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Abstract 
Background.  The chemotherapeutic standard of care for patients with glioblastoma (GB) is radiation therapy 
(RT) combined with temozolomide (TMZ). However, during the twenty years since its introduction, this so-called 
Stupp protocol has revealed major drawbacks, because nearly half of all GBs harbor intrinsic treatment resist-
ance mechanisms. Prime among these are the increased expression of the DNA repair protein O6-guanine-DNA 
methyltransferase (MGMT) and cellular deficiency in DNA mismatch repair (MMR). Patients with such tumors 
receive very little, if any, benefit from TMZ. We are developing a novel molecule, NEO212 (TMZ conjugated to 
NEO100), that harbors the potential to overcome these limitations.
Methods.  We used mouse models that were orthotopically implanted with GB cell lines or primary, radioresistant 
human GB stem cells, representing different treatment resistance mechanisms. Animals received NEO212 (or TMZ 
for comparison) without or with RT. Overall survival was recorded, and histology studies quantified DNA damage, 
apoptosis, microvessel density, and impact on bone marrow.
Results.  In all tumor models, replacing TMZ with NEO212 in a schedule designed to mimic the Stupp protocol 
achieved a strikingly superior extension of survival, especially in TMZ-resistant and RT-resistant models. While 
NEO212 displayed pronounced radiation-sensitizing, DNA-damaging, pro-apoptotic, and anti-angiogenic effects in 
tumor tissue, it did not cause bone marrow toxicity.
Conclusions.  NEO212 is a candidate drug to potentially replace TMZ within the standard Stupp protocol. It has 
the potential to become the first chemotherapeutic agent to significantly extend overall survival in TMZ-resistant 
patients when combined with radiation.

Key Points

• NEO212 overcomes multiple mechanisms of resistance in animal models of glioma.

• The survival gains with NEO212 do not come at the expense of additional toxicities.

• NEO212 chemoradiation has the potential to extend the survival of glioma patients.

Glioblastoma (GB) is the most common malignant primary 
brain tumor. The current standard of care consists of sur-
gery, followed by chemoradiation with temozolomide (TMZ).1 
This latter component—commonly referred to as the Stupp 
protocol—consists of fractionated radiation therapy (RT) 

administered concurrently with a daily dose of TMZ over 6 
weeks, which is followed by monthly cycles of adjuvant TMZ 
in the absence of further RT. While the therapeutic benefits of 
this protocol have been well established over the years,2,3 a 
number of limitations have emerged as well.

NEO212, temozolomide conjugated to NEO100, exerts 
superior therapeutic activity over temozolomide in 
preclinical chemoradiation models of glioblastoma  
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As was initially observed in the landmark EORTC-NCIC 
trial, the average survival benefit of adding TMZ to RT 
was a mere 2.5 months over RT alone; ie, the inclusion of 
TMZ extended median overall survival (mOS) from 12.1 
months (RT alone) to 14.6 months.1 However, further 
analysis revealed that this seemingly small treatment re-
sponse was greatly influenced by the expression level of 
O6-methylguanine-DNA methyltransferase (MGMT) pro-
tein in the patient’s tumor tissues.4 MGMT is a DNA repair 
protein that is able to remove the toxic O6-methylguanine 
(O6-mG) lesions that are imposed onto DNA through the 
alkylating function of TMZ. As a consequence, the cyto-
toxic impact of TMZ can be neutralized quite effectively 
when MGMT is present.5,6 It was therefore not entirely sur-
prising to find that those patients with epigenetic MGMT 
gene silencing in their tumor tissues received a substan-
tially greater benefit (mOS = 21.7 months) in response 
to treatment with the Stupp protocol than patients with 
an active (unmethylated) MGMT promoter (mOS = 12.7 
months). These comparisons were expanded to yield the 
critical finding that the latter 12.7 months in response to 
combination therapy were not statistically different from 
the 11.8 months observed in the group receiving only 
RT,4,7,8 raising the first concerns that TMZ does not appear 
to unfold significant benefit in patients with active MGMT 
expression.9,10

There are further limitations to using TMZ for the treat-
ment of GB. Beyond MGMT, it has been recognized that a 
deficiency in DNA mismatch repair (MMR) provides pro-
found TMZ resistance.11,12 Somewhat counter-intuitive, a 
cell’s competence to repair DNA mismatches is critical for 
the generation of DNA strand breaks in response to the 
O6-mG lesions set by TMZ. In MMR-proficient cells, the 
TMZ-generated O6-mG is mispaired with thymine instead 
of the usual cytosine, which triggers repair attempts by the 
MMR system. However, MMR is unable to resolve this type 
of mismatch; eventually, its continuing, but futile attempts 
cause apoptosis. In contrast, in the absence of MMR, the 
cell is able to tolerate these mismatches by introducing 
mutations into the DNA strand.5,13 In the context of clinical 
practice, it has not been well established whether a signifi-
cant fraction of newly diagnosed GB patients present with 
MMR deficiency in their tumors. However, a small number 

of studies provided evidence that recurrent GB more fre-
quently shows MMR deficiency, which could explain why 
these patients stopped responding to treatment.14,15

Another limitation of TMZ-based therapy is this drug’s 
sub-optimal penetration of the blood-brain barrier (BBB). 
Although TMZ is considered to be brain penetrant, its brain-
blood ratio is only about 0.2,16 meaning that the majority of 
TMZ present in the systemic circulation does not enter the 
brain parenchyma.17,18 This less-than-desirable brain distri-
bution could be among the key aspects contributing to the 
above-described drawbacks, such as its lack of overcoming 
MGMT or MMR-based resistance, and absence of clear 
radiosensitizing potential.19 Regrettably, endeavoring to 
ameliorate these weaknesses through increased dosing of 
TMZ would not be possible, due to the drug’s dose-limiting 
myelosuppressive toxicity.20–22

In view of the above, one could conjecture that the treat-
ment success of the Stupp protocol could be much im-
proved if its radiation component was combined with a 
drug that can achieve a high brain-blood ratio, overcome 
MGMT and MMR-based resistance, and at the same time 
was well tolerated without severe myelosuppression. With 
these goals in mind, we are developing a novel chemical 
compound, NEO212 (NeOnc Technologies, Inc.), that has 
shown promise to fill this urgent medical need. NEO212 
emerged from our in silico-based search for TMZ deriva-
tives with predicted increased BBB penetration ability,23 
where subsequent experiments established that its 
brain:plasma ratio is about 3-fold higher than that of TMZ.24

NEO212 is the first new chemical entity derived from a 
bioconjugate platform that conjugates suitable agents to 
proprietary NEO100 (NeOnc Technologies, Inc.), which is 
a highly pure version of perillyl alcohol synthesized under 
current good manufacturing practices (cGMP).25 Extensive 
preclinical studies have characterized NEO212’s remark-
able anticancer activity, while at the same time establishing 
its low toxicity.26–30 In the current study, we investigated 
the activity of NEO212 in combination with RT in different 
mouse GB models representing resistance mechanisms 
that may be encountered in GB patients. We attempted to 
mimic the concurrent phase of the Stupp protocol, and we 
performed all experiments alongside TMZ as the standard 
of care.

Importance of the Study

Glioblastoma (GB) remains very challenging to control in 
the clinic with 5-year survival rates still in single digits. 
The intrinsic radioresistance of gliomas and the minimal 
radiosensitization activity of temozolomide (TMZ) in tu-
mors that express O6-guanine-DNA methyltransferase 
(MGMT) or are deficient in mismatch repair (MMR) 
proteins are two main contributors to the inability of 
Stupp protocol to control the progression of GB. The 
radiosensitization performance of TMZ is particu-
larly blunted by the poor intratumoral concentrations 

achieved by this alkylating agent at standard dosages. 
In this study, we evaluated the radiosensitization activity 
of NEO212—a novel TMZ derivative with superior tumor 
bioavailability—in animal models of GB. We show that 
NEO212 has the potential to overcome multiple mech-
anisms of TMZ resistance and thus better synergize 
with radiotherapy. We envision that NEO212 will be par-
ticularly beneficial for MGMT promoter unmethylated 
(MGMT expressing) and MMR-deficient gliomas, which 
are currently not responding to TMZ treatment.
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Materials and Methods

Reagents

NEO212 was obtained from Axon Medchem (Groningen, 
The Netherlands). TMZ was purchased from TCI America 
(Portland, OR). All other reagents were purchased from 
Millipore Sigma (Burlington, MA). All antibodies used in 
the study are listed in Supplementary File.

Cells

The LN229, T98G, and U251 human GB lines were obtained 
from ATCC (Manassas, VA). The LN229TR2 is a TMZ-
resistant, MMR-deficient variant of LN229 generated after 
exposing parent cells to increasing concentrations of 
TMZ.27 The TMZ-resistant variant of U251 cells (ie,. U251M) 
was generated by infecting the parent cells with a lentiviral 
construct that expresses human MGMT and 2 reporter 
genes (firefly luciferase (Luc) and enhanced green fluores-
cent protein). The primary glioma stem cells USC02 (mes-
enchymal phenotype) and USC04 (pro-neural phenotype) 
were originally isolated and characterized by our group.28 
The preparation of USC02 MGMT knockdown cells is de-
scribed in the supplementary file.

Analysis of MGMT and MMR Status

MGMT status was investigated by Western blot as de-
scribed previously.31 MMR status was analyzed by 2 ap-
proaches: (1) Western blot analysis of MSH2 and MSH6, 
which are proteins essential for the execution of MMR, and 
(2) microsatellite instability (MSI) analysis with a DNA am-
plification kit for multiallelic microsatellite regions. The kit 
was purchased from Promega (Madison, WI) and was able 
to screen 8 alleles in total.

Efficacy Studies in Tumor-Bearing Animals

All studies were conducted under animal protocol #21163, 
which was approved by the Institutional Animal Care and 
Use Committee of the University of Southern California. 
Tumor xenografts were established by implanting GB 
cells into the right hemisphere (coordinates: A/P–1.00 mm, 
M/L + 1.00 mm, and D/V–2.50 mm) of athymic mice on a 
stereotaxic frame (Kopf Instruments, Tujunga, CA). Tumors 
were allowed to grow for 14 days before treatments were 
initiated. When applicable, the tumor growth was moni-
tored on an IVIS Spectrum optical imaging system (Perkin 
Elmer, Shelton, CT). In all animal models, the treatments 
were administered for 10 days in total (5-days on/2-days 
off/5-days on). NEO212 and TMZ were dosed at 25 mg/kg/
day by oral gavage after being first dissolved in DMSO 
and then mixed in an OraPlus suspending vehicle. Whole 
brain RT (WBRT) was administered in an X-RAD320 irra-
diator (Precision X-Ray, North Branford, CT) and dosed at 
2 Gy/day using the following irradiator settings: 250 kV, 

16.0 mA, source-to-surface distance 50 cm, and F1 filter 
(2 mm Al). A radiosensitization factor (RF) was calculated 
for each treatment modality based on median survival data 
for each group and using the following formula: survival 
gains from combination therapy (days)/survival gains from 
monotherapy 1 (days) + survival gains from monotherapy 
2 (days). A ratio of < 1 was considered antagonistic, equal 
to 1 additive, and > 1 synergistic.

Histological Analyses of Tissues

Brain and bone marrow slides were prepared from animals 
with USC02 xenografts and stained with a γH2AX antibody 
(detecting DNA damage), CD31 antibody (detecting endo-
thelial cells) or were subjected to TUNEL (detecting apop-
tosis). Bone marrow slides were also stained with a CD45 
antibody to visualize the effects of the treatments on the 
lympho-myeloid cellular compartment. The methods for 
preparing and analyzing the brain and bone marrow slides 
are described in the supplementary file.

Statistical Analysis

Statistical significance was analyzed in Prism v.10.2.1 
(GraphPad Software) and assessed by one-way analysis of 
variance (ANOVA) with a significant overall F-test followed 
by Tukey or Bonferroni post-hoc multiple comparison tests 
of treatment groups relative to control. Kaplan–Meier sur-
vival curves were also generated in Prism and the log-rank 
(Mantel-Cox) test was used for comparisons between sur-
vival curves. Two-tailed P < .05 was considered significant.

Results

GB Cells Harbor Different Treatment Resistance 
Mechanisms

For this study, we used 4 GB cell lines harboring different 
mechanisms of TMZ resistance and varying degrees of 
radiosensitivity, as follows. USC02 and USC04 represent 
primary patient-derived GB stem cells that differ in their 
MGMT protein expression levels (Figure 1A) and in their 
sensitivity to ionizing radiation (see below). U251M cells 
are derived from the widely used U251 cell line by infec-
tion with a lentivirus construct harboring MGMT cDNA, 
and consequently, these cells express high levels of exog-
enous MGMT (Figure 1A). LN229TR2 cells were selected 
from their parental LN229 cell line through long-term treat-
ment with TMZ; these cells have lost their MMR function, 
as indicated by low expression of MMR proteins MSH2 and 
MSH6 (Figure 1B), along with the emergence of microsat-
ellite instability (Figure 1C), a characteristic marker of MMR 
deficiency. The in vitro sensitivity of these 4 cell lines to-
wards TMZ has been characterized in our prior studies 
and shown to closely align with expectations; ie, MGMT-
expressing cells (USC02 and U251M) and MMR-deficient 
cells (LN229TR2) are robustly TMZ-resistant, whereas 
USC04 cells are TMZ sensitive.28,31

vdae095_suppl_Supplementary.docx
vdae095_suppl_Supplementary.docx
vdae095_suppl_Supplementary.docx
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NEO212 Outperforms TMZ in Treatment Success 
of Preclinical GB Models

In a prior in vitro study, we had obtained evidence that 
NEO212 might act as a radiosensitizer, and that this function 
was significantly stronger than that of TMZ.31 In view of the 
relevance of this issue with regard to the current standard 
of care for GB patients, we designed in vivo experiments 
mimicking the concurrent phase of the Stupp protocol. 
The above-described GB cell types were orthotopically 
implanted into mice, and tumor development was moni-
tored via bioluminescent imaging (Supplementary Figures 
S1, S2, and S3). After tumor take had been confirmed in 
each animal, the mice were subjected to daily treatment 
with 25 mg/kg NEO212 or 25 mg/kg TMZ, with or without 
concurrent WBRT over 10 days. Treatment efficacy was 
monitored through imaging at regular intervals, along with 
recording of the survival of each animal.

The treatment outcomes and overall animal survival are 
summarized in Figure 2. The USC04 stem cell model rep-
resented the “baseline” model, due to its lack of obvious 
treatment resistance mechanisms. As presented in Figure 
2A, this model was responsive to all treatment modalities. 
When applied in a monotherapy fashion, both NEO212 and 
TMZ clearly extended survival, although NEO212 had a sig-
nificantly greater beneficial effect. In combination with RT, 
both drugs revealed radiosensitizing features and further 
prolonged survival, although, once again, the beneficial im-
pact of NEO212 was far greater than that of TMZ. The median 

survival of the group of mice treated with NEO212 + RT was 
nearly 2 times longer (284 days) than that of mice treated 
with TMZ + RT (144 days). In essence, while this tumor model 
responded to TMZ and radiation in a manner that would be 
expected from a treatment-sensitive patient successfully sub-
jected to the Stupp protocol, NEO212 in comparison still sig-
nificantly (P = .0198) outperformed TMZ in this setting.

We next applied the chemoradiation protocol to the 
U251M (MGMT overexpressing) model. As shown in 
Figure 2B, this model did not respond to either drug in 
monotherapy fashion. In combination with RT, TMZ slightly 
extended median survival to 84 days, as compared to 80 
days achieved by RT alone, although this effect was not 
statistically significant. In comparison, NEO212 was able 
to extend median survival to 137 days, which was 57 days 
longer than what was achieved with RT alone (P = .006). 
This benefit of NEO212 was more impressive because 
NEO212 alone had no significant effect; rather, it reflected 
its potent radiosensitizing activity (which did not become 
apparent from TMZ in this model).

Another clinically relevant model, illustrating the role 
of mismatch repair, was represented by MMR-deficient 
LN229TR2 cells. Treatment of mice harboring such tumors 
with TMZ or NEO212 showed a small benefit and extended 
median overall survival from 35 to 49 days in both cases 
(Figure 2C). On the other hand, the striking radiosensitizing 
potential of NEO212 once again emerged in the RT combi-
nation setting. While TMZ had a small additive effect and 
extended median survival to 87 days as compared to the 
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Figure 1. The GB cell models used in this study display different mechanisms of resistance to TMZ. (A) Cell lysates were analyzed by Western 
blot to determine MGMT protein expression in the various cell models used in this study. T98G cells were included as a positive control and LN229 
cells as a negative control; actin was used as the loading control. (B) MSH2 and MSH6 are proteins necessary for MMR function. Western blot 
comparison of parental LN229 and derived LN229TR2 cells reveals very low MSH2 levels, and near absence of MSH6 protein, indicating MMR de-
ficiency. (C) Analysis of microsatellite instability (MSI) shows evidence of instability in LN229TR2 cells, with novel alleles displayed in 2/8 markers 
(NR-21 and BAT60), which is yet another indication of MMR deficiency.
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70 days observed with RT alone, NEO212 + RT achieved 
a median survival of 349 days (P = .0018 compared to RT 
alone). Calculation of NEO212’s RF yielded a very strongly 
synergistic 6.40, yet again emphasizing this agent’s striking 
radiosensitization potential.

Finally, we applied our in vivo Stupp protocol to USC02 
cells, which are MGMT-expressing GB stem cells, and as such 
potentially the most difficult to eradicate by therapy. Results 
in Figure 2D show that these cells also harbor inherent 
radioresistance: RT in this model extended median survival 
by a mere 11 days over untreated controls. In comparison, 
the other 3 models used in our study showed an RT benefit 
from 35 to 40 days over untreated controls (Figure 2A–C). 
Treatment with TMZ or NEO212 as monotherapy modestly 

extended the survival of the USC02 model by a few days, 
although for TMZ this effect was not statistically significant. 
In combination with RT, TMZ did not add any survival ben-
efit, which was consistent with expectations derived from 
the clinical experience with this tumor phenotype. In con-
trast, NEO212 + RT once again demonstrated its synergistic 
potency and significantly extended survival by 35 days over 
RT alone (P = .01). NEO212’s RF was calculated at a strongly 
synergistic 2.55, further validating this agent’s exquisite sen-
sitizing potential.

The above-described survival gains were consistent with 
the bioluminescent imaging of tumor growth that was per-
formed at regular intervals (Supplementary Figures S1, S2, 
and S3). This monitoring by imaging also confirmed that the 
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Figure 2. NEO212 synergizes with radiation therapy and prolongs survival of multiple GB models. Kaplan–Meier survival plots were generated 
to display animal survival in response to various treatments. Groups of 5 mice were treated with NEO212 (25 mg/kg/day) or TMZ (25 mg/kg/day) 
alone or in combination with radiation therapy (2 Gy/day). Control groups of mice received vehicle only. (A) The USC04 primary GB stem cell model 
represents the “baseline” model, as it lacks obvious treatment resistance mechanisms. (B) The U251M model expresses high levels of exogenous 
MGMT and therefore represents a TMZ-resistant model. (C) The LN229TR model represents a model where TMZ resistance is based on MMR de-
ficiency. (D) The USC02 primary GB stem cell model represents a strongly treatment-resistant model, based on expression of endogenous MGMT, 
along with relative radioresistance. The log-rank (Mantel-Cox) test was used for statistical comparisons. ns: not significant. Some graphical 
elements used for this figure were imported from BioRender.com. 
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cause of death of individual mice was cancer-related, rather 
than due to extraneous circumstances, and it further demon-
strated that treatment with NEO212 + RT suppressed the bi-
oluminescent signal—which is indicative of the presence of 
tumor tissue—far longer than the other treatment regimens.

An additional effort was aimed at understanding whether 
the presence of MGMT possibly contributed to the rela-
tive radioresistance of the USC02 model. This question 
arose based on an observation in the original EORTC-NCIC 
trial, noting that overall survival of GB patients with MGMT-
overexpressing tumors was shorter in response to RT alone 
(11.8 months) than survival of RT-only treated patients with 
tumors not expressing MGMT (15.3 months).4 To investi-
gate this issue, we established USC02 cells harboring ef-
fectively silenced MGMT (Supplementary Figure S4) and 
subjected them to the same chemoradiation protocol as 
above. However, the median survival of the different treat-
ment groups was not substantially different (Supplementary 
Figure S5) from that observed in the parental, MGMT-
expressing USC02 cells shown in Figure 2D. Although this re-
sult further validated the superior radiosensitizing potency of 
NEO212 over TMZ, it did not establish a connection between 
MGMT status and radiosensitivity in this model.

Chemoradiation With NEO212 Causes Extensive 
DNA Damage and Apoptosis in Tumor Cells

The DNA-damaging and apoptosis-inducing effects of all 
treatments were assessed on brain sections from animals 
harboring USC02 tumors. To investigate DNA damage, we 
stained with a fluorescently labeled antibody recognizing 
γH2AX protein, whose persistent focal presence is a marker 
for DNA double-strand breaks (DSBs). Representative 
brain tumor sections are presented in Figure 3A, and av-
erages from all sections are quantitatively summarized 
in Figure 3B. These data show an increase in persistent 
DSBs after RT, and this effect was exacerbated by the inclu-
sion of TMZ or NEO212. Consistent with the survival out-
comes of these treatment regimens, chemoradiation with 
NEO212 caused by far the most DNA damage in the tumor 
tissue. However, when tissue sections from the contralat-
eral normal brain were analyzed, DNA damage caused by 
chemoradiation with NEO212 was not elevated as com-
pared to the minor effect that was seen with RT alone 
(Figure 3B), demonstrating that the addition of NEO212 to 
RT does not trigger increased neurotoxicity.

The extent of apoptosis within tumor tissue was inves-
tigated with the standard TUNEL assay. Here as well, RT 
caused an increase in tumor cell apoptosis, and this effect 
was exacerbated by inclusion of TMZ or NEO212, with the 
latter clearly showing the most extensive chemoradiation-
induced cell death (Figure 3C, D). This once again superior 
contribution of NEO212 mirrored its DNA-damaging activity 
and suggested that tumor cell death resulted from the exten-
sive DNA damage caused by chemoradiation with NEO212.

Chemoradiation With NEO212 Exerts Anti-
angiogenic Effects

Extensive neo-vascularization of GB is a characteristic of 
this tumor type and supports its aggressive growth. We 

therefore investigated whether our different treatments 
had an effect on this process by analyzing the microvessel 
density (MVD) of USC02 tumor sections. We used a 
fluorescently labeled antibody recognizing CD31, a cell 
surface marker of endothelial cells that plays a role in neo-
angiogenesis. Representative images from tissue staining 
are shown in Figure 4A and quantitative analysis is sum-
marized in Figure 4B. These data reveal pronounced ectasia 
in the treatment groups that received RT, consistent with 
what is known about the effects of RT on blood vessels.32 
The addition of TMZ to RT does not appear to contribute 
an additional effect, whereas the addition of NEO212 to RT 
dramatically changes the morphology of the tumor vascu-
lature further, showing a pronounced loss of endothelial 
cells that is not observed under any other treatment con-
ditions. In all, tumor tissue from animals receiving NEO212 
chemoradiation presents with a strikingly lower MVD, 
along with more disorganized and likely nonfunctional 
blood vessels. While we did not investigate whether this 
dramatic effect resulted from inhibition of endothelial cell 
proliferation or tubule formation, the generally increased 
apoptotic index within the tumor tissue (Figure 3C, D) sug-
gests that the killing of tumor endothelial cells could play 
a role. Of note, as chemoradiation with TMZ does not re-
sult in this dramatic morphological change, the effects of 
chemoradiation with NEO212 not only represent a quan-
titative difference to TMZ, but a qualitative distinction as 
well.

Chemoradiation With NEO212 Does Not Cause 
Bone Marrow Toxicity

Bone marrow toxicity represents the main concerning side 
effect that can arise in GB patients treated with TMZ-based 
chemoradiation.20–22 We therefore investigated this issue 
in our mouse models. Bone marrow sections prepared 
from USC02 tumor-bearing mice and exposed to the same 
treatment sequences as used in the above survival estima-
tions were assessed for DNA damage (γH2AX staining) and 
for their morphology and cellularity. In addition, periph-
eral blood cell counts were performed for white and red 
blood cells (WBC and RBC). Representative bone marrow 
sections are shown in Figure 5A, and related qualitative 
data are summarized in Figure 5B–E. Combined, these 
data show that none of the treatment conditions revealed 
a significant toxic impact on the bone marrow. Thus, while 
chemoradiation with NEO212 was shown to exert strikingly 
effective therapeutic activity that was significantly greater 
than chemoradiation with TMZ, NEO212’s superiority was 
not achieved at the cost of greater toxicity.

Discussion

Chemoradiation therapy, where RT is combined with TMZ, 
represents the standard of care for newly diagnosed GB 
patients. While GB is not considered to be inherently re-
sistant to RT, cancer stem cells often are more resistant 
than the bulk of the tumor cells and more prone to with-
stand and survive therapeutic intervention.33,34 It there-
fore has been investigated whether TMZ might be able to 

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae095#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae095#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae095#supplementary-data
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Figure 3. Chemoradiation with NEO212 causes profound DNA damage and apoptosis in tumor tissue but spares normal brain tissue. Mice har-
boring USC02 tumors were subjected to the same treatment regimen as described in the legend in Figure 2. At the end of the 10-day treatment 
period, brains were collected and separated into the ipsilateral hemisphere (containing the tumor) and contralateral (tumor-free) hemisphere. 
Brains were sectioned and analyzed. (A) Sections were stained with AF647-labeled γH2AX antibody to detect DNA damage, and counterstained 
with DAPI to visualize cell nuclei. Green fluorescence identifies tumor cells, which express a green fluorescent protein (GFP). Scale bars are 
100 μm. (B) The graph presents the quantification of DNA damage staining in tumor tissue and tumor-free normal brain tissue. This was done in 
30 noncontiguous fields per treatment group with each data point representing the average for one field. (C) Sections were subjected to TUNEL 
staining to reveal apoptotic cells, and counterstained with DAPI. Scale bars are 200 µm. (D) Quantitative representation of apoptosis in tumor 
tissue. ns: not significant; 3 asterisks (***): P < .001.
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contribute any highly desirable radiosensitizing properties 
to the Stupp protocol. However, experimental analysis of 
this aspect generated mixed results,35–38 and TMZ is not 
generally accepted as a potent radiosensitizer (see detailed 
discussion in ref.19,31).

Results from our preclinical study provide support 
for the view that the novel compound NEO212 might 
hold the potential to significantly improve the success of 
chemoradiation therapy of GB patients by overcoming sev-
eral of the limitations of the Stupp protocol that are deter-
mined by inclusion of TMZ. Based on these results, NEO212 
displays at least 2 key advantages over TMZ: (i) it is active 
against tumor cells harboring common TMZ-resistance 
mechanisms, and (ii) it is able to strongly sensitize tumor 
cells (including cancer stem cells) to radiation. Gratifyingly, 
the increased activity of NEO212 does not come at the 
expense of greater toxicity; based on a number of obser-
vations, myelosuppression in response to treatment of an-
imals appears no greater than what is observed with TMZ, 
and other side effects have not become apparent.

For newly diagnosed GB patients, MGMT protein ex-
pression in their tumor tissue worsens their prognosis, be-
cause they are not likely to receive the full benefit of TMZ 
in their chemoradiation protocol.4,7,8 A large number of pre-
clinical and clinical studies have established MGMT as a 
highly effective reversal mechanism against the toxic im-
pact of TMZ,5–7 and its use as a predictive biomarker has 
been widely accepted.39 In fact, it represents an ongoing 
discussion whether TMZ should even be given to patients 
when MGMT protein is present in their tumor tissue, as it 
might unnecessarily and unproductively increase the risk 
of side effects.9,10 These issues surrounding MGMT were 
faithfully recapitulated in our mouse tumor models. While 
our “baseline” USC04 model (tumor cells lacking MGMT) is 
shown to respond to a single TMZ treatment and also bene-
fits from adding TMZ to RT, the 2 MGMT-overexpressing 
models demonstrate no benefit. In contrast, NEO212 exerts 
clear benefit in all models, primarily through its ability to 
provide pronounced radiosensitizing activity, even when a 
certain degree of radioresistance is present.
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Figure 4. Chemoradiation with NEO212 causes anti-angiogenic effects. Mice harboring USC02 tumors were subjected to the same treatment 
regimen as described in the legend in Figure 2. At the end of the 10-day treatment period, brain tumors were collected, and sections were ana-
lyzed for microvessel density (MVD). (A) Sections were stained with AF647-conjugated CD31 antibody to visualize endothelial cells and z-stacks 
are shown to illustrate the 3-D microvessel structures. DAPI was used as the counterstain, and the presence of green fluorescent protein 
(GFP) was used to identify tumor cells. Scale bars are 200 µM. (B) Chart showing the quantitative analysis of CD31 staining. This was done in 30 
noncontiguous z-stacks per treatment group with each data point representing the average for one z-stack. ns: not significant; one asterisk (*): 
P < .05.
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Figure 5. Chemoradiation with NEO212 does not cause bone marrow toxicity. Mice harboring USC02 tumors were subjected to the same treatment 
regimen as described in the legend in Figure 2. At the end of the 10-day treatment period, bone marrow and blood were collected and analyzed for 
signs of toxicity. (A) Bone marrow was subjected to H&E staining (to show general cellularity), along with immunohistological analysis with AF647-
conjugated γH2AX antibody (to reveal DNA damage) and AF555-conjugated CD45 antibody (to identify hematopoietic cells). DAPI was used as the 
counterstain. Scale bars are 50 µm for the immunostains and 100 µm for the H&E stains. (B) Quantitative analysis of γH2AX staining. (C) Quantitative 
analysis of CD45+ cell counts. (D) Number of white blood cells (WBC) in the peripheral blood. (E) Number of red blood cells (RBC). ns: not significant.
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Unlike MGMT status, MMR status is not consistently de-
termined in newly diagnosed GB tumors and therefore is 
not generally available to inform the treatment strategy. 
However, several studies have indicated that MMR defi-
ciency—which potently protects tumor cells against TMZ 
irrespective of their MGMT status11,12—can emerge in re-
sponse to treatment with the Stupp protocol and presents 
with some frequency in recurrent tumors.14,15 It is there-
fore relevant for clinical decision-making and would seem 
to exclude the further use of TMZ. In our MMR-deficient 
LN229TR2 model, NEO212 provided a much greater, 
strikingly synergistic benefit when added to RT. In fact, 
radiosensitization by NEO212 showed by far the greatest 
synergy in this particular model.

While the superior anticancer and radiosensitizing activity 
of NEO212 bodes well for its clinical application, an impor-
tant question arose as to whether these striking activities 
perhaps came at the expense of greater toxicity. Our current 
results, in combination with earlier observations,26–30 seem 
to indicate otherwise. In several of our prior studies in mice, 
we showed that treatment with NEO212 in monotherapy 
fashion, even after extended cycles and elevated dosages, 
did not negatively impact the number of white blood cells 
(WBC), as determined by complete blood counts (CBC with 
differential), nor did it reveal any signs of liver or kidney 
damage. In a rat model, we applied greatly increased dos-
ages of NEO212—in parallel to equal dosages of TMZ for 
comparison purposes—in an attempt to force the appear-
ance of toxic signs.30 In these experiments, 100 mg/kg TMZ 
administered daily over 5 days caused a significant reduc-
tion in WBC counts, and increasing the dose to 200 mg/kg 
TMZ killed all 3 rats in this group. In comparison, none of the 
corresponding 2 treatment groups of rats administered with 
NEO212 revealed a significant reduction in WBC count, and 
all rats continued to thrive.30 When combined with radiation, 
NEO212 did not reveal any significant detrimental impact on 
the bone marrow or peripheral blood cell counts, further re-
inforcing our previous observations.

Several prior studies have confirmed that NEO212 main-
tains the alkylating function of its TMZ moiety.24,26,40 It was 
therefore surprising to find that this compound appeared 
to be better tolerated than TMZ yet exerted superior thera-
peutic benefit. While not yet entirely clarified, we surmise 
that at least part of NEO212’s superiority arises from its ability 
to better penetrate biological barriers, including the plasma 
membrane and the BBB. Experiments in mice confirmed 
what had been predicted from in silico analysis,23 namely that 
NEO212 is able to effectively cross the BBB; its brain:plasma 
ratio was found to be about 3-fold greater than that of TMZ31 
and it exerted stronger anticancer activity in mouse models 
of GB and brain-metastatic breast cancer.26–28 Taken to-
gether, these studies propose a model where NEO212 is 
able to reach higher concentrations in the brain without con-
currently causing increased exposure of the bone marrow. 
Because cell death resulting from DNA methylation caused 
by NEO212 (and TMZ) is dependent on cells undergoing ac-
tive proliferation, one might reasonably expect that elevated 
drug concentrations in the brain would not cause neurotox-
icity. At least in our mouse model, the addition of NEO212 to 
RT did not show signs of increased DNA damage in normal 
brain tissue. Nonetheless, this issue will require careful atten-
tion once NEO212 moves into the clinic.

Mechanistically, we expect the superior tumor accumu-
lation of NEO212, when administered at the standard dos-
ages, to translate into a more favorable on-target alkylation 
differential. This could conceivably overpower the repair ca-
pacity of the base-excision repair (BER) system in tumoral 
tissue, which, in turn, might allow for better synergisms to 
take place between unrepaired DNA methyl adducts and 
RT, irrespective of the MGMT presence or MMR status of 
the tumor. While TMZ preferentially kills via O6-MeG ad-
ducts,6,19,41 its ability to generate toxic N-alkylation events 
at standard dosages—which are primarily repaired by 
the BER system—is rather modest.5,42 Therefore, we ex-
pect the additional N-methylpurine adducts inflicted by 
NEO212 (eg, N7-methylguanine, N3-methyladenine, and 
N3-methylguanine) to be further exploited by RT and, thus, 
more efficiently, converted into lethal DSBs.31 However, 
rigorous comparative measurements of alkylation events 
by both NEO212 and TMZ, and specifically of the BER inter-
mediates generated by these drugs during N-methylpurine 
alkylation events,43 are further warranted to prove this hy-
pothesis. We believe an alkylation differential that favors 
NEO212 at standard dosages over TMZ is the most likely 
explanation for the observed differences in outcomes 
with these drugs in our animal models. Counterintuitively, 
NEO212’s requirement for RT to unfold its full DNA dam-
aging effects also provides a plausible explanation for the 
absence of additional bone marrow toxicities observed 
with this drug.

Towards the clinical application of our promising findings, 
a Phase I trial is currently in progress for recurrent primary 
malignant gliomas and brain-metastatic cancer. Once a 
maximal tolerated dose is determined for Phase I, a Phase 
IIa study is planned for patients with recurrent, MGMT pro-
moter unmethylated (ie, MGMT expressing) GB who have 
failed the Stupp protocol. A second Phase IIa study will be 
performed in newly diagnosed GB patients that are also 
MGMT unmethylated, where NEO212 will be combined 
with standard RT, along the principles of the Stupp protocol. 
It is expected that these 2 trials will provide answers as to 
whether NEO212 is clinically active in MGMT unmethylated 
tumors (both newly diagnosed and recurrent), and whether 
it is an effective, clinically useful radiation sensitizer.

Supplementary Material

Supplementary material is available at Neuro-Oncology 
Advances (https://academic.oup.com/noa).
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