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CAR-T cell therapy for the treatment of
adult high-grade gliomas
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Treatment for malignant primary brain tumors, including glioblastoma, remains a significant challenge
despite advances in therapy. CAR-T cell immunotherapy represents a promising alternative to
conventional treatments. This review discusses the landscape of clinical trials for CAR-T cell therapy
targeting brain tumors, highlighting key advancements like novel target antigens and combinatorial
strategies designed to address tumor heterogeneity and immunosuppression, with the goal of
improving outcomes for patients with these aggressive cancers.

Gliomas comprise a diverse group of brain tumors that arise from glial cells
and span a wide range of grades, from less aggressive forms to highly
malignant tumors such as glioblastoma (GBM). GBM accounts for more
than half of all malignant central nervous system (CNS) tumors, with a five-
year survival rate of less than 10%1. The current standard-of-care for GBM
consists of surgical resection followed by radiation and temozolomide
chemotherapy.When these tumors invariably recur, even fewer options are
available for treatment; although anti-angiogenic agents such as bev-
acizumab are often used, they have not been shown to improve overall
survival compared to best supportive care. Depending on their location,
gliomas can also drastically impair or disrupt vital functions. In children,
these tumors can develop in midline structures like the brainstem (e.g.,
diffuse intrinsic pontine gliomas or DIPG), and due to their anatomic
location, they are often unresectable and associated with significant
morbidity.

Immune-based strategies, particularly the use of adoptive T-cell
therapy with chimeric antigen receptor (CAR) T cells, have rapidly
emerged as a promising approach to treating brain tumors. This is due to
their theoretical capacity to specifically target cancer cells while
bypassing the need for endogenous tumor-specific T-cell responses,
which are often absent or impaired in the context of glioma. CAR-T cells
are T cells engineered to express molecules that allow them to identify
and eliminate cells expressing specific surface targets of interest. Since
their first approval by the U.S. Food and Drug Administration in 2017,
several CAR-T cell products have been successfully implemented for
various hematologic cancers (Table 1). However, translating these
therapies for solid tumors has been limited. The challenges to effective
CAR-T cell therapy for solid tumors are under active investigation and
include the identification of ideal target antigens and antigenic hetero-
geneity, subsequent tumor antigen escape, T-cell trafficking to and
within solid tumors, and the immunosuppressive tumor micro-
environment (TME)2,3.

In this review, we provide an overview of the current landscape of
clinical trials and the development of novel strategies aimed at optimizing
CAR-T cell therapy for brain tumors. This discussion highlights key
advancements, suchas the identificationandcharacterizationofnovel target
antigens and innovative combinatorial approaches designed to enhance
efficacy in the context of tumor heterogeneity and associated
immunosuppression.

Adoptive T-cell therapy for solid tumors
To bypass the need for endogenous T-cell priming, adoptive cell strategies
can be employed to produce large numbers of tumor-specific T-cells for
therapeutic purposes. One approach is the use of tumor-infiltrating lym-
phocytes (TILs), which entails the isolation and expansion of a subgroup of
intratumoral lymphocytes followed by reinfusion. Promising results have
been reported with TIL therapy in solid tumors, including those for cervical
carcinoma4,5, colorectal cancer6, cholangiocarcinoma7, non-small cell lung
cancer8, breast cancer9, and nasopharyngeal cancer10. However, TILs in
glioma are often limited in quantity, dysfunctional, or difficult to isolate due
to structural characteristics.

As a result, the adoptive transfer of T cells engineered to express
transgenicT cell receptors (TCRs) has beendeveloped as a potentialmethod
for artificially generating tumor-specific T cells. TCR-T cells have demon-
strated efficacy in treatingmelanoma11–13 andmetastatic colorectal cancer14.
However, several cancers, such as GBM, downregulate the expression of
major histocompatibility complex (MHC) class I and II molecules as a
mechanism of immune cell escape15,16, thereby impeding the efficacy of
strategies that rely on the presentation of antigens in the context of MHC.

Unlike endogenous TILs or transgenic TCRs, CAR-T cells can be
activated through interaction with specific targets independently of antigen
presentation by MHC17,18. The use of CAR-T cell therapy targeting solid
tumors outside of the CNS has shown promising results in clinical studies.
For example, Claudin18.2-redirected CAR-T cells have been utilized in the
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setting of digestive system cancers, wherein the overall response rate was
48.6%, and the 6-monthoverall survival ratewas 81.2%, as reported in phase
1 interim results (NCT03874897)19. In addition, GD2-CART01, a third-
generation gene-edited autologous CAR-T cell therapy targeting GD2 in
patients with high-risk neuroblastoma, was tested in 27 patients, 17 of
whom achieved at least a partial response, resulting in an overall response
rate of 63%. Patients receiving the recommended phase 2 dose of GD2-
CART01 had a 3-year overall survival rate of 60% and a 3-year event-free
survival rate of 36%20.

CAR-T cell structure and function
CAR molecules consist of an antigen-binding domain and intracellular
activation domains derived from T-cell signaling components (Fig. 1).
The ectodomain typically comprises an extracellular single-chain anti-
body fragment (scFv), which, in some cases, has been optimized for
binding affinity or to minimize nonspecific toxicity against non-tumor

tissues. This process is also streamlined by carefully selecting tumor-
specific targets.

The hinge regionwithin CARmolecules serves as a bridge between the
antigen-recognition domain and T-cell membrane, providing a degree of
flexibility to accommodate spatial and steric constraints. This region also
regulates the intermembrane space between aT cell and target cancer cells21.
Tailoring the hinge region has been shown to be relevant for several CAR-T
cells targetingboth solid andhematologic cancers21–27. In addition to altering
the size of the hinge region, biochemical aspects of this domain (e.g.,
dimerization capacity, FcγR interactions) can also heavily influence T-cell
activation, proliferation, and anti-tumor efficacy28.

The transmembrane domain assists in positioning the CAR molecule
on the T-cell surface and facilitates the connection between the extracellular
and intracellular domains, enabling the intracellular transmission of ligand
recognition via the signaling endodomain. First-generationCARs employed
an intracellular domain derived from CD3ζ; however, this approach was

Table 1 | FDA Approved CAR-T cell therapy

Name Target antigen FDA approval Year

Kymriah® (tisagenlecleucel) CD19 Relapsed or refractory B-cell precursor acute lymphoblastic leukemia (ALL) 2017

Relapsed or refractory large B-cell lymphoma (LBCL) after ≥2 lines of systemic therapy 2018

Relapsed or refractory follicular lymphoma (FL) after ≥2 lines of systemic therapy 2022

Yescarta® (axicabtagene ciloleucel) CD19 Relapsed or refractory large B-cell lymphoma (LBCL) after ≥2 lines of systemic therapy 2017

Relapsed or refractory follicular lymphoma (FL) after ≥2 lines of systemic therapy 2021

Large B-cell lymphoma (LBCL) refractory to first-line chemoimmunotherapy or relapses < 12 months of
first-line chemoimmunotherapy

2022

Tecartus® (brexucabtagene
autoleucal)

CD19 Relapsed or refractory mantle cell lymphoma (MCL) 2020

Relapsed or refractory B-cell precursor acute lymphoblastic leukemia (ALL) 2021

Breyanzi® (lisocabtagene
maraleucel)

CD19 Relapsed or refractory large B-cell lymphoma (LBCL) after ≥2 lines of systemic therapy 2021

Large B-cell lymphoma (LBCL) refractory to first-line chemoimmunotherapy or relapses < 12 months of
first-line chemoimmunotherapy and not eligible for hematopoietic stem cell transplantation (HSCT)

2022

Chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL) after ≥2 lines of systemic
therapy

2024

Abecma® (idecabtagene vicleucel) BCMA Relapsed or refractory multiple myeloma after ≥4 prior lines of therapy (2021) 2021

Carvykti® (ciltacabtagene
autoleucel)

BCMA Relapsed or refractory multiple myeloma after ≥4 prior lines of therapy (2022) 2022

Fig. 1 | Structure of CAR-T cell.The CAR structure
includes antigen-binding domains, hinges, trans-
membrane domains, and signaling domains. This
structural framework collectively influences the
specificity, activation, and function of CAR-T cells.
MHCmajor histocompatibility complex, TCRT cell
receptors.
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limited by poor long-term T-cell activity and function29. Over time
numerous modifications have been made to the original CAR structure,
with themost substantial changes occurring in the choice or combination of
signaling endodomains, giving rise to the so-called “second- and third-
generation” CARs. Although various co-stimulatory signals have been
tested30–33, CD28 and 4-1BB remain the most commonly utilized endodo-
mains in clinical trials to date.

Challenges in glioma immunotherapy
Tumor heterogeneity
One of the primary challenges in CAR-T cell therapy for glioma is the
relative dearth of surface target antigens that are frequently and specifically
expressed. Moreover, gliomas exhibit significant cellular and molecular
heterogeneity, which can lead to partial or complete loss of antigen
expression and, ultimately, tumor recurrence (Fig. 2). This has been
observed afterCD19CAR-Tcell therapy,where decreasedCD19 expression
and disease recurrence has been reported in 30–70% of patients34,35. Similar
occurrences can also be noted, albeit less frequently, after treatment with
BCMA CAR-T cells for multiple myeloma36–38. This mechanism of resis-
tancehas also beenobserved in the context ofGBM,where recurrent tumors
have displayed reduced cognate target antigen expression following treat-
ment with either interleukin-13 receptor α chain variant 2 (IL-13Rα2) or
epidermal growth factor receptor variant III (EGFRvIII) CAR-T cell
therapy39,40.

Immunosuppressive microenvironment
The TME is a complex and dynamic space that surrounds and interacts
with solid tumors, potentiating counterproductive cellular infiltrates con-
sisting of regulatory T cells, myeloid-derived suppressor cells, and other
populations that work together to actively impede anti-tumor immune
responses41,42. The milieu also drives the production of tumor-signaling
molecules, growth factors, cytokines, chemokines, and immunomodula-
tory factors such as transforming growth factor β (TGF-β), interleukin 10
(IL-10), indoleamine 2,3-dioxygenase (IDO), macrophage migration

inhibitory factor (MIF), and prostaglandin E-2 (PGE2)43–49 (Fig. 2). Tumor
cells utilize critical immune checkpoint molecules and signaling axes, such
as thosemediated through programmed death ligand 1 (PD-1) or cytotoxic
T lymphocyte-associated protein 4 (CTLA-4), to enhance the inhibitory
pathways of T cells, thereby further abrogating effective anti-tumor
immune responses50. Finally, intratumoral hypoxia associated with the
TME in gliomas may additionally drive tumor-associated impairment of
immune cell function, particularly through increased expression of
hypoxia-inducible factor 1-α (HIF1-α)51.

CNS immune privilege
Immunotherapies targeting intracerebral tumors face unique challenges
related to the phenomenon of immune privilege in theCNS. The concept
of limited immune surveillance in the CNS was first introduced by Sir
Peter Medawar in 194752, and since then, investigators have further
refined these observations, highlighting unique characteristics that are
now generally associated with the CNS, including the presence of a
specialized blood–brain barrier (BBB), the absence of conventional
draining lymphnodes, and the dearth of professional antigen-presenting
cells within the brain53–55.

The BBB plays a key role in protecting the brain from harmful toxins
and chemicals, as well as fine-tuning brain homeostasis, given its unique
ability to tightly regulate the movement of ionic substances and large
molecules, aswell as immune cells, into theCNS56–58. In addition to the BBB,
another structure referred to as the blood–cerebrospinal fluid (CSF) barrier
is formed by the choroid plexus epithelium and also plays a role in limiting
communication between these respective anatomical compartments59.
Evolving data suggest that the CNS, especially in the context of tumors,may
not be as isolated from the immune system as once believed. In particular,
immune cells are known to migrate to and throughout the brain relatively
frequently despite the presence of the BBB60–65. When activated, T cells
appear to readily cross the capillary tight junctions of theBBB66,67.How these
mechanisms might be exploited to ultimately inform adoptive T-cell stra-
tegies is under active investigation.

Fig. 2 | CAR-T cell therapies in brain tumors and
their limitations. a and b CAR-T cell therapy tar-
geting brain tumors face multiple challenges,
including tumor heterogeneity, antigen loss,
immunosuppressive tumor microenvironment,
blood–brain barrier, limited trafficking, and CAR-T
cell-associated cell toxicity. CNS cytokine release
syndrome, ICANS immune effector cell-associated
neurotoxicity syndrome, TLS tumor lysis syndrome,
TIAN tumor inflammation-associated
neurotoxicity.
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CAR-T cell toxicity
Common toxicities observed after CAR-T cell therapy include cytokine
release syndrome (CRS), immune effector cell-associated neurotoxicity
syndrome (ICANS), tumor lysis syndrome (TLS), and acute anaphylaxis68,69

(Fig. 2). CRS and ICANS are well-characterized phenomena in the treat-
ment of hematological cancers and oftenoccur in the absence ofCNS tumor
involvement. CRS is the most common type of toxicity after CAR-T cell
therapy and is characterized by fever, hypotension, tachycardia, hypoxia,
and, in severe cases,multiorgandysfunction. It typically occurswithinhours
to days following CAR-T cell administration, although there have been
reports of late onset70–73. The release of inflammatory cytokines such as
interleukin-6 (IL-6), interferon-gamma (IFN-γ), and tumor necrosis factor-
alpha (TNF-α) contribute to its pathogenesis.

The second most common toxicity related to CAR-T cell adminis-
tration is ICANS, which affects ~40% of CAR-T cell recipients74. ICANS
involves a complex interplay of mechanisms, including blood-brain barrier
disruption, microangiopathy, thrombotic microangiopathy, and amplifi-
cation of the inflammatory response. The integrity of the BBB is compro-
mised by cytokine-induced activation of brain endothelial cells, leading to
increased permeability and neuroinflammation. Disruption of the BBB and
subsequent cerebral edema through systemic CAR-T cell-induced cytokine
release appear to be key features of ICANS73,75. Additionally, thrombotic
microangiopathy and inflammatory response amplification contribute to
the pathophysiology of ICANS. Clinical manifestations include confusion,
delirium, aphasia, seizures, and, in severe cases, cerebral edema and eleva-
tion of intracranial pressure. These symptoms are mediated by elevated
levels of cytokines such as IL-6 and IFN-γ, which induce neuroinflamma-
tion and endothelial damage.

The mechanisms underlying CAR-T cell-associated neurotoxicity are
not yet fully understood. However, in the CNS, upon infusion into patients,
CAR-T cells encounter target cancer cells and subsequently release
inflammatory cytokines such as TNF-α and IFN-γ. These cytokines then
activate monocytes and macrophages to secrete additional cytokines,
including IL-1, IL-6, and inducible nitric oxide synthase (iNOS). Elevated
levels of IL-6 have been observed in patients experiencing CRS. Addition-
ally, IL-1β, which is released earlier than other major cytokines, promotes
IL-6 production and has been implicated in the pathogenesis of CRS and
ICANS76,77.

In the setting of tumors in the CNS, a potential emerging syndrome of
neurotoxicity has been reported, which is thought to be related to localized
tumor-associated inflammation (i.e., tumor inflammation-associated neu-
rotoxicity or TIAN). The manifestations of TIAN tend to depend on the
neuroanatomical locationof the tumor and its proximity to eloquent regions
of the brain78. Two subtypes of TIAN have been proposed78; Type 1 TIAN
consists of inflammation-induced mechanical aspects of neurotoxicity,
which may manifest as symptoms such as headache, focal neurological
deficits, or changes in consciousness. Type 2 TIAN is characterized by
inflammation-induced electrophysiological changes, potentially resulting in
symptoms such as seizures, confusion, or altered mental status. These two
subtypes canoccur simultaneouslywithindays toweeksof receiving therapy
and may not be mutually exclusive, with symptoms often consistent with
concurrent cytokine release syndrome (CRS) and elevated inflammatory
markers. However, clinical and radiographic markers of TIAN may be
subtle, vary from patient to patient, and may evolve rapidly, underscoring
the need for additional investigation and characterization.

CAR-T cells for glioma: clinical studies
CAR-T cell therapy for brain tumors represents a promising and rapidly
growing area of research; however, successful translation remains a chal-
lenge due to the aforementioned low mutational burden associated with
brain tumors and the relative dearth of feasible tumor-specific target
antigens3,79. Ongoing clinical trials exploring potential antigens for glioma
include those targeting B7-H3, EGFRvIII, CD70, chlorotoxin, human epi-
dermal growth factor receptor 2 (HER2), IL-13Rα2, interleukin-7Rα
(IL-7Rα), GD2, MMP-2, and NKG2D. Here, we provide a brief review of

these antigens that are currently in clinical trials and have been published
(“Published Clinical Trials”), as well as those that are in clinical trials but
have not yet beenpublished (“UnpublishedClinical Trials”) forCAR-Tcells
in glioma (Table 2 and Supplementary Table 1).

Published clinical trials
B7-H3. B7 homolog 3 protein (B7-H3; also known as CD276) is a
member of the B7 family of molecules, consisting of type I transmem-
brane immune checkpoint proteins encoded by human chromosome
1580,81. B7-H3 is significantly overexpressed in gliomas compared to
normal brain tissue. It is also found in several primary GBM cells isolated
from clinical samples and associated cell lines80,82. Several CARs have
been designed to target B7-H3 and these have shown promising results in
preclinical studies80,83. B7-H3 CAR-T cells are currently being studied in
patients with malignant glioma, including two clinical trials specifically
for DIPG (Supplementary Table 1).

In a recent Phase I trial with B7-H3 CAR-T cells, three children with
recurrent/refractory CNS tumors and DIPG were administered with repe-
ated locoregional B7-H3 CAR-T cells84. No dose-limiting toxic effects were
reported after 40 infusions in the first three DIPG patients. The patients
showed evidence of a correlation between B7-H3 CAR T cells and local
immune activation, as well as the persistence of CAR T cells in the cere-
brospinal fluid (CSF) (NCT04185038).

EGFRvIII. EGFRvIII is a tumor-specific variant of EGFR present in
approximately 30% of newly diagnosed GBM cases, making it the second
most frequent EGFR variant in these tumors after wild-type EGFR
amplification. Because EGFRvIII is specifically expressed in GBM and
not expressed in any healthy tissues85, this antigen has been extensively
studied as a possible target for antibody-redirected T cell therapy, among
other immunotherapeutic strategies55,86–94.

A first-in-human studywith intravenous delivery of EGFRvIII-specific
CAR-Tcellswas conductedon10 recurrentGBMpatients. TheCAR-Tcells
showed active localization to tumors in the brain, where they mediated on-
target effects40 (NCT02209376). A follow-up trial investigated a combina-
tion of EGFRvIII CAR-T cell therapy with pembrolizumab on patients with
recurrent glioblastoma. This approach was also shown to be safe without
dose-limiting toxicity95, but it did not demonstrate clinical efficacy, which
may be partly due to the limitations of targeting a single antigen in a
heterogeneous disease (NCT03726515). To address this barrier to transla-
tion, EGFRvIIICAR-Tcells have been engineered to secreteT-cell-engaging
antibody molecules (TEAMs) against EGFR90. These TEAMs enhance the
functionality of CAR-T cells by promoting the engagement of endogenous
T cells with tumor cells, thereby increasing the overall anti-tumor immune
response. In a clinical trial with the use of EGFRvIII CAR-T-secreting
TEAMs, three patients with recurrent glioblastoma received a single
intraventricular infusion of the engineered CAR-T cells. The treatment led
to dramatic and rapid radiographic tumor regression, although responses
were transient in two participants. Adverse events were minimal, with no
grade 3 or dose-limiting toxic effects reported (NCT05660369)96.

EphA2. The EphA2 receptor is a member of the Eph receptor family of
tyrosine kinase receptors. This family consists of fifteen members, clas-
sified into classes A and B according to the degree of homology of their
extracellular domains97. Typically, these domains include a globular
NH2-terminal ligand-binding domain, followed by a cysteine-rich
domain and two fibronectin type III repeats. EphA2 plays a critical role
in modulating signal transduction pathways, including those that reg-
ulate migration, differentiation, and growth98. Approximately 90% of
GBM tissues and cell lines overexpress EphA2, while relatively low levels
are present in normal brain tissue99.

In a recent clinical trial involving three EphA2-postive recurrent GBM
patients, EphA2-redirected CAR-T cells were administered
intravenously100. Two patients experienced grade 2 cytokine release syn-
drome with pulmonary edema; otherwise, there were no other organ
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toxicities, including neurotoxicity. In one patient, a transient reduction in
tumor size was observed. Among these three patients, one reported stable
disease, while two exhibited progressive disease, with overall survival
durations ranging from 86 to 181 days (NCT 03423992).

GD2. Gangliosides aremolecules composed of glycosphingolipids coated
with sugar chains that are widely expressed in normal tissues. However,
the disialoganglioside GD2 is present in several tumor types, including
GBM101,102, while its expression in normal tissue is primarily limited to the
CNS and peripheral nerve tissues, accounting for less than 4% of all
gangliosides103–105. In preclinical trials, GD2-targeting CAR-T cells have
successfully demonstrated potent cytotoxicity against GBM andDIPG in
both in vitro and murine models102,106,107. Several ongoing clinical trials
are in Phase I, three of which are designed for DIPG.

In a recent clinical trial, eight patients with GD2-positive GBM
received autologous fourth-generation GD2-specific CAR-T cells (4SCAR),
which were designed with safety in mind and included CD28 transmem-
brane and cytoplasmic domains, the co-stimulatory 4-1BB intracellular
TRAF binding domain, the CD3ζ chain intracellular domain, and an
inducible suicide caspase-9 gene, allowing for controlled elimination of
CAR-T cells if necessary. Among the eight patients, four experienced a
partial response lasting between 3 and 24months, three showed progressive
disease with durations of 6–23 months, and one had stable disease for
4 months. The median overall survival was 10 months from the infusion.
Importantly, there were no severe adverse events reported, including neu-
rotoxicity or off-target effects. This approach has been associated with the
loss of GD2 antigen and an activated immune response within the TME108

(NCT03170141).

HER2. HER2 is a receptor tyrosine kinase that is normally expressed at
low levels in epidermal tissue but is overexpressed in a variety of cancers.
In GBM, HER2 levels are upregulated in up to 80% of tumors109. One
clinical trial studying a second-generation HER2 CAR-T cell therapy on
patients with GBM showed that the approach was safe and did not result
in dose-limiting toxicities110. However, targeting HER2 with CAR-T cells
has also been reported to mediate fatal toxicity and multiorgan system
failure in a patient with colon cancer metastatic to the lungs and liver111.
The unique characteristics of CAR-T cell therapies, such as their design
and targeting mechanisms, as well as the conditions surrounding cell
infusion, may be critical contributing factors.

In a recent clinical trial, three young adults aged 19–26 who had
gliomas were given repeated, localized doses of these HER2 CAR-T cells
for four weeks112. Two patients were treated intrathecally, and one was
treated intracerebroventricularly without first undergoing lymphocyte
reduction. None of the patients experienced dose-limiting toxicity,
except for headache, pain at the metastatic site, and neurologic
impairment (NCT03500991).

IL-13Rα2. In the immune system, IL-13 typically works in conjunction
with its homolog, IL-4, to regulate immune responses through shared
receptors present in many normal tissues. Notably, the IL-13 receptor is
associated with the IL-13Rα2 protein chain, which is highly expressed in
50–80%ofGBMs113 but, unlike IL-4, is rarely detectable in normal tissues.
To date, several IL-13Rα2-specific CARs have differed structurally from
traditional CARs in that they co-opt the natural IL-13 ligand as the
antigen-recognition domain instead of using an antibody-based frag-
ment. Early clinical trials studying intracranial infusion of IL-13Rα2
CAR-T cells for recurrent GBM were safe114, with one patient demon-
strating a remarkable response in the setting of multifocal glioblastoma,
but only after serial intraventricular infusions. In this case, the disease had
spread along the leptomeninges, which may have made the tumor tissue
more susceptible to treatment39. Recently, Phase 1 trials involving
locoregional delivery of IL-13Rα2 CAR-T cells for recurrent GBM
patients were published115. In this clinical trial, 50% of participants
achieved stable disease or better. Additionally, 22% of patients

maintained confirmed stable disease or better for at least 90 days, with
two patients exhibiting a partial response, although these responses were
limited to IDH-mutant glioma. This trial indicates that a significant
proportion of patients experienced either stable disease or an improve-
ment in their disease status following treatment with IL-13Rα2-targeted
CAR-T cells (NCT02208362). Furthermore, IL-13Rα2 CAR-T cells have
also been engineered to simultaneously target EGFR through bicistronic
constructs for six patients with multifocal, treatment-refractory GBM
(NCT05168423). In this trial, half of the patients showed at least 30%
tumor shrinkage and 75% of patients showed stable disease at least
2 months after CAR-T cell therapy95.

Unpublished clinical trials
CD44 and CD133. CD44 is a hyaluronan receptor expressed in both
low-grade glioma and GBM116. CD133, a pentaspan membrane glyco-
protein, has been used as a marker for cancer stem cells in GBM117. Co-
expression of CD133 and CD44 has been linked to certain GBM sub-
types and clinical outcomes, as revealed by gene expression profiles
obtained from large patient datasets118. Clinical studies of CAR-T cells
targeting both CD44 and CD133 are currently underway, in some cases
with the introduction of a truncated IL-7 receptor α chain (IL-7Rα)
within the intracellular signaling domain. IL-7 receptor regulates sur-
vival, proliferation, and differentiation of T cells119. In the GBM
microenvironment, IL-7 signaling is reduced bymethylation of IL7/IL7R
genes, which in turn affects T cells function and survival120. A phase 1
clinical trial involving 10 patients with recurrent glioblastoma is cur-
rently underway (NCT05577091).

CD70. As a member of the tumor necrosis factor superfamily, CD70
mediates tumor progression and immune escape by recruiting immu-
nosuppressive regulatory T cells and inducing T-cell exhaustion. CD70
exhibits aberrant, constitutive expression in a variety of cancers,
including GBM121–123. Although CD70 expression in normal tissue is
limited, it is present on the cell surface ofmature dendritic cells (DCs) and
antigen-activated T and B lymphocytes124. A phase 1 clinical trial with
CD70 CAR-T cell therapy for recurrent GBM cases is underway
(NCT05353530).

CD147. CD147 is a glycoprotein that is involved in tumor growth,
invasion, and metastasis. It is known as an inducer of extracellular
matrixmetalloproteinases (MMPs), which trigger the degradation of the
extracellular matrix125. CD147 is overexpressed in various cancers,
including gliomas, and is associated with tumor grade and
prognosis126,127. A phase 1 clinical trial is currently investigating the use
of CD147-targeted CAR-T cells to treat recurrent malignant glioma.
However, CD147 is also expressed in several normal tissues, including
those of the CNS, which may lead to off-target effects128,129. To minimize
this on-target/off-tumor toxicity, CD147-CAR-T cells have been
incorporated into the synNotch-inducible system, a synthetic receptor
system that only activates CAR-T cells in the presence of a specific
antigen, thereby improving targeting precision. This system has shown
promising preclinical results130. Currently, a phase 1 clinical trial with
CD147 CAR-T cells is underway (NCT04045847).

MMP-2. Matrix metalloproteinase 2 (MMP-2) is part of a family of
proteolytic enzymes that degrade various components of the extra-
cellular matrix. Overexpression of MMP-2 has been associated with
intrinsic glial malignancies and has also been shown to play a role in
metastasis formation131. Chlorotoxin (CLTX), a naturally occurring
small peptide found in the venom of the deathstalker scorpion Leiurus
quinquestriatus132, binds to MMP-2 expressed on the surface of glioma
cells. This binding is rarely detectable in normal brain tissue, as well as
many other normal human tissues, including skin, kidneys, and
lungs133–136. Due to its binding specificity, CAR-T cells have been
engineered to incorporate CLTX as an antigen recognition domain.
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Two phase 1 clinical trials studying CLTX-CAR-T in MMP-2 positive
recurrent glioblastoma are currently underway (NCT04214392 and
NCT05627323).

Muc1. Muc1 is a member of the transmembrane mucin family, con-
sisting of highly glycosylated tandem repeats. The survival and prognosis
of patients with lung, stomach, colorectal, and pancreatic cancer are
associated with elevated expression of Muc1137–139. A specific glycosyla-
tion pattern on membrane proteins, including Muc1, has been shown to
be a marker for tumorigenesis and metastasis140–143. The most prevalent
glycosylation patterns include Tn (GalNAcα1-O-Ser/Thr) and sialyl-Tn
(STn) (NeuAcα2-6-GalNAcα1-O-Ser/Thr) glycoforms144, which are
present inmany types of cancer, including GBM145–147. Glycosylation and
elevated expression ofMuc1 have been shown to formnanoscale physical
barriers against immune cells, thereby reducing immune cell killing by
CAR-T cells148. Tn-Muc1 targeting CAR-T cells have shown promise in
the preclinical setting forMuc1-positive solid tumors149. One clinical trial
withCAR-T cells targetingMuc1 is currently underway (NCT02617134).

NKG2D. NKG2D is a C-type lectin-like receptor in the NKG2 family,
involved in the activation and regulation of natural killer (NK) cells. This
receptor plays an essential role in NK cell-mediated cytotoxicity by
binding to the homolog of the stress-inducible MHC class I chain-
related protein A and B (MICA, MICB)150. NKG2D ligands are typically
not expressed in normal cells but are upregulated in malignantly
transformed or infected cells151. GBMs are known to express NKG2D
ligands; however, immunosuppressive changes in the TME can lead to
reduced expression, which may ultimately impair the effectiveness of
NK cells or other therapeutic modalities targeting this receptor152. CAR-
T cell approaches targetingNKG2Dare currently being tested in patients
with GBM and other solid tumors (NCT04270461, NCT04717999,
NCT05131763)153.

PD-L1. Programmed death-ligand 1 (PD-L1) is a type 1 transmembrane
protein that acts as a pro-tumorigenic factor in cancer cells and can
modulate the induction of T cell-mediated immune tolerance. Interac-
tion between PD-L1 and PD-1 on the surface of activated T cells leads to
tumor immune escape and tumor growth154. PD-L1 is highly expressed
in glioblastoma multiforme155 and other malignancies. While check-
point therapy has emerged as a proven strategy for cancer immu-
notherapy, its effectiveness in brain tumors, including glioblastoma, has
been limited156. In a phase III clinical trial for patients with recurrent
GBM, there was no discernible improvement in survival benefit attrib-
uted to nivolumab156. Using the interaction between PD-L1 and PD-1,

the extracellular domain of PD-1 is fused to the transmembrane and
cytoplasmic domains of CD28 in CAR molecules. The CAR molecule
containing the extracellular domain of PD-1 can recognize PD-L1-
expressing tumor cells and transduce signals to activate T cells.With this
structure, a clinical trial is ongoing for patients with recurrent GBM
(NCT02937844).

Next-generation CAR-T cell targeting GBM
A variety of strategies have emerged to enhance the anti-tumor activity and
durability of response in CAR-T cell treatment for GBM. These approaches
build on lessons learned fromearly clinical experiences and pave theway for
the next generation of cell therapies currently being investigated in the
preclinical setting. These innovations can be grouped into three main
categories: antigen receptor engineering, genome engineering, and payload
delivery157 (Fig. 3).

Antigen receptor engineering for GBM
CAR-T cell therapies have historically targeted single antigens, but the
antigenic heterogeneity of GBMpresents a challenge for long-term efficacy.
Recent studies have focused on engineering CAR constructs that target
multiple antigens simultaneously to mitigate this issue. Specifically, several
engineered CARs, including tandem, bispecific, and universal CARs, may
offer enhanced fine-tuning for specific anti-tumor effects158–161. Tandem
CARs targeting IL-13Rα2 and HER2 or EGFRvIII have demonstrated
superior anti-tumor responses and reduced antigen escape compared to
single-targeted therapies in preclinical glioblastoma models92,162. A phase 1
trial is currently testing a bicistronic CAR targeting both IL-13Rα2 and
EGFR in GBM patients (NCT04661384).

Many target antigens expressed on the surface of tumor cells,
especially brain tumors, are also expressed on healthy cells, thus limiting
the potential for safe, tumor-specific treatment. To address this chal-
lenge, several synthetic biology strategies are being employed, often
incorporating multiple antigen-specific Boolean logic gates163,164. The
Synthetic Notch (SynNotch), an engineered receptor system that func-
tions as a molecular switch to control gene expression in response to
specific antigens, has been used to address the tumor heterogeneity,
persistence, and specificity issues associated with glioblastoma165,166. In
the context of CAR-T cell therapy, SynNotch receptors are used to
trigger the expression of CAR molecules targeting solid tumor antigens
in a Boolean AND-gate fashion when SynNotch recognizes its corre-
sponding antigen166–168. This SynNotch CAR-T technology is currently
being tested in patients with EGFRvIII-positive glioblastoma in a phase I
clinical trial by inducing anti-IL-13Rα2 and EphA2 CAR molecules
through the anti-EGFRvIII SynNotch receptor (NCT06186401).

Fig. 3 | Engineering approaches for GBM. Next-generation CAR-T cell therapies
integrate antigen receptor engineering, genome engineering, and payload delivery.
Antigen receptor engineering includes multiple CAR constructs (Dual CAR), tan-
dem CARs with two different scFvs, universal CARs for versatile scFv switching,
SynNotch CARs that detect target antigens and trigger T-cell signaling, and logic

gate approaches. Payload engineering enables CAR-T cells to secrete enzymes,
cytokines, and antibodies, such as T-cell engagers. In addition, CAR-T cells utilize
CRISPR-Cas9-based gene editing to target negative regulators of T-cell function to
optimize treatment outcomes.
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Engineering CAR-T cells to overcome the brain tumor
microenvironment
One of the main challenges in treating brain tumors is the immune-
suppressive nature of the tumormicroenvironment. Several approaches are
being developed to enable the delivery of immune-modulating factors, such
as cytokines, directly to the TME. For example, CAR-T cells engineered to
secrete cytokines IL-12 and IL-18 have shown increased activation of sur-
rounding immune cells, such asNK,NKT, and γδTcells169. Similarly, CAR-
T cells designed to secrete IL-15 have exhibited improved effector functions,
elevated levels of the anti-apoptotic protein Bcl-2, decreased expression of
PD-1, and superior tumor control and persistence in preclinical GBM
models170.

Additionally,CRISPR-Cas9 genomeediting techniqueshavebeenused
to engineerCAR-T cells that resist TGF-β-mediated immunosuppression, a
common feature of the GBM tumor microenvironment171. Also, CAR-T
cells have been engineered to prevent the expression of immune checkpoint
molecules such as PD-1, which are often upregulated in the TME of GBM
and contribute to T cell exhaustion. By knocking out these checkpoint
molecules, CAR-T cells can resist the suppressive signals in the TME,
improving their persistence and anti-tumor efficacy172.

Concluding remarks
Advances in gene and protein engineering continue to drive the develop-
ment of translationally relevant CAR-T cell therapies. As the field pro-
gresses, integrating innovative strategies and ongoing research efforts will
lead to safer, more precise, and potent CAR-T cell therapies for brain
tumors. This review highlights early clinical experience for CAR-T cell
therapy in patientswith brainmalignancies. Efforts are underway to address
the challenges impacting the efficacy of CAR-T cell therapy in this context,
including tumorheterogeneity, the tumormicroenvironment, the structural
complexities of the brain that hinder immune cell infiltration, and the
limited understanding of post-CAR-T therapy toxicities affecting the CNS.
Strategies to overcome these obstacles include the development of engi-
neered CAR constructs and the exploration of novel cancer-associated
antigens. As our experience with these approaches expands, collaborative
efforts across multiple disciplines, including engineering, immunology, and
patient clinical care, will be critical to fully realizing the potential of CAR-T
cell therapy for aggressive brain tumors where the need for effective treat-
ments is great.
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