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ABSTRACT  

Tumor evolution is driven by genetic variation; however, it is the tumor microenvironment (TME) that 

provides the selective pressure contributing to evolution in cancer. Despite high histopathological 

heterogeneity within glioblastoma (GBM), the most aggressive brain tumor, the interactions between 

the genetically distinct GBM cells and the surrounding TME are not fully understood. To address this, 

we analyzed matched primary and recurrent GBM archival tumor tissues with imaging-based 

techniques aimed to simultaneously evaluate tumor tissues for presence of hypoxic, angiogenic, and 

inflammatory niches, extracellular matrix organization, TERT promoter mutational status, and several 

oncogenic amplifications on the same slide and location. We found that the relationships between 

genetic and TME diversity are different in primary and matched recurrent tumors. Interestingly, the 

texture of the extracellular matrix (ECM), identified by label-free reflectance imaging, was predictive of 

single-cell genetic traits present in the tissue. Moreover, reflectance of ECM revealed structured 

organization of the perivascular niche in recurrent GBM, enriched in immunosuppressive macrophages. 

Single-cell spatial transcriptomics further confirmed the presence of the niche-specific macrophage 

populations and identified interactions between endothelial cells, perivascular fibroblasts, and 

immunosuppressive macrophages. Our results underscore the importance of GBM tissue organization 

in tumor evolution and highlight novel genetic and spatial dependencies. 
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INTRODUCTION 

Diversity of histopathological features in tumor tissue is one of the hallmarks of glioblastoma (GBM) 

(1). This aggressive brain tumor is characterized by the presence of pseudopalisading necrosis regions 

intermixed with microvascular proliferation areas in a single biopsy of the tumor (1). GBM remains one 

of the biggest challenges in medical oncology, as virtually all tumors relapse despite intensive treatment 

with surgery, chemotherapy and radiation The lack of treatments based on molecular targets is largely 

due to extreme intratumor heterogeneity of GBM, reflected at all levels, from histology to single-cell 

transcriptomic, epigenetic, and genetic heterogeneity (2). Given that the main histological features co-

occurring in GBM constitute opposing microenvironments, hypoxic perinecrotic areas and highly 

vascularized oxygen-rich niches, it is likely that they contribute to the selection of distinct traits in tumor 

cells. Thus, studying the role of the tumor microenvironment (TME) in shaping diverse landscapes 

composed of genetically distinct subpopulations of cells is key to understanding the dynamics of GBM 

evolution. 

 

Single-cell transcriptomics enabled the characterization of distinct GBM cell types coexisting in each 

tumor. The most widely adopted classification of GBM cellular heterogeneity links specific copy number 

alterations to cellular states mirroring normal early brain development (2). Amplifications of EGFR, 

CDK4 and PDGFRA are associated with astrocyte-like (AC-like), neural progenitor cell-like (NPC-like), 

and oligodendrocytic precursor cell-like (OPC-like) states, respectively. Recent advances in spatial 

profiling facilitated the investigation of the architecture of GBM tissues and allowed for the identification 

of several patterns of spatial organization in these tumors (3, 4). However, the link between genetically 

defined subpopulations and their microenvironment and changes in these relationships that may drive 

recurrence remain to be further investigated. 
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In this study, we explore the spatial relationships between genetic heterogeneity and diversity of the 

TME at the single-cell level in a cohort of matched primary and recurrent human GBM tissues. Our 

multiplexed confocal imaging-based approach identified novel links between the texture of extracellular 

matrix (ECM) components, genetically distinct subpopulations of GBM cells and cells of the TME. 

Moreover, we also discovered a differential ECM organization in perivascular niches in recurrent GBM, 

enriched in immunosuppressive macrophages possessing unique transcriptional features. The specific 

localization of these immunosuppressive cells could provide a novel axis for alleviating immune 

inhibition contributing to poor survival in GBM patients. 
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RESULTS 

Multiplexed imaging uncovers correlations between genotype and tumor microenvironment. 

In our previous study, we showed that the single-cell mosaicism of genetic amplifications in GBM 

correlates with immune infiltration (5). To test whether we could identify features of the TME that drive 

the selection of specific amplifications, we conducted a multiplexed imaging study on formalin-fixed 

paraffin-embedded (FFPE) samples from a cohort of 9 matched primary and recurrent GBM cases 

(Figure 1A; Supplemental Table 1). The imaging was performed in two consecutive rounds on the same 

tissue, using a modified CyCIF and STAR-FISH protocols (5–7) (see Methods section for details). First 

round imaging was aimed to acquire information about the TME state by assessing the presence of 

blood vessels (CD31), active infiltrating immune cells (CD45RO) and hypoxia (HIF1alpha) (Figure 1B). 

The next layer of imaging was focused on genetic features, including amplifications of EGFR, CDK4 

and PDGFRA, and hotspot mutation in the TERT promoter (Figure 1C). The three amplifications were 

previously associated with distinct transcriptional states in GBM, namely neuro-progenitor-like state 

with CDK4 amplification, astrocyte-like state with EGFR amplification, and oligodendrocyte-progenitor-

like state with PDGFRA amplification (2). Nuclear staining channels from the first and second rounds 

of imaging were overlayed to ensure no loss of cells occurred (loss of a single cell occurred in 9 imaged 

regions and between 2 and 6 cells in 3 imaged regions; total count of lost cells was 22 out of 20,205; 

Supplemental Figure 1). Image segmentation and quantification of both the nuclear and TME-related 

staining allowed us to classify each nucleus as belonging to a tumor cell with or without one or a 

combination of the three amplifications, a tumor cell with TERT promoter mutation, an immune cell, or 

an endothelial cell (Figure 1, B-E, Supplemental Table 2). GBM cells can mimic endothelial cells and 

pericytes (8, 9). Indeed, we identified 958 cells characterized by tumor-specific genetic markers and 

expressing the endothelial/pericyte cell marker CD31. Hypoxic marker, nuclear HIF1alpha, can be 

expressed both by tumor cells and immune cells in the TME and our analysis identifies both 

populations. Of note, cells harboring normal CDK4, EGFR and PDGFRA copy number, no mutation 



 6 

and no immune or endothelial markers, which may represent normal cells such as oligodendrocytes, 

neurons or astrocytes, as well as tumor cells negative for our tumor markers, were excluded from 

quantitative analyses and only considered in spatial analyses for accurate measurement of regional 

cell density. 

 

First, we searched for changes in the frequencies of genotypes and phenotypes between matched 

primary and recurrent cases (Figure 2, A and B, Supplemental Table 3). The frequency of cells with 

CDK4 amplification and cells with TERT promoter mutation was higher in recurrent samples (Figure 2, 

C and D; for CDK4 comparisons; two-tailed paired Wilcoxon ranked test, p value = 0.03; for TERTp 

mutant comparisons: two-tailed paired Wilcoxon ranked test, p value = 0.04). Among the phenotypes 

we identified, hypoxic endothelial cell mimicry was more prevalent in recurrent samples (Figure 2E; 

two-tailed paired Wilcoxon ranked test, p value = 0.02). To account for overall diversity of each imaged 

field of view, we calculated the Shannon index of diversity (see Methods), capturing the evenness of 

distribution of cells among the different genotypes or phenotypes in each tumor (Supplemental Figure 

2). These indices were significantly different between primary and recurrent samples, when 

amplification or TERT promoter mutation status was taken into consideration (two-tailed paired 

Wilcoxon ranked test, p-value = 0.0023 and p-value = 0.0025, respectively). Thus, the distribution of 

cells harboring TERT promoter mutation within each tumor is more heterogeneous than the variation 

in hypoxia, vasculature, or immune infiltration. 

 

Next, we calculated Pearson’s correlation between the frequencies of cells with distinct genotypes and 

phenotypes (Figure 2F). The most notable difference between primary and recurrent tumor samples 

was the association between hypoxic tumor cells adopting an endothelial phenotype (hypoxic 

endothelial mimicry) and a genotype consisting of all three amplifications co-occurring in the same cell. 

This correlation was significant, but weak in primary tumor samples, with r = 0.3 and p-value = 0.041, 

and strengthening in recurrence, with r = 0.73 and p-value = 0.9 x 10-8, suggesting that co-amplification 
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of EGFR, CDK4 and PDGFRA may allow more tumor cells to adopt this hypoxia-driven perivascular 

phenotype. 

 

Previously, we showed that the relative frequency of co-amplification of EGFR and CDK4 at the single-

cell level is linked with an immunosuppressive microenvironment in GBM (5). To test if this association 

holds in recurrent tumors, we calculated the odds ratio for co-amplification of EGFR and CDK4 for each 

tumor. The classification of our tumors into ORhigh and ORlow revealed a significant difference in overall 

immune infiltration only in primary tumors, but not in the recurrent samples (Supplemental Figure 3). 

Thus, it is likely that these genetic drivers are more important in the early steps of establishing the 

immunosuppressive microenvironment. 

 

To better understand the relationships between the genotypic and phenotypic diversity in our cohort, 

we next performed clustering analysis based on the frequencies of all cell types identified in each 

imaged region of interest. Clustering of individual images based on TERT promoter mutation 

frequencies revealed 4 classes of tumor areas. Similarly, amplification-based genotype clustering 

revealed 4 clusters of tumor areas, while phenotype frequencies divided the imaged tumor regions into 

6 clusters (Figure 3, A and B). Most notable were the phenotype cluster 3, characterized by high 

frequency of immune cells, and cluster 4, with highest abundance of hypoxic cells (Supplemental Figure 

4). Phenotype cluster 0 and 1 are both composed of intermediate frequencies of immune and 

endothelial cells but differ in overall cellularity (Supplemental Figure 4A). Interestingly, in addition to the 

highly hypoxic cluster 4, it was the more complex phenotypes of clusters 0 and 1, that were significantly 

associated with particular genotypes (Figure 3C). Tumor regions in phenotype cluster 0 are largely 

classified as genotype cluster 0 and mutation cluster 1 indicating a low frequency of all measured 

amplifications and depletion of TERT promoter mutant cells despite overall high cellularity of these 

tissues (Figure 3, B and C, Supplemental Figure 4, A-C). Tumor regions in phenotype cluster 1 are 

mainly comprised of genotype cluster 1 and mutation cluster 2 indicating an intermediate level of singly 
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amplified EGFR and CDK4 cells with a slightly higher frequency of TERT promoter mutant cells 

compared to phenotype cluster 0 (Figure 3, B and C, Supplemental Figure 4, A-C). Given the high 

cellularity of phenotype cluster 0, it is plausible that the majority of these tumor regions are enriched in 

cancer cells harboring genetic alterations not captured by our probes. Cells with EGFR-only 

amplification were depleted from regions rich in hypoxic cells, which was not observed for EGFR/CDK4 

co-amplified cells (Figure 3, D and E). This is in line with the previously reported angiogenic role of 

amplified EGFR signaling (10).  

 

We also noted that the connections between genotype and phenotype-based classifications change 

between primary and recurrent tumors (Figure 3B). In recurrent tumors, genotype cluster 3 

environments, with high frequencies of both EGFR-only amplified and EGFR/CDK4 co-amplified cells, 

lose their connection with hypoxic (phenotype cluster 4) and tumor cell-rich non-vascularized 

immunodepleted environments (phenotype cluster 5). We instead observed a transition of genotype 

cluster 3 environments to tumor-cell rich neighborhoods, with increased frequency of endothelial cell 

mimicry and intermediate levels of hypoxia and immune infiltration (phenotype cluster 2). Genotype 

cluster 2, rich in CDK4 amplified cells, associated with hypoxic and immune-rich environments in 

primary tumors switched to tumor-enriched environment in recurrent tumors. These frequency-based 

analyses confirm that genomic amplification may constrict the evolvability of GBM cells and may impact 

the adaptation of the TME upon recurrence. 

 

Since intercellular interactions depend on cellular proximity to their neighbors, we next performed 

clustering analysis considering the spatial localization of the cells analyzed in this study. We built a 

distance matrix and neighborhood feature vectors based on the Euclidian distances from each cell to 

its nearest neighbors for each tumor region analyzed in our study. Comparison of proximity-based 

clustering shows that spatial arrangement preferences for immune cells and vascular cells are 

comparable between primary and recurrent tumors (Figure 3F). However, CDK4 single amplified cells 
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have more genetically diverse neighbors in recurrent tumors than in primary tumors.  Given that hypoxia 

is reported as contributing to the processes of endothelial cell (EC) mimicry and vasculogenic 

transformation, it was interesting to observe hypoxic EC-mimicking cells that were less abundant in 

primary tumors overall, possessing a higher diversity of neighbors in this setting. In recurrent tumors, 

hypoxic EC mimicking cells increase in number but are primarily in proximity to other tumor cells and 

especially those with TERTp mutation. Hypoxia levels increasing over the course of disease may lead 

to an increased adaptation of malignant cells by adopting the EC phenotype. Initial stochasticity of this 

process could result in a more dispersed spatial arrangement of the EC mimicking cells within the TME. 

 

In summary, our results demonstrate that a significant shift in cellular composition from primary to 

recurrent GBM is reflected in single-cell genetic heterogeneity but is also linked to tumor cells’ ability to 

adopt endothelial/pericyte-like phenotype. This cellular adaptation is associated with local hypoxia and 

co-occurrence of all three oncogenic amplifications driving the distinct cellular states in GBM (2). It is 

plausible that the high level of aneuploidy does not allow these cells to thrive in a heterogeneous tumor 

but provides a selective advantage under the pressure of chemotherapy and radiation.   

 

Texture of extracellular matrix revealed by reflectance imaging associated with genetic diversity. 

 

The differential composition of the extracellular matrix (ECM), with elevated levels of collagens, 

laminins and hyaluronan, is another factor contributing to local microenvironment heterogeneity within 

GBM tissue (11). To image ECM structures without the need to add additional fluorophores to our 

staining panel, we took advantage of the differential refractive index of ECM components, which results 

in the scattering of light off the ECM structures generating a label-free contrast image by reflectance 

confocal microscopy (RCM) (12).  Thus, we included RCM imaging to visualize the organization of the 

ECM in the first round of our imaging protocol. Across 90 imaged tumor areas we identified three 



 10 

classes of ECM texture: “string-like”, “spotty” and “mossy” (Figure 4A), with a majority of the FOVs 

containing a mixed texture (Figure 4B, Supplemental Table 3).  

 

Species distribution models (SDM) are an ecological method to measure how environmental factors 

and species are spatially associated with a niche of interest and have previously been used to study 

the TME (13). We thus developed a neural network based SDM to better understand the spatial 

relationship between cellular composition and the local ECM texture. The manual annotation of ECM 

texture was used to perform quadrat counting on each FOV’s cell segmentation data (see Methods for 

details). The network was then trained to predict a quadrat’s ECM texture given the abundance of each 

cell type in that quadrat. After training, the relationship between the abundance of each cell type and 

the ECM was quantified using the Integrated Gradients feature attribution method (14). This approach 

allows for the exclusion of incorrectly classified quadrats, meaning that the estimates of the relationship 

between cell types and the ECM are only based on correct classifications. After applying the Integrated 

Gradients method to 100 trained models, each cell type’s average attribution was calculated and 

multiplied by the frequency with which that cell type had an informative attribution (i.e. associated with 

a correct classification and had non-zero attribution; Supplemental Figure 5). The weighted non-zero 

attributions for each ECM texture show significantly different contributions from different cell types 

(Figure 4C). String-like texture is strongly associated with the presence of CDK4 amplified cells, EGFR 

amplified cells and TERT promoter mutant cells, yet not associated with overall frequency of tumor 

cells (all cells with amplifications or mutations). On the contrary, spotty ECM texture is linked to higher 

overall frequency of tumor cells and mildly related to presence of cells with co-amplified 

PDGFRA/EGFR. These results suggest that cells with PDGFRA/EGFR co-amplification may have 

distinct microenvironmental niche preferences compared to cells with other genotypes identified in this 

study. Thus, despite its heterogeneous origin, we show that reflectance can operate as a meaningful 

tool to classify tumor microenvironments. 
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Reflectance and spatial transcriptomics identify a cluster of perivascular immunosuppressive 

macrophages. 

 

While classifying the reflectance images, we noted that the majority of the blood vessels in recurrent 

tumors are surrounded by a thick layer of ECM deposition (Figure 5, A-C). Vascular malformations, 

including vessel hyalinization, are frequent side effects of radiotherapy (15). Trichrome staining 

confirmed that these structures are highly enriched in collagen (Figure 5B). Interestingly, 

immunofluorescence staining revealed that the perivascular collagen rims are densely populated by 

immune cells, and that a vast majority of these cells are CD163-positive (Figure 5A). CD163 is a marker 

of immunosuppressive polarization of tumor-associated macrophages, previously linked to GBM 

survival (16). The tight localization of these cells and protein around blood vessels possibly impede 

other immune players like CD8+ cells (Figure 5A) and hematogenous components from exiting the 

vasculature and could also have a supporting function for blood vessel structure. 

 

To test these hypotheses and elucidate the functional role of the perivascular immunosuppressive 

macrophages in recurrent GBM, we performed single-cell spatial transcriptomic characterization of two 

matched primary and recurrent human GBM samples using the CosMx platform (17). A total of 36 

regions of interest containing blood vessels and surrounding tissue were selected (Supplemental Figure 

6). CosMx enabled localization of 1,030 transcripts at single-cell resolution by performing multiple 

cycles of nucleic acid hybridization of fluorescent molecular barcodes on formalin-fixed paraffin-

embedded tissue. Our analysis was performed on 52,588 cells, with an average of 106 transcripts 

detected per cell (Supplemental Table 4 and 5). Semi-supervised Leiden clustering of both primary and 

recurrent samples identified 10 major cellular clusters, annotated based on established markers of cell 

type metaprograms (2) (Figure 5, D and E). Recurrent samples were enriched in mesenchymal-like 

tumor cells (MES), expressing high levels of NDRG1 and VEGFA that further distinguish them as 
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hypoxic (Figure 5, F and G, Supplemental Figure 7). We observed these MES cells arranging in spatial 

niches surrounding collagen rimmed vessels (Figure 5H).  

Of note, two different types of immune cells were associated with the blood vessels in recurrent tumor 

tissue: the perivascular macrophages (“PVM”), expressing CD68, CD14, CD74 and CD163, 

corresponding with CD163+ immunostaining and the SPP1, CCL7, CEACAM1 expressing cells 

(“Immune”) - most likely tumor infiltrating lymphocytes which would correspond to the spatial positioning 

of CD8a+ immunostaining (Figure 5, A, E and H). While PVM cells do not appear to be the major source 

of collagen in the perivascular spaces (Supplemental Figure 7), they are in closest proximity to the 

fibroblast-like cell type that highly expresses COL1A1, COL3A1 and COL6A3. Notably, this fibroblast-

like cell group also highly expresses DCN, encoding decorin, an extracellular matrix proteoglycan that 

binds collagen (Figure 5E).  

 

Next, we performed niche analysis combining all the profiled tissue areas. Seven niches were identified, 

with variable abundance in primary and recurrent samples (Figure 5, H-J). The most interesting was 

the organization of the niches surrounding the blood vessels in recurrent tumors. In these areas, niche 

1 which is a vascular niche composed of endothelial cells and fibroblasts, was surrounded by niche 7, 

enriched with immune cells, glial cells, and fibroblasts (Figure 5I). PVM cells of recurrent tumors were 

primarily found in this zone. These areas were also encapsulated by niches rich in mesenchymal and 

OPC-like cells (Figure 5H). No such structured organization was observed around vasculature of 

primary tumor samples. Rather, niche 2 which is enriched with a different macrophage cell type (‘MAC”) 

was observed to be more localized around vasculature and widely distributed in the TME of primary 

tumor samples (Figure 5, H-J). Surprisingly, niche 7, associated with perivascular regions in recurrence, 

was only identified in primary tumor areas possessing aggregated blood cells and PVM surrounded by 

glial cells suggesting ruptured vessels with hemorrhage and glial scarring (18) (Figure 5H).  
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Since our initial unsupervised analysis identified four clusters of macrophages, two of which seemed to 

have the PVM phenotype, we asked whether this cluster could be further resolved to differentiate true 

perivascular macrophages from the ones linked to hemorrhagic areas in the tissue. Indeed, we found 

that these four clusters correspond to four spatially distinct locations (Figure 6, A-D; re-analysis of data 

presented in Figure 5). Cluster 5 macrophages are widely distributed in the tissue (Figure 6C). Cluster 

8 and 9 are both associated with vasculature, but only cluster 9 cells are found next to vessels with 

collagenous deposition in recurrent samples (Figure 6C). Interestingly, cluster 9 cells express 

significantly higher levels of collagen-encoding COL1A1 and COL3A1, as well as fibronectin (FN1) and 

thus may contribute to the thickening of the perivascular extracellular matrix (Figure 6D). Cluster 10 

macrophages are predominantly residing within the hemorrhagic areas (Figure 6C). The differences in 

perivascular niche composition between primary and recurrent tumor were also evident in cell-cell 

proximity analysis (Figure 6E). In primary tumor, endothelial cells interact directly with fibroblasts and 

macrophage cluster 8, while in recurrent tumor there is enrichment of interactions between the 

endothelial cells, fibroblasts and macrophage clusters 8, 9 and 10. Thus, while transcript-based 

identification of distinct phenotypes of macrophages might be challenging with non-genome wide 

spatial transcriptomics, the analysis of the localization of suspected cell types yields clear spatial 

differentiation between primary and recurrent GBM. 
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DISCUSSION 

The presence of genetically distinct clones within different regions of GBM tumors is evident on multiple 

levels, from bulk analysis of multiple regions of the same tumor by sequencing (19, 20) or FISH studies 

(21) to inference of copy number from single cell transcriptomics (2). The spatial context of the TME 

and its relationship with the clonal evolution of the tumor is still an emerging field. Our study provides 

direct insight into the link between genetic drivers of specific GBM cell states and microenvironmental 

factors, including hypoxia and immune predation, in matched primary and recurrent samples.  

 

Recently, two studies have gleaned into the spatial heterogeneity of GBM and identified hypoxia as 

one of the major factors influencing transcriptional cell states within the tumor tissue (3, 4). Spatial 

gradient of hypoxia results in a concentric organization of cellular states with mesenchymal features 

surrounded by hypoxia-responsive cell states and vasculature. This is similar to our observation of 

mesenchymal-like cells in the vicinity of blood vessels in recurrent GBM, although in our dataset the 

niche organizing factor seems to be the underlying vascular structure, presumably with abnormal 

functionality. Our comparison of matched primary and recurrent GBM revealed an increase in hypoxic 

endothelial cell mimicry in recurrent disease, another vasculature-related anomaly driving disease 

progression. GBM cells’ ability to adopt an endothelial and pericyte-like phenotype in recurrence has 

been previously shown both in model systems and in human tumor tissues (22, 23), and has been 

linked to radiation-induced vascular differentiation (9). While contradictory observations fueled the 

debate of the tumor cell-of-origin of endothelial cells, our study classified EC mimicry based on 

presence of DNA amplification (>6 copies) and CD31 expression. Thus, we confirm that endothelial 

mimicry is one of the key phenotypic changes in human recurrent GBM, likely fueled by radiation-

induced hypoxia. 
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Another finding specific to blood vessels in recurrent tumors in our study, enabled by reflectance 

imaging, was the identification of the structured collagen rim surrounding the blood vessels in 

recurrence. Within these structures, we uncovered interactions between immunosuppressive 

macrophages and fibroblast-like cells secreting decorin. Decorin is a small leucine-rich proteoglycan, 

a transforming growth factor b (TGFb) antagonist, implicated in a variety of pathophysiological 

processes, such as collagen fibrillogenesis and wound healing(24). It also functions as a tumor 

suppressor by directly binding to receptor tyrosine kinases, including VEGFR2, EGFR, PDGFR and 

MET, and triggering catabolic and anti-angiogenic programs in tumor cells (24). In mouse and rat 

models of glioma, decorin was shown to inhibit tumor growth by regulating the immune response 

mediated by T cells and microglia (25, 26). M1-polarized macrophage autophagy and an increase in 

M2-polarized macrophage numbers have also been shown as an effect of decorin-mediated Toll-like 

receptor (TLR) signaling, albeit in the context of tubular kidney damage (27). Thus, decorin could play 

a key role during instances of vascular injury and inflammation resulting from disruptions in the blood-

brain barrier and aberrant angiogenesis in GBM. Secretion of decorin in response to vascular injury by 

vessel-associated fibroblast-like cells specific to recurrent tumors could be controlling the polarization 

of macrophages and orchestrating the resolution of the inflammation at these sites. Perivascular 

decorin acting on collagen and other components of ECM may also decrease the local tissue stiffness 

and facilitate extravasation of the bone marrow derived macrophages. Modulation of 

microenvironmental stiffness alone can also affect metabolism, proliferation, and migration of GBM 

cells (28). It is possible that collagen formation around the endothelial cells is a mechanism to fortify 

vasculature and resist full-fledged collapse. The resulting inflammation and fibroses attract injury 

associated macrophages with M2 phenotype for wound healing and anti-inflammation. The trafficking 

of macrophages expressing collagen and fibronectin to these peri-vascular sites would further thicken 

the vascular barrier and contribute to the metabolic zonation of nearby tumor cells by modifying the 

gradient of exposure to oxygen, nutrients, and paracrine signals (29). Whether surrounding tumor cells 

underwent a hypoxic transformation or preferentially sought out these decorin-influenced perivascular 
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spaces has yet to be determined. The positioning of “mesenchymal-like” cancer cells at a certain 

distance from the cells expressing decorin may allow them to escape its anti-proliferative effects. The 

prognosis of “mesenchymal-like” tumors are the worst among all GBM transcriptomic subtypes, and 

these hypoxia/peri-vascular-associations could be exploited to understand their aggressive behavior. 

Unique sensitivities of GBM cells within the perivascular niche will be an ongoing area of investigation. 

Understanding the molecular and cellular responses within this niche is crucial for devising targeted 

therapeutic strategies tailored to the specific challenges posed by the vascular abnormalities 

associated with GBM and its current treatment. 

 

In addition to characterizing unique perivascular niches based on ECM features in recurrent tumors, 

label-free reflectance microscopy also allowed us to correlate the texture of the ECM with genetic and 

phenotypic traits. Notably, this texture of the tumor tissue emerged as a potential marker for spatial 

heterogeneity related to clonal selection. The string-like appearance of the ECM could be attributed to 

the highly reflective myelination of white matter neuronal axon tracts. Interactions of GBM cells with 

neurons stimulate proliferation of cancer cells and provide tracts for their invasion into the brain 

parenchyma (30). Thus, it is likely that neuron or neuronal axon-rich environments provide yet another 

niche selecting for GBM cells with particular traits. Our results suggest that TERT promoter mutant cells 

and EGFR amplified cells may favor this environment or perhaps contribute to its inception. The 

physical properties of ECM organization have also been shown to promote more mesenchymal 

phenotype of GBM cells (31). To unravel the full extent of the hidden structure within the ECM, future 

studies should include proteomic analyses to provide a more comprehensive understanding of the 

molecular composition of the ECM and cell types associated with these unique structures. Given that 

GBM cells are known to differentiate into neuronal and neuroglial like cellular states, a more in-depth 

proteomic elucidation alongside genomic studies could shed light on potential molecular interactions 

and cellular functions crucial for ECM niche establishment. 
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Comparing matched primary and recurrent GBM characteristics has been historically hampered by 

relatively low rates of recurrent brain tumor resection. Multicenter consortia-based collaborations 

enabled genomic and transcriptomic studies at larger scale, uncovering increased clonal diversity (20), 

higher frequency of mesenchymal phenotype (32), and highlighting the importance of reorganization of 

TME and ECM in recurrent disease (33). Despite the limited number of cases presented in this study, 

the in-depth analysis of single-cell spatial heterogeneity points to specific niches and unique cell 

interactions that can be further explored with larger cohorts. 

 

Our study demonstrates that the spatial localization of macrophages is an important dimension 

providing context for identification of distinct subpopulations of these cells. Several single-cell studies 

demonstrate competition and specialization of these cell within the brain tumor tissue (34, 35). 

Moreover, cancer-associated fibroblasts have been recently linked to M2 polarization of macrophages 

in GBM (36). Our results show that this interaction may be unique to perivascular niches and may 

contribute to increased immunosuppression in recurrent GBM. New technologies allowing for whole 

transcriptome single cell spatial interrogation in archival tissues will provide a more detailed view of 

receptor-ligand pair interactions to directly tie cellular states and functions within distinct niches of GBM. 
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METHODS 

Sex as a biological variable 

Human tumor samples in this study include both sexes. The details are shown in Supplemental Table 

1. Due to the limited cohort size, the study was not powered to analyze the effect of sex. 

 

Human tissue samples 

All experiments with use of human tumor tissue were approved by Scripps Research IRB protocol #IRB-

18-7209 and Mayo Clinic and Cleveland Clinic IRB. Formalin-fixed paraffin embedded (FFPE) tissue 

blocks were provided by Dr. Rachael Vaubel, under Mayo Clinic Rochester IRB-approved protocol, and 

Dr. Oszkar Szentirmai, Cleveland Clinic Martin Health, under IRB exemption for discarded tissue. GBM 

pathology was confirmed for each block by a board-certified neuropathologist. The cohort was 

comprised of 9 cases of matched primary and recurrent IDH wild-type GBM. Case 10 was added for 

spatial profiling and also consists of matched primary and recurrent IDH wild-type GBM. Clinical details 

are shown in Supplemental Table 1.  

 

Immunofluorescent staining 

After deparaffinization and rehydration, slides were subjected to antigen retrieval in citrate buffer (pH 

6; Dako) for 12 min in a steamer. Blocking solution (10% Goat Serum in PBST) was applied for 30 min. 

Incubation with primary antibody in PBS was held overnight at 4 °C in a moist chamber. Secondary 

antibody was applied for 1 hour at room temperature. Samples were mounted with Slowfade Glass 

Mounting Medium with DAPI (Vector Laboratories). The antibodies used are listed in Supplemental 

Table 6. Imaging was performed on an Olympus FV3000 confocal microscope (Olympus).  

 

Fluorescence in situ hybridization (FISH) and STAR-FISH 

Bacterial artificial chromosome clones RP11-339F13 (EGFR gene), RP11-571M6 (CDK4 gene), and 

RP11-231C18 (PDGFRA gene), were obtained from BACPAC Genomics and validated by PCR and 
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FISH on xenografts with known amplification status (5). FISH probes were generated by Nick 

Translation (Abbott Molecular, 07J00-001) using fluorescent dUTPs (Abbott Molecular). STAR-FISH 

primers and probes for TERT C228T promoter mutation were purchased from IDT and Life 

Technologies (sequences as previously described (5)). 

For multiplexed immunofluorescence-FISH (IF-FISH), the FFPE slides were first stained as described 

in IF staining section. Imaging with resonant scanner on Olympus FV3000 confocal microscope was 

used to create a map of the tissue. Five regions of interest were selected at random in each specimen, 

with user guidance to reject areas with poor tissue quality. High resolution images of regions of interest 

were then collected with HD detectors and the XY image coordinates were saved, to enable automated 

stage re-positioning and imaging of the same area after FISH staining.  

Subsequently, the imaged slides were de-mounted, quenched with 0.005% pepsin in HCl at 37°C, 

washed, and subject to STAR-FISH protocol, as previously described (5, 7). STAR-FISH allows for in 

situ point mutation detection at the single cell level. Briefly, permeabilized FFPE slides were subject to 

two rounds of in situ PCR with point mutation-specific primers. First round of PCR amplifies genomic 

DNA region of interest and the second allows for addition of unique overhangs to mutation-specific 

amplicon. Next, a fluorescently labeled probe was hybridized to the unique overhangs on the amplicon. 

The distinct spot-like signal of STAR-FISH was then detected in the nuclei of the mutant cells within the 

tissue by confocal microscopy. 

Post-STAR-FISH images were acquired in z stacks (average of 5 slices per image) on Olympus FV3000 

confocal microscope (Olympus), in XY position matching immunofluorescence image. DAPI channel 

was used to manually correct the localization. All images were acquired in sequential mode to avoid 

fluorophore crosstalk.  

 

Spatial transcriptomic profiling 
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Spatial transcriptomic profiling was performed with CosMx Human Universal Cell Characterization RNA 

Panel (1000-plex) + 30-plex GBM panel (Nanostring) (17) on 4 FFPE samples: 2 biopsied regions from 

a primary GBM and 2 biopsied regions from a matched recurrent for a total of 36 fields of view (FOVs, 

n = 22 across two primary tumor regions and n = 14 across two matched recurrent tumor regions). 

Fields of view (FOV) for transcriptomic analysis were selected based on whole tissue 

immunofluorescence imaging of CD163, CD31, and GFAP and DAPI and matched with morphology 

visualization panel (B2M/CD298, GFAP) on CosMx Spatial Molecular Imager (SMI). A total of 52,588 

cells were identified, with an average of 111 and 99 transcripts per cell in primary and recurrent samples 

respectively (Supplemental Table 4 and 5).  

 

Quantification and statistical analysis 

Statistical details for each experiment can be found in the respective figure legends. A P value of less 

than 0.05 was considered significant. 

 

Power analysis 

Power analysis with GPower 3.1.9.4 software for an a priori sample size utilizing a two-tailed t-test was 

performed to calculate the number of images that should be acquired per slide to compare the presence 

versus absence of molecular target. Sample size was calculated based on the following study 

parameters: power of 0.8, significance at 0.05, effect size of 0.2. With each image harboring at least 53 

cells, 5 images taken via confocal microscopy adequately power the analysis.  

 

Quality control and single-cell genotype analysis      

Image analysis and quantification were performed using a custom analytical pipeline developed in 

CellProfiler (37) version 4.2.5  designed to detect features of nuclei using automatic thresholding, 
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filtering, and segmentation methods (available at GitHub: https://github.com/mjaniszewska-lab/IF-

STAR-FISH).  

To ensure only images with preserved of tissue integrity throughout both rounds of staining were 

analyzed, a quality control step based on DAPI channel was used. Post-STAR-FISH DAPI image 

segmentation was used as a mask overlayed on DAPI image from the first round of imaging to quantify 

the nuclei that may have been lost in the second round of staining (Supplemental Figure 1). Only 22 

nuclei were lost out of total of 20,205 nuclei detected in 1st round of imaging. 

Intranuclear speckle counting from FISH and STAR-FISH was used to identify nuclei with oncogene 

(EGFR, CDK4, PDGFRA) amplifications and TERT C228T mutation, respectively.  For FISH signal 

quantification, nuclei were assigned as having a gene amplification in a gene g if at least 6 copies of g 

were recorded in that nuclear area, analogous to the HER2 FISH scoring guidelines of the American 

Society of Clinical Oncology/College of American Pathologists (38). Coordinates for which 50 or greater 

copies of any gene were recorded were removed from the dataset as these likely represent overlapping 

cells. Nuclei with STAR-FISH signal were classified as TERT promoter mutant. 

 

Image-based phenotype assignment 

Nuclei were classified as belonging to “immune cell” or “endothelial cell” based on their localization 

within the immunofluorescence signal segmentation region positive for CD45RO or CD31, respectively. 

Segmentation was performed using custom analytical pipeline developed in CellProfiler (37) version 

4.2.5 (available at GitHub: https://github.com/mjaniszewska-lab/IF-STAR-FISH). Nuclei with gene 

amplifications and/or TERT promoter mutation were classified as “tumor cells” based on intranuclear 

speckle counts. Tumor cells positive for CD31 staining were assigned as “endothelial mimicry tumor 

cell” class. Nuclei lacking characteristics for all the above-mentioned classifications were classified as 

“unclassified” based on lack of measured phenotypic features and gene amplifications. Nuclei were 

also assigned as “hypoxic” using positivity for nuclear HIF1alpha.  

https://github.com/mjaniszewska-lab/IF-STAR-FISH
https://github.com/mjaniszewska-lab/IF-STAR-FISH
https://github.com/mjaniszewska-lab/IF-STAR-FISH
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Shannon index calculation 

Shannon index of diversity was calculated for every tumor sample using R vegan package. 

 

Integrative image analysis 

Using our criteria for image-based phenotype assignment, we performed a series of logic-based 

operations on count matrices containing CellProfiler information to assign cellular properties to nuclear 

objects. Genotyping classification specifically categorized, single, double, and triple amplification 

including equivocal amplification. Phenotyping classification identified different cell types of the 

microenvironment. Mutation status classification differentiated TERT promoter mutation positive from 

TERT promoter mutation negative cells. We then clustered this cell segmentation data at the cellular 

level and at the FOV level for both frequency and spatial proximity analysis. To handle cells colocalizing 

at the exact same point we added a small random noise to their features in the original matrix and then 

performed tSNE dimensionality reduction. Finally, we applied multi-view clustering of data by pooling 

cell segments from primary and recurrent labels for differential analysis. 

The code written in Python 3.12 related to this analysis is available on GitHub: 

https://github.com/MathOnco/onubogu_spatial_analysis_of_recurrent_glioblastoma 

 

Reflectance quadrat analysis 

Using the principles of species distribution modeling (SDM), we developed a deep neural network 

(DNN) to quantify the association between each cell phenotype and the local ECM texture, as captured 

in the reflectance imaging. The inputs to the network were quadrat counts based on the spatial cell 

segmentation data (described above), and the output the labeled ECM texture (i.e. one of “string-like”, 

“spotty” or “mossy”), which could be compared to the ground truth hand annotations.  

https://github.com/MathOnco/onubogu_spatial_analysis_of_recurrent_glioblastoma
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We performed the model fitting using four different quadrat sizes (width and height of 114, 199, 266, or 

399 pixels), and found that a quadrat width and height of 199 pixels provided the most accurate 

classifications. There was a total of 1,270 quadrats, spread across the 90 FOV. Cell counts were 

independently scaled between 0 and 1 before creating the train, validation, and test splits, which had 

proportions of 0.8, 0.1, and 0.1, respectively. The training dataset was then balanced by using SMOTE 

(39) to synthesize minority classes, such that so that all classes in the training dataset had similar 

frequencies. This process increased the training set from 1016 quadrats to 1793 quadrats. Finally, the 

training data was split into 11 batches, with ~163 quadrats per batch. 

The DNN had a “funnel” structure, such that size of the final layers gradually decreased from a 

maximum width to the number of classes being predicted. More specifically, the complete structure of 

the network was 12 -> 36 (x10) -> 24 -> 12 -> 3, with batch normalization being performed on each 

layer. To minimize overfitting, dropout layers were also included in the main body of the network (layers 

1-11, all of which have 36 hidden units), with the dropout probability decreasing linearly across layers, 

going from 0.15 to 0. Leaky RELU was used as the activation function for each layer. 

Using PyTorch (40) (2.0.1), the above network was trained to minimize the class-balanced focal loss 

function (41), with ADAMW being used for optimization. To avoid overfitting, we trained the model until 

the training and validation loss started to diverge, with the former decreasing and the latter increasing. 

The process of model fitting was then repeated 100 times. This approach resulted in an average of 

313.8 epochs per model, with median AUC-ROC scores of 0.66 and 0.784 for the test and overall 

datasets (excluding SMOTE synthesized training data), respectively. 

The relationship between each input feature (i.e. the cell phenotype) and the network output (i.e. ECM 

texture classification) was quantified by applying the Integrated Gradients method (14) to each trained 

network, as implemented in the Python package, Captum (42) (0.6.0). As this method calculates the 

feature attribution for each sample (i.e. quadrat), we were able to subset our results to include only 

those quadrats that were correctly classified, meaning we were able to remove inaccurate attributions. 
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This process was repeated on all 100 model fits. Each cell type’s attribution score was then averaged 

and weighted by the number of times it had a correct non-zero attribution, thus allowing us to account 

for cases where a feature was most often non-informative (i.e. associated with an incorrect classification 

and/or had 0 influence on the classification) but very rarely had a high absolute attribution score. By 

excluding inaccurate attributions, having 100 model replicates to capture more quadrats (i.e. those that 

may have been correctly classified by one model but not another), and weighting by the frequency of 

informative attributions, we can have more confidence that the attribution scores are accurate, despite 

each individual model not having exceptional AUC-ROC scores. 

The code related to this analysis is available on GitHub: 

https://github.com/MathOnco/onubogu_spatial_analysis_of_recurrent_glioblastoma 

 

Spatial transcriptomic data analysis 

We used Giotto Suite (4.0.1) (43) and Seurat (5.0.1) (44) to analyze subcellular transcript information 

and polygon data generated from the CosMx SMI. A standard Giotto spatial data processing and 

analysis pipeline was used to visualize spatial clusters. Specifically, raw data from CosMx SMI was 

loaded into a giotto object. Using polygon centroid coordinates as cell spatial locations, we computed 

the overlapping feature points to establish an expression matrix onto which we performed data filtering 

and normalization. A minimum of 5 detected features per cell with an expression threshold of 1 feature 

were set as filtering parameters. We applied library size normalization, log normalization, and SC 

Transform normalization (in Seurat) to produce normalized, scaled, and SC transformed normalization 

values respectively. These features were then used in a typical scRNA sequencing workflow, including 

dimension reduction (PCA and UMAP), creation of a shared nearest-neighbor network, and Leiden 

clustering to create spatial expression-informed clusters for all FOVs. Expression-informed clustering 

was used to annotate clusters based on gene expression to establish a list of cell types. To plot 

https://github.com/MathOnco/onubogu_spatial_analysis_of_recurrent_glioblastoma
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differences between the groups we computed candidate marker genes, testing for differential 

expression among cell types.  

Spatially organized gene expression can be analyzed by examining the binarized expression of cells 

and their spatial neighbors. To investigate the spatial expression patterns in more detail, we created a 

spatial network based on physical distance of cell centroids and performed binary spatial extraction of 

genes using the binSpect() function. We used this network to then compute cell-cell interaction 

enrichment to visualize patterns of cellular positioning. Spatial proximity enrichment or depletion 

between pairs of cell types was performed using the cellProximityEnrichment() function which 

calculated the observed over the expected frequency of cell-cell proximity interactions. The expected 

frequency is the average frequency calculated from a number of spatial network simulations. Each 

individual simulation was obtained by reshuffling the cell type labels of each node (cell) in the spatial 

network. 

Using the positional information of each cell, we also computed spatial niches in Seurat. Niche analysis 

of spatial data distinguishes areas of tissue ‘niches’, which are defined by the composition of spatially 

adjacent cell types (45). The local neighborhood for each cell was determined by the number of spatially 

proximal neighbors (k=30), counting the number of occurrences of each cell type present in a 

neighborhood. K-means clustering was then used to group cells that have similar neighborhoods into 

7 spatial niches. 

Giotto: https://github.com/drieslab/Giotto/tree/suite 

Seurat: https://github.com/satijalab/seurat                                                                                                                                                                                                                                                                                                                                                                                                      

 

Study approval 

The details of study approval are described under Human tissue samples section of the Methods. 

 

https://github.com/drieslab/Giotto/tree/suite
https://github.com/satijalab/seurat
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Data availability 

Raw image analysis files and analysis code are available on GitHub (https://github.com/mjaniszewska-

lab/IF-STAR-FISH and 

https://github.com/MathOnco/onubogu_spatial_analysis_of_recurrent_glioblastoma.  

Numerical values for graphs are provided in Supporting data values XLS file. 

  

https://github.com/mjaniszewska-lab/IF-STAR-FISH
https://github.com/mjaniszewska-lab/IF-STAR-FISH
https://github.com/MathOnco/onubogu_spatial_analysis_of_recurrent_glioblastoma
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Figure 1. Immuno-genotyping of primary and recurrent archival GBM samples. A) Study outline. B) Top 

panels - Representative images of immunofluorescence staining for markers of hypoxia (HIF1alpha), endothelial 

cells (CD31), and immune cells (CD45RO). Bottom panels – image segmentation. C) Top panels – 

Representative images of fluorescence in situ hybridization (FISH) for CDK4, EGFR and PDGFRA and STAR-

FISH for TERT promoter mutation, respectively. Bottom panels – image segmentation. Scale bar 40 um (B, C). 

D) Left panels- Quantification of cell frequency based on phenotypes (left) and genotypes (right) in representative 

images B-C. Right panels - Spatial distribution of cells classified into distinct phenotypes and genotypes 

corresponding to right panels. 

 
  



 33 

 
 

 
 
Figure 2. Differential cell frequencies and correlations between genotypes and phenotypes in primary 

and recurrent tumors. A) Frequency of cells with distinct genotypes in primary and recurrent GBM for each of 

5 imaged tumor regions per case (n=9 matched cases). B) Frequency of cells with distinct phenotypes in primary 

and recurrent GBM for each of 5 imaged tumor regions per case (n=9 matched cases). C) Frequency of cells 

with CDK4 amplification in matched primary and recurrent samples. Data points represent case average 

frequency after ROUT outlier removal. Dotted line – matched primary and recurrent cases. Violin plot shows 

mean and quartiles. P value of two-tailed paired Wilcoxon ranked test is shown. D) Frequency of cells with TERT 

promoter mutation in matched primary and recurrent samples. Data points represent case average frequency 

after ROUT outlier removal. Dotted line – matched primary and recurrent cases. Violin plot shows mean and 

quartiles. P value of two-tailed paired Wilcoxon ranked test is shown. E) Frequency of cells with TERT promoter 

mutation in matched primary and recurrent samples. Data points represent case average frequency after ROUT 

outlier removal. Dotted line – matched primary and recurrent cases. Violin plot shows mean and quartiles. P 

value of two-tailed paired Wilcoxon ranked test is shown. F) Pearson’s correlation between the frequencies of 

cells with distinct genotypes and phenotypes. 
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Figure 3. Genotype and phenotype-based clustering of tumor microenvironments in primary and 
recurrent GBM. A) Tumor region clustering based on cellular phenotypes, genotypes and TERT mutant cells. 

Each point represents a tumor region. Numbers represent cluster identifier. B) Connections between 

classification based on TERT promoter mutation, genotype, or phenotype clustering in primary and recurrent 

GBM. The width of each connection represents the number of tumor regions classified. C) Contingency between 

the phenotypes and genotypes. Fisher’s exact test P values are: Cluster 0 p < 0.0001, Cluster 1 p < 0.0001, 

Cluster 4 p = 0.009. The color scale represents number of tumor regions classified. D) Frequency of cells with 

EGFR amplification (left) and CDK4/EGFR co-amplification (right) across phenotype clusters. E) Frequency of 

hypoxic (left) and immune cells (right) across phenotype clusters. The box-and-whisker plots in all bar graphs 

show the mean (midline) and 25th–75th (box) and 5th–95th (whiskers) percentiles. F) Spatial distribution of cells 

with different genotypes and phenotypes. Columns in the heatmap represent spatial clusters determined based 

on XY coordinates of the cells.   
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Figure 4. Reflectance imaging-based patterns of tissue organization predictive of cellular composition 

of the tumor. A) Representative images of reflectance microscopy-based extracellular matrix textures: string-

like, spotty and mossy. Scale bar 40 µm. B) Representative images of mixed reflectance textures and their 

manual annotation. SL - string-like texture. SP – spotty texture. MO – mossy texture. Scale bar 40 µm.  C) 

Influence of cell type on reflectance niche. Mean non−zero influences estimated from correctly classified 

quadrats (quadrat WH=199), weighted by the frequency at which each feature had a non−zero influence per 

class. Error bars indicate the 95% confidence intervals. N reps=100, mean correctly classified quadrats per 

rep=690.49, median ROC−AUC=0.784.  
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Figure 5. Spatial profiling of perivascular regions in primary and recurrent GBM. A) Representative images 
highlighting selected vascular regions of recurrent GBM samples. Reflectance imaging showing hyper-intense 
signal around vessel lumen (left) and immunostaining for CD163 and CD8α of peripheral cells (right). Scale bar 
40 µm. B) Trichrome staining of perivascular collagen in recurrent GBM of adjacent section of the tumor region 
imaged in panel A. Scale bar 40 µm. C) Quantification of collagen rim around blood vessels in FoVs containing 
vasculature for primary and recurrent samples. Color scale represents number of cases. D) Semi-supervised 
clustering generated from normalized gene expression of 52,588 cells (4 GBM tumors). E) Top differentially 
expressed markers of cellular groups. Columns represent cell types and rows represent genes. Scaled 
expression data represented as z-scores. F) UMAP projection grouped by tissue of origin. Primary (top) or 
recurrent (bottom) tissues. G) Cell type composition of primary and recurrent samples. H) Representative images 
of linked IHC (top), cell type spatial plots (middle), and niche spatial plots (bottom) in primary and recurrent 
samples. IHC images represent matched tissue sample locations to spatial plots at serial section 4 or lesser. 
Scale bar 120 µm. I) Distribution of percentage of cell types present within TME niches. Yellow cells indicate 
highly represented outliers computed at alpha = 0.001 before normalization. J) Niche composition of primary 
and recurrent tumor.  
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Figure 6. Perivascular niche macrophage cellular interactions in vessels with or without collagen rim. A) 

UMAP projection highlighting cell type clusters 5, 8, 9 and 10. (higher resolution clustering of previous MAC and 

PVM cell type clusters). B) Feature plots depicting macrophage/monocyte-derived cell type gene expression 

markers enriched in the areas of cluster 5, 8, 9, and 10. C) Spatial plots of cell types from cluster 5, 8, 9, and 10 

in primary and recurrent GBM. FOVs chosen possess vasculature validated through IHC and gene expression. 

Scale bar 120 µm.  D) Top differentially expressed markers between clusters. Columns represent cell types and 

rows are genes. Scaled expression data represented as z-scores. E) Cell-cell interactions in primary and 

recurrent tumor tissue. Green lines show spatial proximity enrichment and red lines show depletion between 

pairs of cell types. Proximity enrichment derived by calculating the observed over the expected frequency of cell-

cell proximity interactions. The expected frequency is the average frequency calculated from the spatial network 

simulations. 
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