gut microbial communities, GBM, and
treatment efficacy.

4.3. Strategies for Gut Microbiome Modulation to Enhance Cancer Therapy Response

Studies have evaluated strategies to modulate the gut microbiome to improve re-
sponse to immunotherapy [21,22,185]. Probiotics, as defined by the International Scientific
Association for Probiotics and Prebiotics (ISAPP), are “live microorganisms that, when
administered in adequate amounts, confer a health benefit on the host” [186]. These mi-
croorganisms, which are typically bacteria but can also include yeasts, are found naturally
on fermented foods such as kimchi, kombucha, miso, sauerkraut, and kefir [187]. However,
probiotics can also be found commercially with one or more specific strains depicted as
“good bacteria” such as Lactobacillus and Bifidobacterium. As seen previously, Bifidobacterium
is one of the key bacterial taxa of interest for enhancing cancer therapy response. Therefore,
one of the strategies for gut microbial modulation is oral supplementation with Bifidobac-
terium spp., which has improved tumor control and enhanced PD-L1 blockade therapy
through CD8+ T cell priming and accumulation in the TME [13]. When tested on CD8+ T
cell-depleted mice, the therapeutic effect of Bifidobacterium supplementation, specifically
of Bifidobacterium breve and Bifidobacterium longum, was hindered [13]. In addition, studies
inactivating Bifidobacterium with heat found the probiotic effects hampered, suggesting the
need for live bacteria to achieve the desired anti-tumoral effect [13]. Another study with
oral supplementation with several strains of Bifidobacterium bifidum showed a reduction
in tumor burden with anti-PD-1 therapy and the chemotherapeutic agent oxaliplatin by
enhancing anti-tumoral immune response [21]. Interestingly, this enhancement of PD-
1 blockade was attained only with a specific subset of strains of B. bifidum (B. bif _K57,
B. bif _K18, and B. bif _M31), observing an increase in CD4+, CD8+, and NK cells as well as
an increase in the cell ratio of effector CD8+ T cells/Tregs [21]. In the case of oxaliplatin,
while several B. bifidum strains decreased tumor growth, only two strains (B. bif _K57 and
B. bif _K18) worked synergistically with the chemotherapy drug [21]. Immune cell profiling
for the combination of oxaliplatin and B. bifidum strains showed an increase in effector
CD8+ T cells and the cell ratio of effector CD8+ T cells/Tregs [21]. Probiotic supplemen-
tation with Bifidobacterium sp. has also resulted in a reduction in melanoma progression
and tumor-infiltrating Tregs in a preclinical model treated with the oncolytic adenovirus
AD5D24-CpG [22]. The reduction in Tregs was even more significant in the animals only
administered the probiotic [22]. The peptidome of Bifidobacterium and melanoma were
compared, and after careful curation, 10 peptides were identified for Bifidobacterium and
14 for melanoma [22]. Interestingly, molecular mimicry was observed between epitopes
derived from Bifidobacterium and melanoma with in vitro assays and preclinical models,
suggesting a possible cross-reactive T cell activation mechanism by which the microbiome
modulates viroimmunotherapy response [22]. Given the promising results of probiotic ad-
ministration in cancer therapy response, clinical trials assessing the potential translational
application of gut microbiome therapeutics have been on the rise. Currently, the probiotic
Probio-M9, containing Lactobacillus rhamnosus, is being evaluated as a potential enhancer
of PD-1 blockade against liver cancer (Clinical Trial ID: NCT05032014). Recently, a phase
I clinical trial was completed that assessed the probiotic CBM588 (Clostridium butyricum)
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in regard to anti-PD-1 and anti-CTLA-4 efficacy against advanced kidney cancer (Clinical
Trial ID: NCT03829111).

Nutrition is one of the most commonly known modifiers of the gut microbiota. Specific
nutrients acquired from the diet, also known as prebiotics, can modulate the abundance
of beneficial bacterial species in the gut. Prebiotics, a term initially introduced in 1995,
was described as “a non-digestible food ingredient that beneficially affects the host by
selectively stimulating the growth and/or activity of one or a limited number of bacteria in
the colon, and thus improves host health” [188]. However, a revision by the ISAPP refined
the concept into “a substrate that is selectively utilized by host microorganisms conferring a
health benefit” [189]. This dietary fiber acquired from foods such as vegetables, fruit, whole
grains, and legumes select for “good bacteria” within the gut. In a study with melanoma
patients undergoing an ICI regimen, of which 193 were responders and 100 non-responders,
researchers assessed dietary habits and probiotic usage [190]. Prior to the initiation of ICI
treatment, patients completed the National Cancer Institute Dietary Screener Questionnaire
from which threshold values for fiber intake were assessed as 5 g per day, with low fiber
intake to less than 20 g/day, and high fiber intake at or above 20 g/day [190]. Particularly,
patients treated with anti-PD-1 who had high fiber intake showed enhanced PFS when
compared with patients with low fiber intake [190]. Further preclinical melanoma models
undergoing anti-PD-1 and fed a high-fiber diet demonstrated retarded tumor growth when
compared to treated animals fed a low-fiber diet [190]. A clinical trial assessed the prebiotic
effect of inulin and fructo-oligosaccharide on Lactobacillus and Bifidobacterium on gyne-
cologic cancer requiring postoperative pelvic RT (Clinical Trial ID: NCT01549782) [191].
Specifically, their results highlighted how RT led to a reduction in Lactobacillus and Bifi-
dobacterium with the restoration of these bacterial species after prebiotic administration,
suggesting a reduction in intestinal side effects caused by RT [191]. Two more clinical
studies are assessing the modulatory effect of prebiotics on colorectal cancer, specifically
one with soluble corn fiber (Clinical Trial ID: NCT05516641) and another with polyunsat-
urated fats (PUFAs) (Clinical Trial ID: NCT04869956). Currently, there’s an active phase
II clinical trial evaluating the effects of two types of dietary interventions on the clinical
response of immunotherapy-treated melanoma patients (Clinical Trial ID: NCT04645680).
Overall, these studies open an avenue in terms of baseline knowledge for future dietary
interventions to improve cancer treatments, including the efficacy of viroimmunotherapy.

FMTs are a sought-out strategy to potentially restore host gut homeostasis. In 2010,
a patient with chronic diarrhea due to an infection from Clostridium difficile achieved a
successful gut microbiota restoration after an FMT from a healthy donor [192]. Continuous
improvement throughout the decade led to the FDA approving the first microbiota-based
treatment named REBYOTA [193]. Another recently approved microbiota-based therapy
was SER-109, an oral formulation made from bacterial spores, for recurrent C. difficile
infection [194]. In terms of immunotherapy efficacy, FMTs have shown promising results in
combination with ICIs in both preclinical and clinical studies with refractory melanoma and
other solid tumors [14,17,185,195,196]. Melanoma-bearing mice that received FMT from
patients who responded to anti-PD-1 therapy were more responsive to the same treatment,
highlighted by an immune profile of higher CD8+ T cells [17]. Similarly, animals that
received FMT from anti-PD-1 non-responders also had a poor response to the therapy [17].
A phase I clinical trial for safety assessment showed that patients had strain colonization
from their donors and experienced a decrease in “bad” bacteria, observing an objective
response rate of 65% [195]. Another phase I clinical trial evaluating the safety and feasibility
of FMTs in changing the poor response rate of anti-PD-1 found a clinical response in three
patients as well as positive changes in immune cell infiltrates [185]. A similar finding was
also seen in another clinical trial with an increase in CD8+ T cell activation and a decrease
in myeloid cell immunosuppression (Clinical Trial ID: NCT03341143) [197]. FMTs have
also been tested in reducing gut-related side effects, such as colitis, caused by ICI therapy.
In a case report of a 71-year-old man with gastric adenocarcinoma and PD-1 blockade
treatment, the patient continued to experience severe ICI colitis despite all efforts to reduce
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symptoms and pain [196]. The FDA approved an FMT for compassionate use where only
days after the intervention results showed diminished inflammation, bowel movements,
and abdominal pain, with no further return of colitis symptoms [196]. These positive
outcomes have led to a phase I clinical trial that is currently recruiting genitourinary cancer
patients to assess how FMTs can abrogate diarrhea and colitis caused by ICIs (Clinical
Trial ID: NCT04038619). Another phase I clinical study assesses FMT potential in reducing
toxicity caused by ICI therapy in renal cancer (Clinical Trial ID: NCT04163289). In terms of
potentiating anti-cancer therapy response, a phase II clinical trial is assessing the antitumor
enhancement of combining FMTs with ICI therapy on non-small cell lung cancer and
melanoma (Clinical Trial ID: NCT04951583). Currently, a phase II clinical trial is recruiting
patients to evaluate the safety, feasibility, and efficacy of FMTs to ICI non-responders using
as donors ICI responders (Clinical Trial ID: NCT05286294). The use of FMTs is therefore
a potential strategy to enhance oncolytic virotherapy. An initial study with a colorectal
cancer preclinical model found that FMTs enhance oncolytic virus OVV-gp33 efficacy with
an increase in CD8+ T cells and a decrease in Treg levels [198]. Further studies should
be developed to continue expanding the limited knowledge on FMTs and oncolytic viral
therapy efficacy.

The mechanisms by which FMTs improve cancer therapy efficacy are still unknown. How-
ever, bacteriophages have emerged as an important component of the gut virome [199,200],
playing a role in the modulation of therapeutic efficacy [201,202]. Bacteriophages, also
known as phages, are prokaryotic viruses that infect only bacterial species. A batch fer-
mentation model tested a 4-phage myovirus cocktail against a C. difficile infection, which
resulted in complete eradication [203]. Clinical studies have shown how FMT interven-
tions on patients suffering C. difficile infection also introduced phages into the gut micro-
biome [201,202]. Recently, phage applications have ventured into understanding their
potential as enhancers of anti-cancer agents. Specifically, filamentous phages (members
f1, M13, and fd) are able to cross the blood–brain barrier and enter the central nervous
system without inducing toxicity [204]. This allows phages to effectively penetrate and
improve drug delivery to the cancerous tissue [204]. For example, the modified vector
RGD4C-AAVP-TNF, made from the backbone of an adeno-associated virus (AAV) and
a M13-derived bacteriophage, was tested on an orthotopic GBM immunodeficient mice
model and showcased tumor regression through cellular apoptosis [204]. Moreover, another
variant of this phage, named RGD4C-AAVP-Grp78, has shown a synergistic effect with the
chemo drug TMZ on an orthotopic GBM mice model, resulting in tumor destruction [205].
On another preclinical GBM model, the intranasal administration of filamentous phages
inhibited GBM tumor progression mediated partly by the LPS carried on its virion [206].
These findings highlight the potential of phage therapeutics for combination therapies with
oncolytic viruses against GBM.

5. Future Perspectives of Gut Microbial Modulation in Combination with OVs

The findings discussed earlier have become a setting stone for further inquiry into gut
microbial modulation and viroimmunotherapy efficacy. Given the extensive research on
the role of gut microbial communities in physiological processes and host immune system
development, its potential as an enhancer of therapeutic agents should not be surprising.
As seen with ICIs, certain gut microbes (ex. Bifidobacterium) and their secondary metabolites
(ex. butyrate) can be potential modulators of oncolytic viral therapy response.

Continued advancements in sequencing technologies will yield increasingly com-
prehensive in-depth sequences for species and gene identification. The integration of
metagenomics with metabolomics, transcriptomics, and proteomics will provide a more
nuanced understanding of the molecular dynamics within the gut. This approach may
uncover a causal link between viroimmunotherapy response and gut microbial commu-
nities. Personalized gut microbial modulation will likely improve the immune response
of patients undergoing oncolytic virotherapy resulting in prolonged survival while main-
taining a protective gut community throughout time (Figure 2). By modulating the gut
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microbiome, through probiotic supplementation, diet modulation, or FMTs, the immune
landscape may be enhanced, allowing for a more robust anti-tumoral immune response.
Specifically, biomarker identification is essential for predicting patient responses, enabling
a more meticulous determination of the optimal combination therapies for the effective
eradication of GBM. More importantly, there are very limited clinical trials focused on the
modulation of the gut microbiome to enhance therapy efficacy. Additionally, a combination
of tailored therapies including metagenomic data with individualized phage therapies
based on a patient’s unique microbiome profile, jointly with probiotics, prebiotics, or
immune modulators for a multifaceted approach is also promising.
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Further studies are warranted to unravel the mechanisms of FMT, diet modulation,
and probiotic supplementation to determine which strategy is ideal for enhancing OV
efficacy against GBM. Overall, combining gut microbial modulation with oncolytic viral
therapy efficacy presents a frontier for personalized cancer medicine, having the potential
to revolutionize patient outcome.

6. Conclusions

Combination therapies of OVs and the gut microbiome is an emerging and promis-
ing field that warrants further studies. While OVs have enhanced clinical response and
extended overall survival in malignant gliomas, a subset of patients still does not respond
to therapy. The gut microbiome is an undeniable biological factor that contributes to health
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and therapy response. Henceforth, future strategies regarding oncolytic viral therapy en-
hancement should include gut microbiome modulation through probiotic supplementation,
metabolic profiling, and FMTs.
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