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Abstract: Background: Brain tumors present a complex challenge in clinical oncology, where precise
diagnosis and classification are pivotal for effective treatment planning. Radiomics, a burgeoning
field in neuro-oncology, involves extracting and analyzing numerous quantitative features from
medical images. This approach captures subtle spatial and textural information imperceptible to
the human eye. However, implementation in clinical practice is still distant, and concerns have
been raised regarding the methodological quality of radiomic studies. Methodology: A systematic
literature search was performed to identify original articles focused on the use of radiomics for
brain tumors from 2015 based on the inclusion and exclusion criteria. The radiomic features train
machine learning models for glioma classification, and data are split into training and testing subsets
to validate the model accuracy, reliability, and generalizability. The present study systematically
reviews the status of radiomic studies concerning brain tumors, also using the radiomics quality
score (RQS) to assess the quality of the methodology used in each study. Results: A systematic
search of PubMed identified 300 articles, with 18 studies meeting the inclusion criteria for qualitative
synthesis. These studies collectively demonstrate the potential of radiomics-based machine learning
models in accurately distinguishing between glioma subtypes and grades. Various imaging modali-
ties, including MRI, PET/CT, and advanced techniques like ASL and DTI, were utilized to extract
radiomic features for analysis. Machine learning algorithms such as deep learning networks, support
vector machines, random forests, and logistic regression were applied to develop predictive models.
Conclusions: The present study indicates high accuracies in glioma classification, outperforming
traditional imaging methods and inexperienced radiologists in some cases. Further validation and
standardization efforts are warranted to facilitate the clinical integration of radiomics into routine
practice, ultimately enhancing glioma management and patient outcomes. Open science practices:
Machine learning using MRI radiomic features provides a simple, noninvasive, and cost-effective
method for glioma classification, enhancing transparency, reproducibility, and collaboration within
the scientific community.

Keywords: Glioma; differential diagnosis; radiomics; radiomics quality score; texture analysis

1. Introduction

In the context of medical publications, it is crucial for general medical practitioners to
possess a foundational understanding of the diagnosis and management of brain tumors
due to their prevalence. The most common forms of brain tumors include intracranial
metastases from systemic cancers, meningiomas, and gliomas, notably glioblastoma [1].
The development of this diverse group of tumors lacks specific etiological or risk factors.
The molecular characterization of brain tumors indeed offers new insights, but it also
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highlights the limitations of previous studies, which typically relied on histopathology and
imaging for tumor classification and prognosis. Previous studies primarily categorized
brain tumors based on morphological features visible under the microscope. However, this
approach often overlooked molecular heterogeneity, leading to a lack of precise subclassifi-
cation. Molecular profiling now reveals that tumors with similar histological features may
have distinct genetic profiles, which can influence their behavior and treatment response.
Nevertheless, the current focus on the molecular characterization of brain tumors offers
fresh insights into the genetic aberrations that form the basis of their tumorigenesis [2].

The most prevalent primary brain tumors, gliomas, originate from the glial cells,
encompassing astrocytes, oligodendrocytes, and ependymal cells [3]. In accordance with
the World Health Organization (WHO) classification [4], gliomas are divided into two
distinct categories grounded in their malignant potential: low-grade glioma (LGG) for
grades I to II, presenting with focal symptoms, and high-grade glioma (HGG) for grades III
to IV, manifesting with generalized symptoms. Notably, glioblastoma (GBM), designated as
a grade IV tumor, accounts for 54% of the total glioma cases, underscoring its significance
in the spectrum of gliomas [5].

Brain imaging plays a crucial part in glioma management, facilitating precise diagnosis,
cataloguing, surgical planning, and post-treatment follow-up. Typically, the initial imaging
modality for diagnosing glioma is a brain computed tomography (CT) scan, revealing a
hypodense lesion, often exhibiting rim enhancement with contrast agent injection. While
CT offers valuable anatomical information, it is commonly tailed by magnetic resonance
imaging (MRI), which is often regarded as having better contrast resolution. MRI can
provide complementary information, enhancing the overall diagnostic capability in glioma
cases [6,7].

Current research has demonstrated that traditional MRI sequences are still viable,
particularly gadolinium-based contrast-enhanced T1-weighted imaging (T1-CE), in the
grading of gliomas [8]. Technological advancements have further introduced advanced
MRI sequences that play a role in physiological and metabolic assessments for glioma clas-
sification, including perfusion-weighted imaging (PWI) and diffusion-weighted imaging
(DWI) [9,10]. It is worth noting that prior studies on glioma grading faced limitations, as
they relied on a small number of parameters extracted from a single MRI sequence [8–10].

Radiomics is the process of the computer-assisted extraction of quantitative informa-
tion from radiological images, typically in the form of sub-visual radiographical
signals [11,12]. This approach allows the creation of mineable databases that can be
employed for various purposes, including diagnosis, the characterization of prognosis, and
the evaluation or prediction of therapeutic responses [8].

The radiomic concept hinges on the idea that biomedical imaging obtained from
medical modalities like CT, MRI, and PET harbors concealed information, discoverable
through quantitative image analyses. This information serves to complement the data
interpreted by radiologists and provides additional pathophysiological insights [13–15].
Leveraging advanced mathematical algorithms, radiomics excels in uncovering a broader
spectrum of tumor features that may elude visual detection. At its core, radiomics operates
on the fundamental principle that pathological processes altering tissue characteristics
result in modifications in pixel intensity and distribution. These alterations are reflected in
unique values of textural features compared to those observed in normal tissue or tissues
affected by other diseases [9,10].

Radiomics, which extracts quantitative features from medical images, holds great
potential in glioma classification and prognosis prediction. However, there are several
limitations to its use, especially when combined with machine learning methods. One major
challenge is the inconsistency in image acquisition and preprocessing, which can affect
the reproducibility and generalizability of the extracted features. Differences in imaging
protocols, such as variations in scanning equipment or settings, can lead to discrepancies
that hinder the model’s performance across diverse datasets or clinical environments.
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Additionally, the high dimensionality of the data can lead to overfitting in machine learning
models if feature selection and dimensionality reduction are not carefully managed [16].

Over the past decade, there has been a substantial increase in radiomic studies ded-
icated to displaying the effectiveness of radiomic features in glioma classification and
distinguishing gliomas from metastases, PCNLS, and non-neoplastic brain diseases. De-
spite extensive studies linking quantitative image features to diagnosis, response evaluation,
and prognostic prediction in glioma patients using CT and MRI, at present, the application
of radiomics in distinguishing gliomas is primarily found in scholarly publications. Clin-
icians are skeptical about the validity of radiomics in this context, largely because it has
not been effectively translated into therapeutic applications. Assessing the clinical value
of radiomics in gliomas has proven challenging due to the complexity of methods and
varying study designs. Hence, we conducted this study to evaluate the methodological
quality of the existing research, utilizing the “radiomics quality score” (RQS).

2. Materials and Methods

MRI of the brain is predominantly used for the evaluation of gliomas. Radiomics has
been an active research area in medical image processing and analysis. Currently, MRI-
based radiomic features and machine and deep learning classification models are employed
for glioma grading. Radiomic-feature-based machine learning models for glioma classifi-
cation involve extracting quantitative imaging features from MRI brain images to classify
them into different subtypes, typically based on their malignancy or genetic characteristics.

The integration of MRI radiomic features and machine learning can revolutionize
glioma classification, offering a noninvasive, reproducible, and potentially personalized
approach to diagnosis, prognosis, and treatment planning. However, further studies, model
validation, and clinical trials are necessary to ensure safe and effective implementation
in routine clinical practice. In the current study, we analyzed a dataset of several glioma
patient studies that included distinct molecular subtypes and was gathered from multiple
clinical centers. Based on their accuracy, we show that several ML models can categorize
gliomas into their molecular subtypes, such as astrocytoma, oligodendroglioma, and
glioblastoma, with a high degree of sensitivity and specificity.

A systematic search was meticulously conducted to identify all published studies
utilizing radiomics for glioma, employing the most pertinent scientific electronic databases,
notably PubMed. The search strategy was meticulously crafted and applied comprehen-
sively. Only studies published since 2015 were considered, with the last search executed on
1 November 2023. The search parameters incorporated key terms outlined in the Supple-
mentary Materials. The literature search was constrained to English-language publications,
subjects aged 18 years and above, studies involving human subjects, and studies with
full-text availability.

After two reviewers independently screened recognized titles and abstracts, they
carefully examined the entire texts of papers that addressed the application of radiomics in
glioma grading in relation to other disorders, leaving out review articles. More selection
criteria were used for publications that fit these parameters and could be accessed in full.

2.1. Inclusion and Exclusion Criteria

The following inclusion criteria were used to choose studies: (a) original research
articles with patients whose diseases were confirmed by pathology and surgery or thorough
analyses of medical history, clinical symptoms, and different imaging data along with de-
tails about the imaging protocol; (b) patients with WHO-grade gliomas that were histopatho-
logically confirmed, including both low-grade and high-grade gliomas; and (c) the utiliza-
tion of machine learning (ML) with radiomic features applied for classifying gliomas.

Exclusion criteria were applied for studies that (a) did not employ ML for glioma
grade classification; (b) did not specifically focus on differentiating between lower-grade
gliomas (LGGs) and high-grade gliomas (HGGs); and (c) had a small sample size that
hindered the application of machine learning classifiers.
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This systematic review adhered to the Preferred Reporting Items for Systematic Re-
views and Meta-Analyses (PRISMA) statement guidelines (Figure 1).
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2.2. Data Extraction

The authors S.N.S. and S.K.P. conducted a thorough data extraction process for the
systematic review, gathering essential information such as author names, publication years,
study locations, target populations, study designs and sizes, machine learning techniques
employed, modalities utilized for feature extraction, and interpretations of study results.
This meticulous procedure ensured comprehensive coverage and accuracy in synthesizing
the research findings.

2.3. Quality Assessment

Two reviewers, P.K. and N.S., evaluated each included study using the radiomics
quality score (RQS), a tool comprising 16 items designed to assess the key aspects of the
radiomics analysis workflow (Supplementary Materials). Discrepancies between reviewers
were resolved through consensus. Each study was evaluated based on the quality of image
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protocols, the segmentation techniques employed, and the rigor of validation strategies,
following the RQS guidelines. The validity of the RQS was assessed by sharing it with two
experts, each with over 10 years of experience in MRI, image processing, and segmentation.
Their feedback and comments were incorporated to create the final draft for evaluating the
overall RQS of the articles. The RQS evaluates three main checkpoints: the first checkpoint
assesses “image protocol quality”, with a maximum score of 2 points; the second checkpoint,
consisting of three items related to segmentation strategies, phantom use, and imaging time
points, allows for up to 3 points; and the third checkpoint, comprising 12 items covering
feature extraction, exploratory analysis design, and model building/validation, offers a
maximum of 31 points. The total score ranges from −8 to 36, which can be converted into
a final RQS percentage ranging from 0 to 100. For detailed RQS checkpoints, items, and
corresponding points, please refer to Supplementary Tables S1 and S2.

2.4. Data Synthesis and Analysis

The radiomic features extracted from the tumor volume using various segmentation
tools were subjected to dimensionality reduction to identify the most effective features
for distinguishing between gliomas. These selected features were then used to train and
validate the dataset through machine learning and deep learning methods. Please refer to
Supplementary Tables S3 and S4.

We meticulously tabulated the outcomes of each study to facilitate the identification
of emerging patterns within the data. Given the substantial diversity in study design,
reported outcomes, and outcome metrics, we opted for a narrative data synthesis rather
than a formal quantitative meta-analysis. This approach allowed for a comprehensive
analysis of the data while acknowledging their inherent heterogeneity.

3. Results
3.1. Literature Search

A total of 300 articles were obtained by searching a scientific electronic database
(PubMed) using the key terms (Supplementary Materials). A comprehensive assessment
was conducted on a total of 118 articles. Among these, 42 studies were subjected to
initial screening and further underwent a second round of screening. After a meticulous
examination of the complete content, a refined selection process culminated in the inclusion
of 18 records deemed suitable for qualitative synthesis. The PRISMA flow diagram of
included studies according to the inclusion and exclusion criteria is presented in Figure 1.

3.2. Characteristics of Included Studies

The included studies (Table 1) present a diverse array of characteristics in terms of the
study design, sample size, imaging modalities, and machine learning algorithms employed.
They collectively form a rich body of evidence highlighting the potential of radiomics in
glioma grading and differential diagnosis.

Among the studies, there is a mixture of single-center and multicenter investigations,
with sample sizes ranging from relatively small cohorts of around fifty patients to larger
studies involving hundreds or even thousands of participants. This diversity allows for a
broad exploration of radiomics methodologies across different settings, enhancing the gen-
eralizability of findings. The imaging modalities utilized include various sequences of MRI
such as T1-weighted, T2-weighted, T1 contrast-enhanced, FLAIR, and diffusion-weighted
imaging (DWI). Additionally, some studies incorporate advanced imaging techniques
like PET/CT and ASL for the comprehensive characterization of gliomas. This multi-
modality approach enables a more comprehensive analysis of tumor features, enhancing
diagnostic accuracy and prognostic value. The machine learning algorithms employed
encompass a wide range of techniques, including deep learning (DL) networks, support
vector machines (SVMs), random forests (RFs), logistic regression (LR), and gradient boost-
ing classifiers (GBCs), among others. These diverse methodologies reflect the complexity
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of glioma classification and the need for robust predictive models to handle the intricacies
of radiomic data.

Overall, these studies collectively underscore the potential of radiomics as a non-
invasive, quantitative tool for glioma characterization, with the promise of improving
diagnostic accuracy and prognostic stratification and guiding personalized treatment deci-
sions. However, further validation and standardization efforts are warranted to ensure the
clinical utility and widespread adoption of radiomics in routine practice.

3.3. Radiomics for Glioma Grading and Differential Diagnosis

Based on the studies provided (Table 2), radiomics has emerged as a powerful tool
for glioma grading and differential diagnosis. These studies utilized various imaging
modalities, including MRI, PET/CT, and advanced techniques like ASL and DTI, to extract
radiomic features for analysis. Machine learning algorithms such as deep learning networks,
support vector machines, random forests, and logistic regression were applied to these
radiomic datasets to develop predictive models for glioma classification.

Luo et al., 2020 [11], conducted a multicenter study involving 655 glioma patients
and employed a DL network (3D U-net) and IS-based method to stratify IDH-wild-type
lower-grade glioma and triple-negative glioblastoma, achieving high accuracies in both
cross-validation and independent testing cohorts. Similarly, Nakamoto et al., 2019 [12],
demonstrated the effectiveness of LR, SVM, SNN, RF, and NB models in preoperatively
grading malignant gliomas using CE-T1WIs and T2WIs.

Gutta et al., 2021 [13], focused on gliomas and employed SVM, RF, and gradient
boosting algorithms trained with radiomic features, with the CNN achieving an average
accuracy of 87%, and Giorgio Russo et al., 2021, investigated the role of neural networks,
RF, SVM, and generalized linear models in predicting the grading of primary brain tumors
using 11[C]-MET PET/CT scans. Additionally, Zhang et al., 2020 [14], utilized an SVM
classifier with a linear kernel to distinguish LGGs from HGGs with high accuracy based on
radiomic features extracted from DTI images.

Furthermore, Zhu et al., 2023 [15], and Guo et al., 2023 [17], investigated the role
of MLP, SVM, RF, and logistic regression in discriminating between HGGs and LGGs,
with MLP outperforming 3D-ASL and DWI improving the performance of conventional
MRI-based radiomic models for classifying gliomas based on their molecular subtypes.

In addition to these studies, Zhang et al., 2021 [18], showed the utility of an MRI-
radiomics-based random forest model in differentiating GBM from LGG, outperforming
inexperienced radiologists. Moreover, Hashido et al., 2021 [19], highlighted the usefulness
of radiomics-based machine learning classifiers using quantitative ADC and CBF maps in
differentiating HGGs from LGGs.

In 2023, Kumar et al. [20] examined the performance of random forest (RF), support
vector machine (SVM), gradient boosting classifier (GBC), Naive Bayes Classifier (NBC),
and Ada-Boost Classifier (ABC) in differentiating low-grade gliomas from high-grade
gliomas using T2-weighted MRI sequences. Similarly, He et al. conducted a multicenter
study in 2022 involving various machine learning models (SVM, autoencoder, RF, LDA,
LR, LR-Lasso, DT) and MRI sequences (T1, T2, FLAIR, T1Gd) to predict the molecular
subtypes of gliomas. Furthermore, J et al. [21] in 2022 utilized multiparametric DWI models
to differentiate low-grade gliomas from high-grade gliomas with better generalization
performance than single DWI models.

Ding et al. [22] utilized radiomic features extracted from multiplanar reconstructed
(MPR) images and deep learning features to construct classification models for glioma
grading. Their study emphasized the importance of utilizing multiplanar imaging features
and combining radiomics with deep learning for accurate glioma classification.

Bonte et al. [23] leveraged radiomic features extracted from [18F] FET PET and MRI
scans to discriminate between LGGs and HGGs, achieving high accuracy by combining
features from both modalities. While Ning et al. [24] integrated radiomics and deep features
from MRI scans to develop a grading model, achieving high diagnostic performance in
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differentiating between high-grade and low-grade tumors, Park et al. [25] focused solely
on analyzing radiomic features extracted from MRI scans to predict glioma grades.

Table 1. Summary of various MRI-radiomics-based ML algorithms for glioma grading and
differential diagnosis.

Authors and Year Modalities Used for Feature Extraction Classification Model

Luo et al., 2020 [11] T1 contrast and T2 FLAIR series of MRI DL network (3D U-net) and IS

Takahiro Nakamoto et al., 2019 [12] T1-weighted MRI (CE-T1WI) and T2-weighted
MRI (T2WI) LR, SVM43, SNN44, RF45, and NB4

Gutta et al., 2021 [13] T1-weighted, T1CE, and T2-weighted/FLAIR SVM, RF, and gradient boosting trained with
radiomic feature

Giorgio Russo et al., 2021 [26] 11[C]-MET PET/CT Neural networks, RF, SVM, and generalized linear
models

Zhang et al., 2020 [14]
T1 inversion recovery sequence, T2-weighted

sequence, FLAIR sequence, and axial T1
contrast-enhanced sequence

SVM classifier with a linear kernel

Zhu et al., 2023 [15] MRI T1WI contrast-enhanced images MLP, SVM, RF, and logistic regression

Kumar et al., 2023 [20] T2-weighted MRI sequences RF classifier RFC, SVM, GBC, NBC, and ABC

He et al., 2022 [27] MRI (T1, T2, FLAIR, and T1Gd) SVM, AE, RF, LDA, LR, LR via lasso (LR-Lasso),
and DT

J. et al., 2022 [21] T1WI+C, T2W-FLAIR, and DWI sequences Monoexponential, IVIM, DKI, FROC, CTRW, and
stretched exponential using MATLAB

Guo et al., 2021 [28]
T2- and T1-weighted imaging, T2-weighted

attenuated inversion recovery imaging (T2 FLAIR),
and contrast-enhanced T1-weighted imaging

LASSO

Zhang et al., 2021 [18] T1-weighted, T2-weighted, contrast-enhanced
T1-weighted, and FLAIR RF classification algorithm

Hashido et al., 2021 [19]
T1-weighted fluid-attenuated inversion recovery

(T1-FLAIR), T2-FLAIR, T2WI, T2*WI, DWI, pCASL
imaging, and contrast-enhanced T1WI

LASSO-LR, RF, SVM with radial basis function
kernel (SVM-RBF), and SVM with linear kernel

(SVM-L)

Ding et al., 2022 [22] Contrast-enhanced T1-weighted imaging SVM, LR, and RF

Ning et al., 2021 [24] T1-weighted and T2 FLAIR MRI
A kernel-fusion-based SVM classifier was used to
integrate these multi-modal features for grading

gliomas

Park et al., 2019 [25] T2-weighted images, T1C, and FLAIR Elastic net, RF, GBM, and LDA algorithms

Bonte et al., 2018 [23] T1CE and FLAIR MRI RF

Abbreviations: ABC: Ada-Boost Classifier; AE: autoencoder; CTRW: continuous-time random walk; DT: de-
cision tree; DKI: diffusion kurtosis imaging; GBC: gradient boosting classifier; IVIM: intravoxel incoherent
motion; FLAIR: fluid-attenuated inversion recovery; LDA: linear discriminant analysis; LR: logistic regression;
FROC: fractional order calculus; MLP: multilayer perceptron; NBC: Naive Bayes Classifier; IS: image signature;
RF: random forest; SVM: support vector machine.

Table 2. Performance of MRI-radiomics-based ML algorithms for glioma grading and diagnosis and
the sample size used.

No. of Patients Task Accuracy AUC Outcomes

655 glioma patients

Image-based (IS) method was
employed to stratify

IDH-wild-type lower-grade
glioma and

triple-negative glioblastoma

86.1 and 89.8 for
validation cohorts;
83.9 and 80.4 for
testing cohorts

-

Radiomic model demonstrates effectiveness in
noninvasive histo-molecular pathological diagnosis and
prognostic stratification of gliomas. This holds promise
for its potential integration into routine clinical
applications in the future.

224 malignant
gliomas

Prediction models in the
independent validation set - 0.902 ± 0.024

0.747 ± 0.034

The presented framework demonstrates efficacy as a
valuable tool for preoperative grading of
malignant gliomas.

237 gliomas CNN; top-performing ML
model gradient boosting

87
64 -

CNN can learn discriminating features automatically
and can provide substantial improvement in glioma
grade prediction.

56 primary
brain tumors

Overall accuracy in the entire
patient dataset, comprising
both Siemens and GE scans

64.13 70.31
The ML model was shown to be workable and capable
of identifying radiomics aspects of the 11[C]-MET PET
that might be useful in predicting the disease’s grade.
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Table 2. Cont.

No. of Patients Task Accuracy AUC Outcomes

136 gliomas
Classification of LGGs and

HGGs; classification of grade
III and IV

0.94
0.98

0.93
0.99

Radiomic features extracted from the fractional
anisotropy (FA) and mean diffusivity (MD) maps of
brain diffusion tensor imaging (DTI) images offer
significant utility in noninvasive grading, distinguishing
between lower-grade gliomas (LGGs) and higher-grade
gliomas (HGGs), as well as effectively classifying grade
III and grade IV tumors.

105 gliomas
Verification group, MLP and

maximum rCBFmax;
test group, MLP and rCBFmax

- 0.968 and 0.815;
0.981 and 0.815

ML-based MLP classifier model exhibited superior
performance in discriminating between HGGs and
LGGs to 3D-ASL.

83 gliomas RF model demonstrated
superior performance 0.83 0.81 A model designed for the classification of gliomas into

low-grade and high-grade categories.

108 gliomas
Promising prediction of the molecular subtypes; this
study also provided a general tool for
radiomics investigation.

74 gliomas DWI model/single
DWI model - 0.84/0.71

Multiparametric DWI model exhibited superior
generalization performance in distinguishing between
LGG and HGG compared to the established single
DWI model.

152
gliomas

The combined model and the radiomics signature both
performed better than the clinical model and
demonstrated good diagnostic effectiveness.

142 gliomas Random forest analysis 1.00

The MRI-radiomics-based random forest model
demonstrated utility in effectively distinguishing
between glioblastoma (GBM) and lower-grade
glioma (LGG).

52 gliomas
LASSO-LR, RF, and SVM-RBF

models for training
and testing

-
0.965, 1.000,

0.979, and 0.969;
883, 0.917, 0.717,

and 0.917

Machine learning classifiers based on radiomics,
utilizing quantitative ADC and (CBF) maps, prove to be
effective in distinguishing HGGs from LGGs.

Training cohort—
101 patients; test

cohort—50 glioma
patients

Training cohort and
test cohort - 0.847

0.898

Imaging features extracted from multiplanar
contrast-enhanced T1-weighted magnetic resonance
imaging (CE-T1W MPR) are more effective than features
from single planes in differentiating higher-grade
gliomas (HGGs) and lower-grade gliomas (LGGs).

567 glioblastomas
The created model was equivalent to the clinical
radiologists and performed better than the models based
solely on radiomics or deep features (p < 0.001).

Training (n = 136)
and test (n = 68) sets

of glioma patients
Lower-grade glioma (LGG) - 0.85 Classifiers based on radiomic features hold potential

utility in predicting LGG grades.

30 patients (14 LGG
and 16 HGG)

Automated tumor segmentation and extraction of
radiomic features from combined [18F] FET PET and CE
T1-WI MRI scans have demonstrated the ability to
discriminate between lower-grade glioma (LGG) and
higher-grade glioma (HGG).

Abbreviations: DTI: diffusion tensor imaging; DWI diffusion-weighted imaging; HGG: high-grade glioma;
FA: fractional anisotropy; LR: logistic regression; LGG: low-grade glioma; MLP: multilayer perceptron; IS: image
signature; RF: random forest; SVM: support vector machine.

3.4. Risk of Bias Assessment

The studies summarized in Tables 1 and 2 exhibited an overall risk of bias. This
elevated bias is likely associated with the retrospective nature of the studies, where the out-
comes were already known. The evaluation method and the inclusion and exclusion criteria
were explained prior to the enrolment of the participants in all the included studies. Overall,
the studies demonstrated varying degrees of reporting and addressing key methodological
aspects. However, none of the studies fully reported or addressed all assessed criteria,
indicating potential risks of bias across the studies. The most reported and addressed
aspects were related to discrimination statistics, with several studies providing information
on discrimination metrics such as the sensitivity, specificity, and area under the receiver
operating characteristic curve (AUC). However, other critical aspects such as phantom
studies on all scanners, adjustment for multiple testing, and prospective study registration
in a trial database were rarely reported or addressed. The lack of reporting and address-
ing key methodological aspects raises concerns about the robustness and generalizability
of the study findings. The standardization and transparent reporting of methodologies,
as well as rigorous validation of machine learning algorithms, are essential to mitigate
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bias and enhance the reliability of future studies in this field. None of the studies had
cost-effectiveness analysis.

4. Discussion

In this systematic review, we synthesized evidence from 18 studies to assess the po-
tential of radiomics in glioma grading and differential diagnosis. The included studies
exhibited a wide range of characteristics in terms of study design, sample size, imag-
ing modalities, and machine learning algorithms employed, collectively highlighting the
versatility and promise of radiomics in glioma characterization.

The variety of methodologies used can complicate the generalizability of findings.
Although deep learning models show considerable promise, their dependence on large
datasets may restrict their applicability in smaller clinical settings. This diversity enhances
the generalizability of findings across different settings and patient populations. Imag-
ing modalities such as MRI, PET/CT, ASL, and DTI were employed, allowing for the
comprehensive characterization of gliomas and enhancing diagnostic accuracy.

Furthermore, a variety of machine learning algorithms, including deep learning net-
works, support vector machines, random forests, and logistic regression, were utilized,
reflecting the complexity of glioma classification and the need for robust predictive models
to handle radiomic data intricacies.

Several studies demonstrated the effectiveness of radiomics-based machine learning
models in glioma grading and differential diagnosis. For instance, Luo et al., 2020 [11], and
Hashido et al., 2021 [19], utilized deep learning networks and radiomic features extracted
from MRI maps to differentiate between glioma subtypes with high accuracy. Additionally,
Zhu et al., 2023 [15], and Kumar et al., 2023 [20], investigated the performance of various
machine learning algorithms in discriminating between HGGs and LGGs, showcasing the
potential of radiomics for accurate classification.

Several studies, including those by He et al. [27], Hashido et al. [19], and Ning et al. [24],
aimed to predict the molecular subtypes or mutation status of gliomas using radiomics and
machine learning techniques. These studies demonstrated the feasibility of the noninvasive
molecular characterization of gliomas, with accuracies ranging from 80% to 94%. Such ap-
proaches hold promise in guiding personalized treatment strategies and improving patient
outcomes by enabling targeted therapies based on the molecular profile of the tumor.

Furthermore, Ding et al. [22], Bonte et al. [23], and Park et al. [25] investigated the com-
bination of radiomics and deep learning techniques to enhance glioma grading accuracy.
These studies showed that integrating deep learning features with radiomic features ex-
tracted from multiplanar reconstructed images or PET scans can improve the classification
performance. However, some studies noted limitations in external validation, emphasizing
the need for the further refinement and validation of these models in larger cohorts and
diverse clinical settings.

Overall, the findings from this systematic review underscore the potential of radiomics
and machine learning techniques in enhancing the accuracy and efficiency of glioma di-
agnosis, grading, and molecular characterization. However, the further validation and
standardization of these approaches are necessary to ensure their clinical applicability and
generalizability across different healthcare settings. Collaborative efforts involving multi-
disciplinary teams, large-scale datasets, and prospective studies are essential to advance
the field and ultimately improve patient outcomes in glioma management.

5. Conclusions

In conclusion, the evidence synthesized from these studies highlights the potential
of radiomics as a valuable tool for glioma grading and differential diagnosis. Radiomics-
based machine learning models demonstrate high accuracy in distinguishing between
glioma subtypes and grades, surpassing traditional imaging methods and inexperienced
radiologists in some cases. Radiomics has the potential to completely transform the way
gliomas are managed by directing treatment choices and enhancing patient outcomes with
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additional validation and standardization efforts. In order to make it easier for radiomics
to be incorporated into regular clinical practice, future research should concentrate on
prospective validation studies and the creation of uniform procedures.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/diagnostics14232741/s1. Text S1: Search strategy used in various
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score; Table S3: MRI parameters; Table S4: Description of the segmentation methods employed by
previous studies.

Author Contributions: Conceptualization, P.K. and S.S.N.; methodology, S.P., S.S.N. and G.R.M.;
formal analysis, N.S. and S.S.N.; writing—original draft preparation, S.S.N. and S.P.; writing—review
and editing, P.K. and N.S.; visualization, G.R.M. and N.S.; supervision, P.K. and S.P. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. McFaline-Figueroa, J.R.; Lee, E.Q. Brain Tumors. Am. J. Med. 2018, 131, 874–882. [CrossRef] [PubMed]
2. Mezzacappa, F.M.; Thorell, W. Neuronal Brain Tumors. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023.

Available online: http://www.ncbi.nlm.nih.gov/books/NBK576406/ (accessed on 16 December 2023).
3. Mesfin, F.B.; Al-Dhahir, M.A. Gliomas. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online:

http://www.ncbi.nlm.nih.gov/books/NBK441874/ (accessed on 16 December 2023).
4. Wesseling, P.; Capper, D. WHO 2016 Classification of gliomas. Neuropathol. Appl. Neurobiol. 2018, 44, 139–150. [CrossRef]

[PubMed]
5. Ostrom, Q.T.; Gittleman, H.; Farah, P.; Ondracek, A.; Chen, Y.; Wolinsky, Y.; Stroup, N.E.; Kruchko, C.; Barnholtz-Sloan, J.S.

CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2006–2010.
Neuro Oncol. 2013, 15 (Suppl. S2), ii1–ii56. [CrossRef] [PubMed]

6. Carrete, L.R.; Young, J.S.; Cha, S. Advanced Imaging Techniques for Newly Diagnosed and Recurrent Gliomas. Front. Neurosci.
2022, 16, 787755. [CrossRef]

7. Jacobs, A.H.; Kracht, L.W.; Gossmann, A.; Rüger, M.A.; Thomas, A.V.; Thiel, A.; Herholz, K. Imaging in neurooncology. NeuroRx
2005, 2, 333–347. [CrossRef]

8. Singh, G.; Manjila, S.; Sakla, N.; True, A.; Wardeh, A.H.; Beig, N.; Vaysberg, A.; Matthews, J.; Prasanna, P.; Spektor, V. Radiomics
and radiogenomics in gliomas: A contemporary update. Br. J. Cancer 2021, 125, 641–657. [CrossRef]

9. Van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in medical imaging-“how-to” guide and
critical reflection. Insights Imaging 2020, 11, 91. [CrossRef]

10. Rizzo, S.; Botta, F.; Raimondi, S.; Origgi, D.; Fanciullo, C.; Morganti, A.G.; Bellomi, M. Radiomics: The facts and the challenges of
image analysis. Eur. Radiol. Exp. 2018, 2, 36. [CrossRef]

11. Luo, H.; Zhuang, Q.; Wang, Y.; Abudumijiti, A.; Shi, K.; Rominger, A.; Chen, H.; Yang, Z.; Tran, V.; Wu, G.; et al. A novel image
signature-based radiomics method to achieve precise diagnosis and prognostic stratification of gliomas. Lab. Investig. 2021, 101,
450–462. [CrossRef]

12. Nakamoto, T.; Takahashi, W.; Haga, A.; Takahashi, S.; Kiryu, S.; Nawa, K.; Ohta, T.; Ozaki, S.; Nozawa, Y.; Tanaka, S.; et al.
Prediction of malignant glioma grades using contrast-enhanced T1-weighted and T2-weighted magnetic resonance images based
on a radiomic analysis. Sci. Rep. 2019, 9, 19411. [CrossRef]

13. Gutta, S.; Acharya, J.; Shiroishi, M.S.; Hwang, D.; Nayak, K.S. Improved Glioma Grading Using Deep Convolutional Neural Net
works. AJNR Am. J. Neuroradiol. 2021, 42, 233–239. [CrossRef] [PubMed]

14. Zhang, Z.; Xiao, J.; Wu, S.; Lv, F.; Gong, J.; Jiang, L.; Yu, R.; Luo, T. Deep Convolutional Radiomic Features on Diffusion Tensor
Images for Classification of Glioma Grades. J. Digit. Imaging 2020, 33, 826–837. [CrossRef] [PubMed]

15. Zhu, F.Y.; Sun, Y.F.; Yin, X.P.; Wang, T.D.; Zhang, Y.; Xing, L.H.; Xue, L.Y.; Wang, J.N. Use of Radiomics Models in Preoperative
Grading of Cerebral Gliomas and Comparison with Three-dimensional Arterial Spin Labelling. Clin. Oncol. 2023, 35, 726–735.
[CrossRef] [PubMed]

16. Zhang, X.; Zhang, Y.; Zhang, G.; Qiu, X.; Tan, W.; Yin, X.; Liao, L. Deep Learning with Radiomics for Disease Diagnosis and
Treatment: Challenges and Potential. Front. Oncol. 2022, 12, 773840. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/diagnostics14232741/s1
https://www.mdpi.com/article/10.3390/diagnostics14232741/s1
https://doi.org/10.1016/j.amjmed.2017.12.039
https://www.ncbi.nlm.nih.gov/pubmed/29371158
http://www.ncbi.nlm.nih.gov/books/NBK576406/
http://www.ncbi.nlm.nih.gov/books/NBK441874/
https://doi.org/10.1111/nan.12432
https://www.ncbi.nlm.nih.gov/pubmed/28815663
https://doi.org/10.1093/neuonc/not151
https://www.ncbi.nlm.nih.gov/pubmed/24137015
https://doi.org/10.3389/fnins.2022.787755
https://doi.org/10.1602/neurorx.2.2.333
https://doi.org/10.1038/s41416-021-01387-w
https://doi.org/10.1186/s13244-020-00887-2
https://doi.org/10.1186/s41747-018-0068-z
https://doi.org/10.1038/s41374-020-0472-x
https://doi.org/10.1038/s41598-019-55922-0
https://doi.org/10.3174/ajnr.A6882
https://www.ncbi.nlm.nih.gov/pubmed/33303522
https://doi.org/10.1007/s10278-020-00322-4
https://www.ncbi.nlm.nih.gov/pubmed/32040669
https://doi.org/10.1016/j.clon.2023.08.001
https://www.ncbi.nlm.nih.gov/pubmed/37598093
https://doi.org/10.3389/fonc.2022.773840
https://www.ncbi.nlm.nih.gov/pubmed/35251962


Diagnostics 2024, 14, 2741 11 of 11

17. Guo, Y.; Ma, Z.; Pei, D.; Duan, W.; Guo, Y.; Liu, Z.; Guan, F.; Wang, Z.; Xing, A.; Guo, Z.; et al. Improving Noninvasive
Classification of Molecular Subtypes of Adult Gliomas with Diffusion-Weighted MR Imaging: An Externally Validated Machine
Learning Algorithm. J. Magn. Reson. Imaging 2023, 58, 1234–1242. [CrossRef]

18. Zhang, H.; Zhang, B.; Pan, W.; Dong, X.; Li, X.; Chen, J.; Wang, D.; Ji, W. Preoperative Contrast-Enhanced MRI in Differentiating
Glioblastoma from Low-Grade Gliomas in The Cancer Imaging Archive Database: A Proof-of-Concept Study. Front. Oncol. 2021,
11, 761359. [CrossRef]

19. Hashido, T.; Saito, S.; Ishida, T. Radiomics-Based Machine Learning Classification for Glioma Grading Using Diffusion- and Per
fusion-Weighted Magnetic Resonance Imaging. J. Comput. Assist. Tomogr. 2021, 45, 606–613. [CrossRef]

20. Kumar, A.; Jha, A.K.; Agarwal, J.P.; Yadav, M.; Badhe, S.; Sahay, A.; Epari, S.; Sahu, A.; Bhattacharya, K.; Chatterjee, A.; et al.
Machine-Learning-Based Radiomics for Classifying Glioma Grade from Magnetic Resonance Images of the Brain. J. Pers. Med.
2023, 13, 920. [CrossRef]

21. Xu, J.; Ren, Y.; Zhao, X.; Wang, X.; Yu, X.; Yao, Z.; Zhou, Y.; Feng, X.; Zhou, X.J.; Wang, H. Incorporating Multiple Magnetic
Resonance Diffusion Models to Differentiate Low- and High-Grade Adult Gliomas: A Machine Learning Approach. Quant.
Imaging Med. Surg. 2022, 12, 5171–5183. Available online: https://pubmed.ncbi.nlm.nih.gov/36330178/ (accessed on 15
December 2023). [CrossRef]

22. Ding, J.; Zhao, R.; Qiu, Q.; Chen, J.; Duan, J.; Cao, X.; Yin, Y. Developing and validating a deep learning and radiomic model
for glioma grading using multiplanar reconstructed magnetic resonance contrast-enhanced T1-weighted imaging: A robust,
multi-institutional study. Quant. Imaging Med. Surg. 2022, 12, 1517–1528. [CrossRef]

23. Bonte, S.; Donche, S.; Henrotte, M.; van Holen, R.; Goethals, I. OS6.3 Radiomics and machine learning on [18F] FET PET and T1ce
MRI discriminate between low-grade and high-grade glioma. Neuro Oncol. 2018, 20 (Suppl. S3), iii226. [CrossRef]

24. Ning, Z.; Luo, J.; Xiao, Q.; Cai, L.; Chen, Y.; Yu, X.; Wang, J.; Zhang, Y. Multi-modal magnetic resonance imaging-based grading
analysis for gliomas by integrating radiomics and deep features. Ann. Transl. Med. 2021, 9, 298. [CrossRef] [PubMed]

25. Park, Y.W.; Choi, Y.S.; Ahn, S.S.; Chang, J.H.; Kim, S.H.; Lee, S.K. Radiomics MRI Phenotyping with Machine Learning to Predict
the Grade of Lower-Grade Gliomas: A Study Focused on Nonenhancing Tumors. Korean J. Radiol. 2019, 20, 1381–1389. [CrossRef]
[PubMed]

26. Russo, G.; Stefano, A.; Alongi, P.; Comelli, A.; Catalfamo, B.; Mantarro, C.; Longo, C.; Altieri, R.; Certo, F.; Cosentino, S.; et al.
Feasibility on the Use of Radiomics Features of 11[C]-MET PET/CT in Central Nervous System Tumours: Preliminary Results on
Potential Grading Discrimination Using a Machine Learning Model. Curr. Oncol. 2021, 28, 5318–5331. [CrossRef]

27. He, A.; Wang, P.; Zhu, A.; Liu, Y.; Chen, J.; Liu, L. Predicting IDH Mutation Status in Low-Grade Gliomas Based on Optimal
Radiomic Features Combined with Multi-Sequence Magnetic Resonance Imaging. Diagnostics 2022, 12, 2995. [CrossRef]

28. Guo, J.; Ren, J.; Shen, J.; Cheng, R.; He, Y. Do the combination of multiparametric MRI-based radiomics and selected blood
inflame matory markers predict the grade and proliferation in glioma patients? Diagn. Interv. Radiol. 2021, 27, 440–449. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/jmri.28630
https://doi.org/10.3389/fonc.2021.761359
https://doi.org/10.1097/RCT.0000000000001180
https://doi.org/10.3390/jpm13060920
https://pubmed.ncbi.nlm.nih.gov/36330178/
https://doi.org/10.21037/qims-22-145
https://doi.org/10.21037/qims-21-722
https://doi.org/10.1093/neuonc/noy139.040
https://doi.org/10.21037/atm-20-4076
https://www.ncbi.nlm.nih.gov/pubmed/33708925
https://doi.org/10.3348/kjr.2018.0814
https://www.ncbi.nlm.nih.gov/pubmed/31464116
https://doi.org/10.3390/curroncol28060444
https://doi.org/10.3390/diagnostics12122995
https://doi.org/10.5152/dir.2021.20154

	Introduction 
	Materials and Methods 
	Inclusion and Exclusion Criteria 
	Data Extraction 
	Quality Assessment 
	Data Synthesis and Analysis 

	Results 
	Literature Search 
	Characteristics of Included Studies 
	Radiomics for Glioma Grading and Differential Diagnosis 
	Risk of Bias Assessment 

	Discussion 
	Conclusions 
	References

