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Abstract. Introduction Glioblastoma (GB) is one of the most aggressive tumors of 
the brain. Despite intensive treatment, the average overall survival (OS) is 15-18 
months. Therefore, it is helpful to be able to assess a patient's OS to tailor treatment 
more specifically to the course of the disease. Automated analysis of routinely 
generated MRI sequences (FLAIR, T1, T1CE, and T2) using deep learning-based 
image classification has the potential to enable accurate OS predictions. Methods 
In this work, a method was developed and evaluated that classifies the OS into three 
classes – “short”, “medium” and “long”. For this purpose, the four MRI sequences 
of a person were corrected using bias-field correction and merged into one image. 
The pipeline was realized by a bagging model using 5-fold cross-validation and the 
ResNet50 architecture. Results The best model was able to achieve an F1-score of 
0.51 and an accuracy of 0.67. In addition, this work enabled a  largely clear 
differentiation of the “short” and “long” classes, which offers high clinical 
significance as decision support. Conclusion Automated analysis of MRI scans 
using deep learning-based image classification has the potential to enable accurate 
OS prediction in glioblastomas. 
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1. Introduction 

A glioma is caused by the degeneration of glial cells in the brain and can be divided into 
four grades according to the World Health Organization (WHO) 2016 [1]. Grade I and 
II gliomas are considered as low-grade gliomas, while grades III and IV are high-grade 
gliomas. The latter is associated with aggressive growth and a poor prognosis. The most 
common glioma is the glioblastoma (GB) - grade IV astrocytoma [1]. In 2019-2020, 
almost 70% of malignant brain tumors in Germany were diagnosed as GB [2]. GB is not 
only the most diagnosed glioma but also one of the most aggressive and is therefore 
associated with an unfavorable (“infaust”) prognosis. Despite intensive treatment, the 
average overall survival (OS) is 15-18 months [1]. 
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By estimating the OS as accurately as possible, treatment can be better tailored to 
the patient. It was shown that an estimation by the treating physician often proves to be 
too subjective and optimistic [3]. Consequently, the most accurate OS prediction possible 
based on four different MRI sequences (FLAIR, T1, T1CE, and T2) using deep learning 
classification has great potential.  

Various medical image classification models use ensemble learning methods, 
including bagging [4–6]. Ensemble learning is intended to create more robust and 
accurate models by combining the predictions of several submodels into one  [4]. 
Bagging calculates a prediction by training submodels, having the same architecture and 
hyperparameters, using different subsets of the dataset (without the testing dataset). The 
different models - more precisely their predictions - are combined using pooling 
functions. In bagging aggregate functions are applied often for this purpose, which 
weight each model equally and represent rather simple functions (e.g. median) [4,7].  

In this work, a method was developed and evaluated to predict the OS of GB patients 
as accurately as possible based on MRIs using a Convolutional Neural Network (CNN) 
for classification.  For this purpose, a bagging model was implemented, which received 
3D images as input containing four MRI sequences of a GB patient. 

2. Materials and Methods 

2.1. Dataset 

To be able to train reliable and robust models a sufficient-sized dataset is required. For 
this reason, our dataset consisted of a combination of four publicly available datasets. 
These were the RHUH-GBM dataset [8,9], the BraTS Challenge 2020 dataset [10–12], 
the UCSF-PDGM dataset [9,13,14], and the UPenn-GBM dataset [9,15,16]. The RHUH-
GBM dataset was used entirely, whereas the remaining datasets were partially included. 
The selection criteria for the samples used were defined as follows: The presence of a 
confirmed diagnosis of glioblastoma, the presence of an age indication, and the 
availability of OS in days. 

Thus, the dataset contained MRIs showing glioblastomas from 1,128 patients. The 
dataset included images with an image size of either 240x240x155 or 230x230x138 
voxels.  For each patient, four MRIs from the MRI sequences FLAIR, T1, T1CE, and T2, 
a segmentation mask of the tumor, age, OS in days, and an annotation label indicating 
the class of OS were available. The OS classes were created using K-means clustering 
for three groups. Therefore, three classes were defined for the annotation: “short” (OS < 
170 days), “medium” (170 ≤ OS ≤ 599 days), and “long” (OS > 599 days). The dataset 
contained 281 short OS cases, 565 medium OS cases, and 282 long OS cases. An 
exemplary sample of the available images of a patient can be seen in  Figure 1.  

All images were already coregistrated, resampled and skull stripped. For more 
detailed information on the dataset demographics, we refer to the excellent paper by 
Cepeda et al. [17].   

2.2. Pipeline 

In this work, 3D images were created by combining all four MRI sequences of a person 
in one image. In the following, these are referred to as multimodality-images.  
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Figure 1. Exemplary axial representation of the four MRI sequences in the dataset and the corresponding 
segmentation mask of the tumor (belonging to one patient). 

 
 
Before the images were concatenated, preprocessing was performed. This included 

z-normalization, N4ITK bias-field correction (BFC) [18], resampling, grayscale 
normalization, padding/cropping, and color format transformation. During the color 
format transformation, the grayscale values of each voxel were retained by storing the 
intensity value three times in a tuple. The resulting RGB-format enabled transfer learning 
for reusing weights fitted on RGB data. 

Once the preprocessing was complete, the images were combined. For this purpose, 
the images per patient were first concatenated along the first axis and then along the 
second axis. Figure 2 shows an example image of a preprocessed multimodality-image. 

 
 

 
Figure 2. Axial representation of a preprocessed 3D multimodality-image. 

 
 
The images were divided into 80% training data and 20% test data utilizing stratified 

random sampling in coherence with the recommendations of sampling for machine 
learning by Sebastian Raschka [19] to avoid overfitting as well as evaluation bias and 
enable robust model inference. The training dataset was then divided into five subsets 
using 5-fold cross-validation. In the process, stratified sampling was carried out 
acknowledging the class distribution. The images were randomly augmented during 
training using the methods mirroring, rotating, scaling, elastic deforming, changing 
brightness and contrast to avoid overfitting. 

After preprocessing the CNN model received images with a uniform image size of 
260x320x103 voxels and three channels. The CNN model was based on a 3D version of 
the ResNet50 architecture [20,21] already pre-trained on the ImageNet dataset [22]. The 
architecture was combined with a classification head consisting of a global layer for 
average pooling, a dense layer with ReLU activation [23], a dropout layer, and a final 
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dense layer with softmax activation function. For the first 10 epochs, all layers, except 
those of the classification head, were frozen and trained with a learning rate of 1e-4. For 
the fine-tuning, all layers were unfrozen and trained with a dynamic learning rate for a 
maximum of 240 further epochs, if not aborted by the early-stopping method. The 
dynamic learning rate started at 1e-5 and was reduced to a maximum of 1e-7. A decreasing 
factor of 0.1 was applied after 8 epochs without improvement of the monitored validation 
loss. For the Training process, an Adam optimizer [24], weighted focal loss function [25], 
and a batch size of four were used.  

The five homogenous submodels were combined using the following aggregate 
functions: mean, median, softmax-normalized majority vote soft (MVS), majority vote 
hard (MVH), and global argmax. MVS normalized the sum of probabilities per class 
across models using softmax. MVH selected the class with the highest number of votes 
(vote: highest predicted class) among all models. Global argmax picked the class with 
the highest probability across all models. 

Various metrics were applied to assess the performance of the model per class: 
accuracy, F1-score, sensitivity, specificity, and AUC. Confusion matrix and ROC curve 
were also created for the bagging models. For more detailed information on the 
calculations of the metrics, we refer to the excellent paper by Maier-Hein et al. [26]. The 
implementation details of our pipeline are summarized in Table 1.  

 
 

Table 1. Overview of configurations for applied preprocessing techniques and neural network models in the 
presented medical image classification pipeline. 

Sampling 
Training dataset  Testing dataset 

80% + 5-fold cross-validation 20% 

Preprocessing 
Image Augmentation Subfunctions 

Mirror Random Standardize Z-Score normalization 
Contrast  Factor range: 0.3 to 3 

Per channel: false 
BFC N4 Bias-field correction-algorithm 

(shrink factor: 4) 
Scaling Factor range: 0.85 to 1.25 Resampling (1.5)³ mm 
Elastic 
transformation 

Alpha: 0 to 900.0  
Sigma: 9.0 to 13.0 

Padding To 130x160x103 Voxel (constant 
factor) 

Brightness Factor range: 0.5 to 2 
Per channel: false 

Cropping To 130x160x103 Voxel 
(centering) 

Rotation Random 90° Chromer To RGB format 

Neural Network  
Loss Weighted Focal Loss Class Weights Computed on train set  
Batch size 4 Optimizer Adam 
Learning Rate Initialized at 1e-4 (frozen-

layer epochs) 
Initialized at 1e-5 (unfrozen-
layer epochs) 

Dynamic 
learning Rate 

Decreasing up to 1e-7 by a factor of 
0.1 each time after 8 epochs 
without validation loss 
improvement 

Epochs Max 250 Iterations  #samples/batch_size 
Transfer 
Learning 

ImageNet Number of 
frozen Epochs 

10 

Model 
Checkpoints 

Best computed loss, AUC- 
and F1-score on the 
validation set during training 

Early Stopping After 32 epochs without validation 
loss improvement 

Training 
Monitoring 

CSV dumps for logging Classification 
Head 

Global average pooling, Dense 
Layer (ReLU), Dropout Layer and 
Dense Layer (softmax)  

 

K. Ott et al. / Predicting Overall Survival of Glioblastoma Patients 359



The bagging models received preprocessed multimodality-images as input and the 
output consisted of the probability of occurrence of each class, normalized by softmax. 
The bagging approach was chosen because Müller et al. [4] have shown that it results in 
a performance and a robustness increase. 

All scripts were implemented using the in-house framework AUCMEDI [27], which 
is based on TensorFlow [28]. The pipeline was executed on a workstation with NVIDIA 
Titan RTX with 24GB VRAM, Intel(R) Xeon(R) Gold 5220RCPU@2.20GHz with 96 
cores and 384GB RAM. 

3. Results 

A deep learning classification model was created, which was implemented as a bagging 
model using 5-fold cross-validation. The different models were trained with BFC-
corrected images on ResNet50. A total of five bagging models were created (combination 
via five pooling functions) and the pipeline was trained for 331 epochs. As in Table 2 
can be seen, the models resulted in similar scores regarding all metrics. All results are 
represented as the mean over the class-wise results. Therefore, the models obtained an 
accuracy between 66.5% and 67.7%, an AUC-score of 0.651-0.695, an F1-score of 
0.493-0.511, a sensitivity between 51.9% and 53.1% as well as a 74.9%-75.2% 
specificity. The variance between the classes proved to be very low (<1%) in all metrics 
except sensitivity (<1.7%). The best result regarding the F1-score was the combination 
of the five submodels by mean and majority vote soft resulting in 0.511. These models 
resulted also in the highest scores regarding accuracy (0.677), sensitivity (0.531), and 
specificity (0.752). The model combined by the MVS classified the “medium” class 
incorrectly as “long” or “short” in approximately 26% of cases. In under 28% an object 
of “long” or “short” was assigned to the “medium” class. The classes were correctly 
classified in 62.5% (“short”), 46.9% (“medium”), and 50% (“long”). In addition, 11% of 
the images belonging to “short” were assigned to “long”. However, 20% of the long-
term OS were classified as short-term OS (see Figure 3). More detailed results of the 
individual models can be found in the GitHub repository linked in the contributions. 
 
 

Table 2. Achieved results of five bagging models showing the Accuracy, AUC, F1-score, Sensitivity, and 
Specificity on image classification for each pooling function The values shown are the average of the class 
results. The variance of the classes is shown in brackets behind each value. 

Pooling function Accuracy AUC F1  Sensitivity Specificity 
Global argmax 0.665  

(+/-0.0043) 
0.651  
(+/- 0.003) 

0.493 
(+/- 0.0026) 

0.519 
(+/- 0.012) 

0.749 
(+/- 0.0000) 

Majority vote hard 0.674 
(+/- 0.0059) 

0.639 
(+/- 0.0038) 

0.505 
(+/- 0.0033) 

0.528  
(+/- 0.0131) 

0.751  
(+/- 0.0013) 

Majority vote soft 0.677  
(+/- 0.0056) 

0.691 
(+/- 0.0044) 

0.511  
(+/- 0.001) 

0.531  
(+/- 0.0068) 

0.752  
(+/- 0.0018) 

Mean 0.677 
(+/- 0.0056) 

0.690  
(+/- 0.0045) 

0.511  
(+/- 0.001) 

0.531  
(+/- 0.0068) 

0.752  
(+/- 0.0018) 

Median 0.674  
(+/- 0.0057) 

0.695  
(+/- 0.0038) 

0.504  
(+/- 0.0029) 

0.528  
(+/- 0.017) 

0.751  
(+/- 0.0027) 
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Figure 3. Performance results for the best model combined via majority vote soft showing the confusion matrix.
A confusion matrix visualizes the comparison of the ground truth values against the predictions of the model.

4. Discussion

By combining the submodels by mean/majority vote soft, the best performance in terms 
of predicting the OS of GB patients was achieved (according to F1-score). A first step 
towards a clear differentiation of the "short" and "long" classes was achieved, as “short”
was only identified as “long” in 10% of cases and vice versa in 20%. The differentiation 
of the three classes, especially of short-term and long-term survivors is relevant for 
identifying more specialized treatment. Given the natural course of GB, an accurate 
prediction of "short" may indicate that treatment should be withheld to prioritize quality 
of life over therapeutic obstinacy. Conversely, intensive therapy could be considered in 
correctly predicted long-term survivors. Nevertheless, a prediction of OS in days should 
follow and needs to be further investigated in the future.

The performance of all models could be addressed to bagging. In bagging, 
homogeneous models are combined by pooling functions so that the prediction of the 
ensemble model proves to be more robust and accurate [4]. The five submodels in this 
work were each trained on different subsets of the dataset. This allowed individual 
models to learn slightly different features as different images were available for learning. 
Thus, one model may have been able to recognize a feature through several very extreme 
cases of short-term OS that another submodel could not learn because there were not as 
many extreme cases in the training set. A limiting factor was the restriction of pooling 
functions to aggregate functions. The use and impact of other, more complex pooling 
functions such as Random Forest or Support Vector Machine should be investigated.

Some studies show that a combination of different MRI sequences, in one image, 
provides more features than a single sequence, favoring a more accurate classification
[29,30]. Our bagging models were able to achieve high scores, especially in the metrics 
AUC, accuracy, and specificity, which supports the assumption of providing additional 
features. Liang et al. [29] and Coupet et al. [30] showed in their work that combining 
different MRI sequences along the channel axis shows great potential. A combination in 
this way should be compared with the method described here and investigated further, 
which wouldn’t increase the voxel resolution of two axes, but of one axis.

A comparison of our model with state-of-the-art models used for predicting OS of 
GB patients can be seen in Table 3. We have limited ourselves to the best-placed papers 
in the BraTS Challenge 2020, as they have a similar dataset. Our best model achieved an 
accuracy of 0.677. This corresponds to a higher value than the winners of the BraTS 
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Challenge 2020 McKinley et al. [31] and Asemio and Solís [32], who achieved 0.617.  
As shown in Table 3, all papers use different approaches, but the most popular methods 
consist of z-score normalization, an ensemble approach, and the use of radiomic/image-
based features. We have additionally used multimodality images (possibly adding more 
features), CNNs (popular for image-based deep learning), transfer learning, and BFC 
(improved performance of CNNs). Nevertheless, our model has some limitations and 
weaknesses in terms of methods. The models in the comparison (Table 3) and Baid et al. 
[33] often use radiomic features. Especially age has been shown to have a high 
correlation with OS. Similarly, segmented images are often used to provide a more 
detailed view of the tumor. Both the inclusion of age and the use of segmented images 
should be further investigated in the future. In addition, regression is always used to 
predict the exact OS in days. An ensemble of our approach with a regression should be 
investigated for more accurate results. However, a more detailed comparison with their 
methodologies on the same dataset should be further investigated for better 
comparability. 

 
 

Table 3. Comparison in terms of the dataset(s), methods, and metrics of our model with the models of the top-
ranked participants of the BraTS Challenge 2020, which are also used to predict the OS of GB patients.  

Literature Dataset(s) Methods Metrics/Results 
McKinley 
et al. [31] 

BraTS 2020 
[10–12] 

Normalization/homogenization: z-score Accuracy: 0.617 
 ordinary least square regression model (OLS) 

and Random Forest (RF) classification model 
Using age, number of tumor cores, and number 
of tumor regions  
Ensemble of OLS and RF model 

Asemjo and 
Solís [32] 

BraTS 2020 
[10–12] 

Segmented images Accuracy: 0.617 
 3 models: classification (Decision tree and SVM) 

and regression model (Ensemble regression trees) 
Using image-based/radiomic features and age 
Ensemble of the three models (mean) 

Bommineni 
[34] 

BraTS 2020 
[10–12] 

Normalization: z-score 
Segmented images (tumorous regions) 

Accuracy: 0.589 
 

Random Forest regressor  
Using image-based/radiomic features and age 

Ali et al. 
[35] 

BraTS 2020 
[10–12] 

Normalization: z-score Accuracy: 0.579 
 Linear Regression model 

Using age, surface area, volume, spatial location, 
and resection status 

Our model BraTS 2020, 
UCSF-PDGM,  
UPenn-GBM, 
RHUH  
[8–16] 

Normalization: z-score 
BFC 
Multimodality-images 
Transfer Learning 

Accuracy: 0.677 
 

CNN model 
Using MRIs, image-based features 
Ensemble learning (Bagging) 

5. Conclusion 

In this study, deep learning classification models were developed and evaluated to predict 
the OS of GB patients based on 3D images consisting of four MRI sequences. These 
images were used as input to a CNN model that utilized ensemble learning and the 
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ResNet50 architecture. Different pooling functions were tested. It could be shown that 
the two classes “short” and “long” can be largely differentiated from each other, which 
could enable individualized therapy. Furthermore, relatively accurate and robust models 
for the prediction of OS of GB patients could be generated using deep learning. However, 
these could be further improved by including radiomics features or by integrating the age 
of the patients. The influence of more complex pooling functions on the bagging model 
and the ensemble with a regression should also be analyzed. 
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