J Nucl Med. 2024 Aug 14:jnumed.123.266365. doi: 10.2967/jnumed.123.266365.

Theranostic Intratumoral Convection-Enhanced Delivery of ¹²⁴I-Omburtamab in Patients with Diffuse Intrinsic Pontine Glioma: Pharmacokinetics and Lesion Dosimetry

Neeta Pandit-Taskar ^{1 2}, Pat B Zanzonico ³, Milan Grkovski ³, Maria Donzelli ⁴, Scott M Vietri ^{5 6}, Christopher Horan ³, Brian Serencsits ³, Kavya Prasad ³, Serge Lyashchenko ^{6 7}, Kim Kramer ^{4 8}, Ira J Dunkel ^{4 8}, Mark M Souweidane ^{9 10}

Affiliations

PMID: 39142829 DOI: 10.2967/jnumed.123.266365

Abstract

Diffuse intrinsic pontine glioma (DIPG) is a rare childhood malignancy with poor prognosis. There are no effective treatment options other than external beam therapy. We conducted a pilot, first-inhuman study using ¹²⁴I-omburtamab imaging and theranostics as a therapeutic approach using a localized convection-enhanced delivery (CED) technique for administering radiolabeled antibody. We report the detailed pharmacokinetics and dosimetry results of intratumoral delivery of ¹²⁴Iomburtamab. **Methods:** Forty-five DIPG patients who received 9.0-370.7 MBg of ¹²⁴I-omburtamab intratumorally via CED underwent serial brain and whole-body PET/CT imaging at 3-5 time points after injection within 4, 24-48, 72-96, 120-144, and 168-240 h from the end of infusion. Serial blood samples were obtained for kinetic analysis. Whole-body, blood, lesion, and normal-tissue activities were measured, kinetic parameters (uptake and clearance half-life times) estimated, and radiationabsorbed doses calculated using the OLINDA software program. Results: All patients showed prominent activity within the lesion that was retained over several days and was detectable up to the last time point of imaging, with a mean ¹²⁴I residence time in the lesion of 24.9 h and dose equivalent of 353 ± 181 mSv/MBq. Whole-body doses were low, with a dose equivalent of 0.69 ± 0.28 mSv/MBq. Systemic distribution and activities in normal organs and blood were low. Radiation dose to blood was very low, with a mean value of 0.27 ± 0.21 mGy/MBg. Whole-body clearance was monoexponential with a mean biologic half-life of 62.7 h and an effective half-life of 37.9 h. Blood clearance was biexponential, with a mean biologic half-life of 22.2 h for the rapid α phase and 155 h for the slower β phase. **Conclusion:** Intratumoral CED of ¹²⁴I-omburtamab is a novel theranostics approach in DIPG. It allows for delivery of high radiation doses to the DIPG lesions, with high lesion activities and low systemic activities and high tumor-to-normal-tissue ratios and achieving a wide safety margin. Imaging of the actual therapeutic administration of ¹²⁴I-omburtamab allows for direct estimation of the therapeutic lesion and normal-tissue-absorbed doses.

Keywords: 124I-omburtamab; DIPG; convection-enhanced delivery; diffuse intrinsic pontine glioma; dosimetry; organ-absorbed doses.

© 2024 by the Society of Nuclear Medicine and Molecular Imaging.