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Simple Summary: Glioblastoma (GBM) appears to be a challenging malignancy to completely
eradicate, with few significant improvements in treatment. This review explores the mechanisms
by which GBM tumors acquire resistance to antiangiogenic therapy, which are designed to inhibit
the growth of blood vessels in tumors. This study addresses numerous mechanisms of resistance,
including redundant pathways, heightened invasion, hypoxia, and immune modulation. This article
additionally highlights potential strategies to overcome resistance, including combination therapies,
personalized medicine, immunotherapy, and drug delivery using nanoparticles, with the goal of
enhancing treatment results for patients with GBM.

Abstract: Malignant gliomas present great difficulties in treatment, with little change over the past
30 years in the median survival time of 15 months. Current treatment options include surgery,
radiotherapy (RT), and chemotherapy. New therapies aimed at suppressing the formation of new
vasculature (antiangiogenic treatments) or destroying formed tumor vasculature (vascular disrupting
agents) show promise. This study summarizes the existing knowledge regarding the processes by
which glioblastoma (GBM) tumors acquire resistance to antiangiogenic treatments. The discussion
encompasses the activation of redundant proangiogenic pathways, heightened tumor cell invasion
and metastasis, resistance induced by hypoxia, creation of vascular mimicry channels, and regulation
of the tumor immune microenvironment. Subsequently, we explore potential strategies to overcome
this resistance, such as combining antiangiogenic therapies with other treatment methods, personal-
izing treatments for each patient, focusing on new therapeutic targets, incorporating immunotherapy,
and utilizing drug delivery systems based on nanoparticles. Additionally, we would like to discuss
the limitations of existing methods and potential future directions to enhance the beneficial effects
of antiangiogenic treatments for patients with GBM. Therefore, this review aims to enhance the
research outcome for GBM and provide a more promising opportunity by thoroughly exploring the
mechanisms of resistance and investigating novel therapeutic strategies.
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1. Introduction

Glioblastoma (GBM) is the predominant and highly malignant primary brain tumor in
adults, known for its rapid proliferation, invasive nature, and unfavorable prognosis [1,2].
Despite the progress made in surgical methods, radiotherapy, and chemotherapy, the aver-
age lifespan of individuals with GBM remains disappointingly short, usually approximately
15 months after being diagnosed [3]. Many promising therapies target microvasculature
in this highly vascular tumor. These fall into two main categories: antiangiogenic (AA)
agents [4–9], which inhibit the formation of new vasculature, and vascular disrupting
agents (VDAs), which selectively destroy the tumor vasculature. Antiangiogenic thera-
pies often target the proangiogenic compound vascular endothelial growth factor (VEGF),
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which is widely expressed in gliomas [10,11], or VEGF receptors (VEGFRs). Since VEGF is
known to increase vascular permeability in mature vessels and promote the proliferation
of new leaky microvasculature, Vredenburgh [4] et al. have demonstrated in a phase II trial
that bevacizumab, a VEGF-A inhibitor, extends the progression-free survival in patients
with recurrent malignant gliomas by a factor of two or more. It was noted therein that
two-thirds of the patients showed a partial response, which was judged by a greater than
50% decrease in the area of contrast enhancement on T1-weighted post-contrast images [12].
The reliance on angiogenesis has resulted in the emergence and application of antiangio-
genic treatments that target the suppression of new blood vessel production [13]. This
effectively deprives the tumor of the necessary nutrition and oxygen it needs to grow and
survive. Antiangiogenic treatments, including those that focus on inhibiting VEGF and its
receptors, demonstrated initial potential in preclinical models and early clinical studies [14].
Bevacizumab, a monoclonal antibody that targets VEGF, has shown notable enhancements
in the length of time before disease progression and alleviation from symptoms in indi-
viduals with GBM [15]. Nevertheless, the excitement around these treatments has been
dampened by the recognition that their advantages are frequently short-lived and do not
substantially prolong overall lifespan. Tumors often acquire resistance to antiangiogenic
therapies, which reduces their long-term effectiveness and presents a major obstacle in the
clinical treatment of GBM [16]. The conventional approach usually entails the utilization of
a blend of surgical intervention, radiation therapy, and chemotherapy employing temo-
zolomide [17]. Nevertheless, these treatments generally focus on extending lifespan and
enhancing the overall well-being rather than offering a complete remedy.

GBM tumors utilize redundant angiogenic pathways as a main means to resist antian-
giogenic therapy [18]. Tumor cells could increase the production of other substances that
promote the formation of blood vessels, such as fibroblast growth factor (FGF), platelet-
derived growth factor (PDGF), and angiopoietins, when the VEGF signaling is blocked [19].
These alternate routes can offset the decrease in VEGF function, maintaining the formation
of new blood vessels and the growth of tumors [20]. Furthermore, inhibiting VEGF can
unexpectedly enhance the invasiveness and ability to spread to other parts of the body
in GBM cells [21]. The heightened invasiveness that ensues enables tumor cells to spread
into the adjacent brain tissue, resulting in recurrences that are resistant to treatment [22].
Hypoxia, which refers to a state of decreased oxygen levels in the tumor microenvironment,
is an additional important component contributing to resistance against antiangiogenic
treatments [23]. Antiangiogenic therapy may aggravate hypoxia by interrupting the tu-
mor’s blood supply, leading to the activation of hypoxia-inducible factors (HIFs) [24]. These
transcription factors control the activity of several genes that are involved in the processes
of angiogenesis, metabolism, and survival [25]. As a result, it facilitates the tumor’s ability
to adapt and develop resistance. In addition, hypoxia can induce the occurrence of vascular
mimicry, which refers to the formation of vessel-like structures by tumor cells themselves,
enabling blood flow without the involvement of endothelial cells [26].

Considering the resistance mechanisms, current treatment techniques are adapted to
address the complex character of GBM. Researchers are currently investigating combination
therapies that simultaneously target various angiogenic pathways. They are also studying
therapies that combine antiangiogenic drugs with conventional chemotherapy, radiation,
or immunotherapy [16]. Personalized medicine strategies, utilizing molecular profiling
of cancers to customize treatments for individual patients, show potential in improving
therapeutic results [27]. In addition, researchers are discovering additional therapeutic
targets that go beyond the conventional pathways involved in angiogenesis. These findings
present new opportunities for intervention. Investigations are also underway to explore the
utilization of nanoparticles to enhance drug delivery and effectiveness, which is considered
another pioneering strategy [28]. Although there has been notable progress in this area,
there are still substantial obstacles to overcome in addressing the resistance to antiangio-
genic treatment in glioblastoma. The diverse and flexible nature of the tumor, together with
the intricate interactions within the tumor microenvironment, need a comprehensive and
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ever-changing strategy to treatment [29]. In this current review, we would like to consider
understanding the complex processes of resistance and discussing combination therapy
that can effectively target the robust characteristics of GBM.

2. Mechanisms of Resistance to Antiangiogenic Therapies in GBM

Glioblastoma (GBM) is a remarkably aggressive brain tumor characterized by its
extensive network of blood vessels [30]. Antiangiogenic therapies seek to disrupt the blood
supply by specifically targeting VEGF, a crucial element in the process of angiogenesis.
Nevertheless, GBM tumors acquire resistance through many methods, as shown in Figure 1:
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Figure 1. Overview mechanisms of resistance to antiangiogenic therapies in GBM. Despite primary
angiogenic signal suppression, GBM tumors activate alternate angiogenic pathways to maintain blood
supply and tumor growth. GBM cells become more invasive in response to antiangiogenic therapy, al-
lowing them to colonize distant brain regions and avoid localized therapeutic effects. Antiangiogenic
treatment causes tumor microenvironment hypoxia. Hypoxia stabilizes HIFs, which activate genes
that promote survival, angiogenesis, and therapeutic resistance. GBM cells transdifferentiate into
endothelial-like cells, producing vessel-like structures without angiogenesis and sustaining nutrition
supply. Antiangiogenic treatment changes tumor microenvironment immunity. This can recruit
immunosuppressive cells and generate immunosuppressive cytokines, allowing tumor cells to avoid
immune monitoring and elimination. The figure was drawn by Biorender 16 July 2024.

2.1. Redundant Angiogenic Pathways

Angiogenesis is a defining characteristic of GBM and continues to be a significant
focus in its therapy, particularly for cases with recurring GBM, a crucial regulator and
stimulator of angiogenesis. Hence, the development of antiangiogenic treatments (AATs)
that specifically target VEGF or VEGF receptors (VEGFRs) was undertaken with the aim of
effectively managing the growth of GBM [31]. The redundancy and intricacy of angiogenic
pathways in GBM provide substantial obstacles to the effectiveness of antiangiogenic treat-
ments [1]. Alternative proangiogenic factors can be activated by tumor cells when VEGF is
inhibited, leading to the promotion of blood vessel formation through alternative signaling
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pathways [32]. The factors include FGF, PDGF, HGF, angiopoietins (Ang), and interleukins
(ILs) [33]. These substances can promote the growth and movement of endothelial cells,
leading to the formation of new blood vessels without relying on VEGF [34]. Anti-VEGF
therapies may selectively focus on stages; however, GBM could trigger alternate pathways
for other stages [35]. For instance, certain therapies specifically focus on inhibiting the bind-
ing of VEGF to its receptors. Tumors may increase the expression of alternative receptor
signaling or employ non-receptor mediated methods to promote angiogenesis [36]. How-
ever, the presence of low oxygen levels, known as hypoxia, resulting from antiangiogenic
therapy, can stimulate the development of alternative pathways for blood vessel formation
in the TME [13]. Hypoxia triggers the activation of HIF-1α, a key controller that stimulates
the production of many proangiogenic factors in addition to VEGF. This results in the
formation of intricate signaling pathways that could circumvent the inhibition of VEGF [37].
Gaining an understanding of duplicated pathways is essential since it elucidates the reason
why solely targeting VEGF frequently proves ineffective in managing GBM progression
(Figure 2). Tumors utilize these pathways to adjust and generate fresh blood vessels, hence
undermining the efficacy of antiangiogenic treatments [38]. Scientists are investigating
methods to overcome this barrier. Current research is focused on exploring combination
therapies that can simultaneously target various pathways involved in angiogenesis, and
pharmaceuticals that specifically target the signaling molecules activated by these path-
ways [19]. Sunitinib is a small molecule multitarget receptor tyrosine kinase inhibitor
that can block signaling through various receptors, including PDGFRs, VEGFRs, c-KIT,
colony-stimulating factor-1 receptor, and fetal liver kinase 3-internal tandem duplication
(FLT3-ITD) [31]. Furthermore, researchers are investigating methods to standardize and
enhance the functionality of pre-existing blood arteries. Understanding these pathways is
essential for developing more efficient therapeutic approaches that can overcome resistance
and enhance patient outcomes. Subsequent investigations should prioritize the develop-
ment of treatment strategies that combine therapies targeting several pathways involved in
the formation of new blood vessels and the surrounding environment of the tumor, with
the goal of achieving long-lasting suppression of tumor growth.

2.2. Increased Invasion and Metastasis

GBM is a highly aggressive brain tumor known for its resistance to many therapies,
including antiangiogenic therapies. An important factor contributing to the resistance of
these therapies is the heightened invasion and spread of the tumor cells [39]. Antiangiogenic
therapies aim to hinder the blood supply of the tumor by blocking the activity of VEGF
and other pathways involved in the formation of new blood vessels (angiogenesis) [13].
Although this technique initially decreases the blood vessel formation and growth of the
tumor, it unintentionally encourages a more aggressive behavior of the tumor. Application
of antiangiogenic therapy induces a hypoxic environment in the tumor by decreasing blood
flow, which in turn stimulates various adaptive responses [13]. Under situations of low
oxygen, HIFs become stable, resulting in the activation of genes that promote cell survival,
invasion, and metastasis [40]. For example, HIF-1α enhances the production of matrix
metalloproteinases (MMPs) and other enzymes that break down the extracellular matrix
(ECM), enabling tumor cells to more efficiently penetrate the surrounding brain tissue [23].

Furthermore, the invasive characteristics of GBM cells are influenced by the process
of hypoxia-induced epithelial–mesenchymal transition (EMT) [41]. During the process
of EMT, tumor cells undergo a loss of their epithelial characteristics, including cell–cell
adhesion, and acquire mesenchymal traits, which leads to an increase in their ability to
move and invade surrounding tissues [42]. This metamorphosis is partially influenced by
factors related to low oxygen levels (hypoxia) and signaling pathways involving growth
factors, such as transforming growth factor-TGF-β and HGF [43]. In addition, the oxygen-
deprived environment might stimulate the production of chemokines and their receptors,
such as CXCL12 and CXCR4, which in turn promote the movement and infiltration of tumor
cells [44]. Chemokine interactions facilitate the evasion of immune surveillance by tumor
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cells and the establishment of secondary sites of growth, hence promoting metastasis [45].
Ultimately, the hypoxia caused by antiangiogenic therapy can result in a TME that is
both more aggressive and adaptable [23]. The hypoxic conditions exert selection pressure,
leading to the creation of highly invasive subclones of tumor cells that can thrive despite
the inhospitable environment [46]. The presence of this adaptive resistance mechanism
emphasizes the difficulty in treating GBM and emphasizes the necessity for combined
therapies that address both angiogenesis and the invasive characteristics of the tumor
cells [46]. Scientists are currently studying methods to address this issue, such as merging
antiangiogenic therapy with medications that focus on invasion pathways or utilizing
targeted therapies that regulate the tumor vasculature without stimulating invasion.
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Figure 2. Mechanisms of antiangiogenic resistance in GBM. Anti-VEGF therapies inhibit VEGF, but
tumors adapt by activating alternative proangiogenic factors such as FGF, PDGF, HGF, angiopoietins,
and interleukins, promoting angiogenesis through VEGF-independent pathways. Hypoxia induced
by antiangiogenic therapy triggers HIF-1α, which stimulates various proangiogenic factors, creating
complex signaling networks that circumvent VEGF inhibition. Understanding these redundant
pathways highlights the challenge of effectively targeting angiogenesis in GBM and underscores the
need for combination therapies to manage GBM progression more effectively. The figure was drawn
by Biorender 18 July 2024.
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2.3. Hypoxia-Induced Resistance

A major challenge in the management of GBM is the development of resistance to
various medications due to hypoxia. GBM often exhibits hypoxia, which is characterized
by low oxygen levels in the tumor microenvironment [47]. Tumor growth occurs because
of the rapid multiplication of tumor cells surpassing their blood supply and the abnormal
blood vessels that are typical of these tumors [48]. Hypoxia initiates a series of adaptive
reactions that lead to the development of resistance to therapy [24]. The HIFs, specifically
HIF-1α and HIF-2α, are the main individuals involved in this process [49]. Transcription
factors are made more stable in low oxygen circumstances and trigger the activation of
several genes that support the survival and adaptability of tumors [50]. Hypoxia increases
resistance to antiangiogenic therapy by upregulating proangiogenic proteins, including
VEGF, angiopoietins, and FGF [51]. Although antiangiogenic medications suppress VEGF
signaling pathways, hypoxia can still promote angiogenesis through other mechanisms,
which allows the tumor to maintain its blood supply and continue growing and surviv-
ing [51]. In addition, hypoxia stimulates a more assertive and infiltrative tumor phenotype.
Hypoxia-induced activation of HIF leads to the upregulation of MMPs and other enzymes
that breakdown the extracellular matrix, hence promoting the migration of tumor cells into
the adjacent healthy brain tissue [52]. This intrusive tendency also complicates treatment,
as invasive tumor cells are less reachable for both surgical removal and localized therapies.
Hypoxia also affects the immune response in the tumor microenvironment [23]. It can
stimulate the production of immunological checkpoint molecules and modify the behavior
of immune cells, which leads to a suppressive environment that impairs the effectiveness of
immunotherapies [53]. Furthermore, the metabolic reprogramming of tumor cells caused
by hypoxia promotes their ability to survive in settings when nutrients are scarce, hence
increasing their resistance to therapies that target metabolic pathways [54]. Overall, resis-
tance to hypoxia in GBM is a complex interaction that includes heightened angiogenesis,
elevated invasion, evasion of the immune system, and metabolic adaptability [55]. Gaining
a comprehensive understanding of these pathways is of utmost importance for devising
more efficient therapeutic approaches that can effectively address the difficulties presented
by hypoxia in GBM [56]. To significantly improve the efficacy of antiangiogenic thera-
pies and potentially enhance patient outcomes for GBM, it is necessary to overcome the
resistance caused by hypoxia.

2.4. Vascular Mimicry

Vascular mimicry (VM) is the formation of blood vessel-like structures in extremely
aggressive tumors, such as GBM, without the presence of endothelial cells [57]. Tumors
can sustain their growth and spread to other parts of the body by bypassing standard
mechanisms of blood vessel formation [58]. This poses considerable problems to therapies
that aim to prevent the establishment of new blood vessels. GBM is characterized by
tumor cells undergoing a transformation where they acquire characteristics like endothelial
cells [59]. This transformation allows the tumor cells to create vascular channels [60]. Tumor
cells in this phase display endothelium markers, including CD31, VE-cadherin, and Factor
VIII [61]. Transcription factors like as Ets-1 and HIF-1α are essential in controlling this
change in phenotype [62]. HIF-1α is specifically increased in the oxygen-deprived tumor
microenvironment, stimulating the activation of genes that are crucial for the development
of blood vessel structures [63]. VM is associated with multiple molecular pathways [64].
The function of MMPs is essential, as they break down the extracellular matrix, which
helps in the creation of VM channels [65]. Additionally, the process known as EMT plays
a crucial role in VM, whereby tumor cells undergo a transformation from their epithelial
state to a mesenchymal one, acquiring traits like stem cells [32]. GBM patients with the
presence of VM exhibit a negative prognosis and show resistance to standard therapies,
such as bevacizumab, which is an antiangiogenic medication [66]. Antiangiogenic therapies
specifically focus on the endothelial cells of recently developed blood vessels with the goal
of interrupting the blood flow to the tumor [67]. Nevertheless, because of the absence of de-
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pendence on endothelial cells, these treatments frequently prove to be unsuccessful against
VM. The robustness of VM channels enables tumors to sustain sufficient blood flow and
food provision, hence compromising the effectiveness of antiangiogenic medications [68].
To counteract the resistance generated by VM, researchers are investigating innovative
therapeutic approaches. Focusing on the routes and elements associated with VM, such as
HIF-1α, PI3K/AKT, and MMPs, presents a hopeful strategy [32]. Researchers are also study-
ing substances that can prevent the process of EMT and the acquisition of stem cell-like
characteristics in tumor cells [69]. Integrating these tactics with traditional therapies may
enhance treatment results for GBM patients [70]. To put it simply, VM is a crucial method
of resistance in GBM, allowing tumors to avoid antiangiogenic treatments [26]. Therefore,
gaining insight into the fundamental mechanisms and creating specific treatments for VM
could greatly improve the efficacy of GBM therapy.

2.5. Immune Modulation

GBM is a very aggressive brain tumor that is well known for having a very unfavor-
able prognosis [3]. Antiangiogenic therapies, namely those that target VEGF, have been
utilized to impede the blood flow to tumors, with the goal of limiting their growth [29].
Nevertheless, there is a prevalent occurrence of resistance to these therapies, and one of
the primary mechanisms contributing to this resistance is immunological regulation [71].
Antiangiogenic therapies have a substantial effect on the TME, affecting both the innate and
adaptive immune responses [72]. These therapies can initially decrease the formation of
blood vessels in tumors and restore the natural structure of aberrant blood vessels, which
may improve the infiltration of immune cells [73]. Nevertheless, as the body’s resistance
to the tumor increases, the immunological environment within the tumor experiences
significant alterations that support the tumor’s ability to survive and advance [74].

An essential element of immune regulation in the context of antiangiogenic therapy
is the modification of myeloid cell populations [75]. Myeloid-derived suppressor cells
(MDSCs) and tumor-associated macrophages (TAMs) are frequently attracted to the TME
because of therapy-induced oxygen deficiency [76]. These cells have a dual function:
they can assist in the early immune response against tumors, but they frequently develop
immunosuppressive characteristics that shield the tumor [77]. MDSCs can prevent the
activation and growth of T cells, while TAMs can release immunosuppressive cytokines, in-
cluding IL-10 and TGF-β, which further weaken the immune response against tumors [78].
In addition, antiangiogenic therapy can create a low-oxygen environment that stabilizes
HIFs. HIFs enhance the production of immunosuppressive molecules such as PD-L1 on can-
cer cells, resulting in T cell exhaustion and compromised immunological monitoring [79].
The presence of hypoxia-induced immunosuppression poses a substantial obstacle to the
efficacy of antiangiogenic treatments [80] (Figure 3). Furthermore, the modified blood
vessels in resistant tumors frequently hinder the transportation of immune cells and im-
munotherapeutic drugs, forming a physical obstacle to an efficient immune response [81].
The heightened interstitial fluid pressure and atypical vascular structure diminish the
effectiveness of immune cell infiltration and function within the tumor [82]. To summa-
rize, immune regulation is crucial in determining the resistance of GBM to antiangiogenic
treatments. The failure of these therapies is attributed to the recruitment and activation
of immunosuppressive myeloid cells, the production of immunosuppressive chemicals
generated by hypoxia, and the presence of physical barriers that prevent immunological
infiltration. Comprehending these pathways is essential for formulating combination meth-
ods that can surmount resistance and augment the effectiveness of antiangiogenic therapy
in GBM.
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Figure 3. Antiangiogenic immune modulation in GBM. Myeloid-derived suppressor cells (MDSCs)
inhibit T cell activation and growth, while tumor-associated macrophages (TAMs) secrete immuno-
suppressive cytokines IL-10 and TGF-β, impairing immune responses. Antiangiogenic therapy
induces hypoxia, stabilizing hypoxia-inducible factors (HIFs) which upregulate PD-L1 on cancer cells,
leading to T cell exhaustion. Hypoxia-induced immunosuppression significantly hampers the efficacy
of antiangiogenic treatments, highlighting the critical role of immune regulation in glioblastoma
(GBM) resistance to these therapies. The figure was drawn by Biorender 18 July 2024.

3. Current Treatment Strategies to Overcome Antiangiogenic Resistance in GBM

GBM is an extremely aggressive kind of brain cancer. Antiangiogenic therapies,
which focus on disrupting the blood supply to the tumor, have shown great potential as a
therapy method for GBM [83]. Nevertheless, cancers gradually acquire resistance to these
therapies. The following is a description of the current approaches employed to overcome
this resistance in GBM.

3.1. Combination Therapies

Combination therapies have arisen as a hopeful approach to surmount antiangio-
genic resistance in GBM [84]. Antiangiogenic therapies, which hinder the development
of new blood vessels that nourish the tumor, have demonstrated initial potential but
frequently result in resistance and restricted long-term effectiveness [36]. To tackle this
issue, researchers are investigating the incorporation of several therapeutic methodologies.
An effective method involves combining antiangiogenic drugs with chemotherapy [85].
Temozolomide and other chemotherapeutic medications can augment the effectiveness
of antiangiogenic therapy by directly attacking the tumor cells, while the antiangiogenic
agents simultaneously obstruct the tumor’s blood supply [86]. This simultaneous assault
has the potential to impede or thwart the emergence of resistance. An alternative strategy
involves the integration of antiangiogenic treatments with radiation therapy. Tumor cells
can have their DNA harmed by radiation, which increases their vulnerability to the impacts
of antiangiogenic medications [87]. In addition, radiation therapy can restore the normal
structure and function of blood vessels in the tumor, hence enhancing the transportation
of antiangiogenic drugs to the tumor location [88]. Immunotherapy is now being investi-
gated in conjunction with antiangiogenic therapies [13]. Combining immune checkpoint
inhibitors with antiangiogenic drugs can boost their effectiveness in stimulating the body’s
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immune response against cancer cells [36]. Antiangiogenic therapy can modify the tumor
microenvironment, which may enhance the conditions for immune cells to penetrate and
target the tumor [13]. Moreover, employing combination therapies that target several
pathways involved in angiogenesis and tumor growth can offer a more comprehensive
strategy. By concurrently suppressing many signaling pathways, such as VEGF, PDGF, and
integrins, the probability of tumor cells acquiring resistance to treatment is diminished [89].
These combination treatments are being studied in ongoing research and clinical studies
with the goal of identifying more potent treatments for GBM. However, medications focus
on targeting numerous pathways and mechanisms that contribute to tumor growth and re-
sistance (Table 1). To summarize, combination therapies provide a comprehensive strategy
to address resistance to antiangiogenic treatment in GBM, offering potential for improved
and long-lasting therapeutic alternatives for patients. Future research is primarily focused
on conducting clinical trials to investigate the use of TME-directed therapies in combination
with standard therapy [90]. Additionally, there is a need to explore new therapies and GBM
models for preclinical investigations.

Table 1. Combination medicine therapy targeting GBM.

Drug
Name Molecular Signaling Target Cells Doses and Effects Current Application

in GBM References

Bevacizumab +
irinotecan

VEGF inhibition,
topoisomerase I

inhibition

Endothelial cells,
tumor cells

Bevacizumab: 10 mg/kg;
irinotecan: 125 mg/m2

Used in recurrent GBM;
aims to inhibit angiogenesis

and tumor growth
[91]

Temozolomide +
bevacizumab

DNA alkylation,
VEGF inhibition

Tumor cells,
endothelial cells

Temozolomide:
150–200 mg/m2;

bevacizumab: 10 mg/kg

Used in newly diagnosed
and recurrent GBM; targets

DNA and angiogenesis
[92]

Bevacizumab +
lomustine

VEGF inhibition,
DNA alkylation

Endothelial cells,
tumor cells

Bevacizumab: 10 mg/kg;
lomustine: 110 mg/m2

Used in recurrent GBM;
aims to combine

antiangiogenic and
cytotoxic effects

[35]

Nivolumab +
bevacizumab

PD-1 inhibition,
VEGF inhibition

Immune cells,
endothelial cells

Nivolumab: 3 mg/kg;
bevacizumab: 10 mg/kg

Used in clinical trials for
recurrent GBM; aims to

enhance immune response
[36]

Bevacizumab +
carboplatin

VEGF inhibition,
DNA crosslinking

Endothelial cells,
tumor cells

Bevacizumab: 10 mg/kg;
carboplatin: AUC 5-6

Investigated in recurrent
GBM; aims to enhance

DNA damage and
inhibit angiogenesis

[93]

Pembrolizumab +
bevacizumab

PD-1 inhibition,
VEGF inhibition

Immune cells,
endothelial cells

Pembrolizumab: 200 mg;
bevacizumab: 10 mg/kg

Used in clinical trials for
recurrent GBM; aims to

boost immune system and
inhibit angiogenesis

[36]

Bevacizumab +
erlotinib

VEGF inhibition,
EGFR inhibition

Endothelial cells,
tumor cells

Bevacizumab: 10 mg/kg;
erlotinib: 150 mg daily

Investigated in recurrent
GBM; targets both
angiogenesis and
EGFR signaling

[94]

Bevacizumab +
temsirolimus

VEGF inhibition,
mTOR inhibition

Endothelial cells,
tumor cells

Bevacizumab: 10 mg/kg;
temsirolimus: 25 mg

weekly

Used in clinical trials for
recurrent GBM; aims to
inhibit angiogenesis and

mTOR pathway

[14]

Cediranib +
lomustine

VEGFR inhibition,
DNA alkylation

Endothelial cells,
tumor cells

Cediranib: 30 mg daily;
lomustine: 110 mg/m2

Investigated in recurrent
GBM; aims to inhibit

angiogenesis and
enhance cytotoxicity

[66]

Bevacizumab +
ipilimumab

VEGF inhibition,
CTLA-4 inhibition

Endothelial cells,
immune cells

Bevacizumab: 10 mg/kg;
ipilimumab: 3 mg/kg

Used in clinical trials for
recurrent GBM; aims to

enhance immune response
and inhibit angiogenesis

[95]
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3.2. Personalized Medicine

Utilizing personalized medicine for the treatment of glioblastoma shows potential in
overcoming resistance to antiangiogenic treatments [16]. Glioblastoma frequently acquires
resistance to therapies such as bevacizumab, an antibody that targets VEGF [84]. Person-
alized medicine customizes treatments according to the specific genetic and molecular
characteristics of a patient’s tumor, resulting in enhanced therapeutic effectiveness and de-
creased resistance. An important approach involves combining genomic and transcriptomic
data to pinpoint certain mutations and pathways that contribute to tumor angiogenesis and
resistance mechanisms [96]. Through the process of sequencing the DNA and RNA of the
tumor, medical professionals can identify specific mutations and disrupted pathways that
can be targeted for treatment [97]. For example, modifications in the PI3K/AKT/mTOR
pathway, which are frequently linked to resistance against anti-VEGF therapy, can be ef-
fectively addressed by utilizing targeted inhibitors [98]. EGFR inhibitors can be used to
treat abnormalities in the EGFR gene [99]. In addition, customized methodologies involve
the utilization of liquid biopsies to actively track the response and resistance to treatment
in real time [100]. Circulating tumor DNA (ctDNA) and exosomes offer a less intrusive
method to monitor the progression of tumors and identify new mutations that may cause
resistance to treatment [101]. Furthermore, the potential for success lies in the integration
of antiangiogenic therapy with other modalities that are tailored to the specific molecular
characteristics of the tumor [16]. Integrating immunotherapy with antiangiogenic drugs
can improve treatment response by altering the tumor microenvironment to facilitate the
infiltration and activity of immune cells [102,103]. Biomarkers, such as HIFs, can be used to
identify patients who are most likely to benefit from combination therapy. Personalized
medicine in GBM entails a thorough strategy that utilizes molecular profiling, continuous
monitoring, and tailored combination therapy to overcome resistance to antiangiogenic
treatment, with the goal of enhancing patient outcomes [104]. GBM can develop beva-
cizumab resistance through several methods. The tumor may activate alternate pathways
to enhance angiogenesis, upregulate growth factors, or become more invasive in hypoxic
conditions [51]. This resistance reduces bevacizumab’s efficacy, advancing tumors. To over-
come resistance, combination medicines are investigated. Bevacizumab can be used with
immune checkpoint inhibitors, metabolic inhibitors, or other targeted medicines that target
alternate angiogenesis and tumor development pathways [13]. Developing biomarkers to
identify bevacizumab-responsive patients allows for more personalized treatment [105].
Demethylation of the MGMT promoter increases MGMT enzyme production, which repairs
TMZ-damaged DNA and allows tumor cells to survive and proliferate [106]. DNA repair
pathways, drug absorption and efflux, and epigenetic modifications are other resistance
mechanisms. Combining TMZ with MGMT inhibitors to impede DNA repair, targeting
alternative DNA repair systems, or using innovative compounds to generate synthetic
lethality in tumor cells are ways to circumvent TMZ resistance [107]. Understanding the
tumor’s molecular and genetic characteristics can also drive combination therapy or the
development of novel drugs that target resistant GBM cells. Combining bevacizumab
and TMZ with additional targeted therapy and personalized medicine techniques may
help overcome antiangiogenic resistance in GBM, but obstacles remain. The medications
included consist of both FDA-approved treatments, and those currently undergoing clinical
development are presented in Table 2. This demonstrates the wide range of tactics being
studied for personalized medicine in GBM.

Table 2. Summarizing 10 personalized medicine drugs used in the context of GBM.

Drug Name Molecular Action Target Cells Doses Current Application
in GBM References

Bevacizumab
(Avastin)

VEGF inhibitor,
blocks angiogenesis Endothelial cells 10 mg/kg IV every

2 weeks
Approved for recurrent
GBM, reduces edema [108]

Temozolomide
(TMZ)

Alkylating agent,
induces DNA damage Tumor cells 150–200 mg/m2/day for

5 days every 28 days
Standard chemotherapy

for newly diagnosed GBM [109]
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Table 2. Cont.

Drug Name Molecular Action Target Cells Doses Current Application
in GBM References

Everolimus (Afinitor)
mTOR inhibitor,

inhibits cell growth
and proliferation

Tumor cells 10 mg orally once daily
Under investigation,

potential to target
mTOR pathway

[110]

Larotrectinib
(Vitrakvi)

TRK fusion inhibitor,
blocks TRK signaling

Tumor cells with
NTRK fusions 100 mg/m2 twice daily

Experimental, targeting
NTRK

fusion-positive GBM
[111]

Enzastaurin
(LY317615)

PKC-β inhibitor,
induces apoptosis Tumor cells 500 mg orally once daily

Under investigation,
potential

anti-tumor activity
[112]

Marizomib
(NPI-0052)

Proteasome inhibitor,
induces apoptosis Tumor cells 0.7 mg/m2 IV once

weekly
Clinical trials, targeting

proteasome in GBM [113]

Abemaciclib
(Verzenio)

CDK4/6 inhibitor,
inhibits cell cycle

progression
Tumor cells 150 mg orally twice daily

Experimental, targeting
CDK4/6 pathway

in GBM
[114]

Olaparib (Lynparza) PARP inhibitor,
impairs DNA repair Tumor cells 300 mg orally twice daily

Investigational, for
tumors with DNA
repair deficiencies

[115]

Nivolumab (Opdivo) PD-1 inhibitor, boosts
immune response

Tumor cells,
immune cells

3 mg/kg IV every
2 weeks

Under investigation,
potential in

immunotherapy
[116]

Toca 511 and Toca FC
Gene therapy,

converts prodrug to
active chemotherapy

Tumor cells

Toca 511: intratumoral
injection; Toca FC:

220 mg/m2 orally every
6 weeks

Experimental, gene
therapy approach

in GBM
[117]

3.3. Novel Therapeutic Targets

Efforts to address the problem of antiangiogenic resistance in glioblastoma are now
mostly centered around the discovery of new therapeutic targets. GBM frequently acquires
resistance to antiangiogenic treatments that aim to inhibit the development of new blood
vessels that nourish tumor growth [118]. A potential field of study focuses on targeting al-
ternative angiogenesis pathways that circumvent the effects of conventional antiangiogenic
medications. For example, medications that target the suppression of non-VEGF pathways,
such as those involving angiopoietin-2 or FGF signaling, have demonstrated promise [119].
These pathways play a role in the process of vascular stability and maturation, providing
additional targets for VEGF inhibitors. An alternative strategy entails focusing on the tumor
microenvironment to augment the effectiveness of antiangiogenic treatments. Researchers
aim to disrupt the supporting environment that maintains tumor angiogenesis and growth
by modifying immune responses, extracellular matrix components, or metabolic variables
inside the GBM microenvironment [120]. Moreover, progress in molecular profiling and
genomic sequencing has discovered distinct molecular changes in GBM that could poten-
tially be targeted for therapy [3]. Precision medicine tactics seek to customize treatments
by considering the genetic and molecular traits of cancers, which may help overcome
inherent resistance mechanisms [27]. Furthermore, there is ongoing research into combi-
nation therapies that aim to target various pathways implicated in the angiogenesis and
growth of GBM [57]. These combinations may consist of traditional chemotherapeutic
drugs, immunotherapies, or targeted drugs that act on both angiogenic and non-angiogenic
pathways. The goal is to create synergistic effects and delay or avoid the development of
resistance. Ultimately, novel therapeutic targets in GBM seek to challenge the challenges
of antiangiogenic resistance by adopting innovative strategies such as targeting alterna-
tive pathways, changing the tumor microenvironment, utilizing precision medicine, and
implementing combination therapy [121]. Endothelial progenitor cells (EPCs) have the
potential to serve as carriers for adenoviral vectors and imaging probes in gene therapy for
glioblastoma [122]. These techniques show potential for enhancing results in GBM patients
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who are unresponsive to traditional antiangiogenic therapies. Bevacizumab, when used in
conjunction with temozolomide and radiotherapy, has been established as a conventional
therapy [123]. Scientists are investigating the possibility of using different combinations
of chemotherapeutic drugs, targeted treatments, or immunotherapies to improve effec-
tiveness and overcome resistance. The objective of combining bevacizumab with immune
checkpoint inhibitors, such as nivolumab or pembrolizumab, is to augment the immune
response against the tumor and mitigate resistance [124]. The combination of TMZ plus
antiangiogenic medicines, such as bevacizumab (a VEGF inhibitor), has been investigated
as a means to improve therapeutic effectiveness and prolong the development of resis-
tance [123]. The combination functions by administering chemotherapy to kill the tumor
cells while concurrently impeding the development of neovascularization that provides
nourishment to the tumor [125]. To overcome resistance, it may be beneficial to target
additional pathways, such as MET or EGFR, which are frequently increased in GBM, in
combination with bevacizumab [126]. These techniques are now undergoing different
phases of research and clinical trials. The primary objective is to enhance the efficacy of
current therapies and devise novel strategies to address and overcome resistance in GBM.
Table 3 describes synthetic compounds targeting different aspects of the angiogenic process
and other pathways critical for GBM cell survival and proliferation.

Table 3. Synthetic compounds for glioblastoma (GBM) treatment.

Compound
Name Molecular Mechanism Target Cells Current Application in GBM References

Bevacizumab VEGF inhibitor Endothelial cells Approved for recurrent GBM;
reduces tumor blood supply [127]

Temozolomide DNA methylation/damage Tumor cells Standard chemotherapy for GBM;
induces cell death [128]

Cediranib VEGFR tyrosine
kinase inhibitor

Endothelial and
tumor cells Experimental; inhibits angiogenesis [129]

Sorafenib Multi-kinase inhibitor
(VEGFR, PDGFR, Raf kinases)

Tumor and
endothelial cells

Experimental; inhibits cell
proliferation and angiogenesis [130]

Sunitinib Multi-kinase inhibitor
(VEGFR, PDGFR) Endothelial cells Experimental; inhibits angiogenesis [131]

Erlotinib EGFR tyrosine kinase inhibitor Tumor cells Experimental; inhibits tumor
cell growth [132]

Dasatinib Src family kinase inhibitor Tumor cells Experimental; inhibits cell migration
and invasion [133]

Pazopanib Multi-kinase inhibitor
(VEGFR, PDGFR)

Tumor and
endothelial cells

Experimental; inhibits angiogenesis
and tumor growth [134]

Regorafenib Multi-kinase inhibitor
(VEGFR, PDGFR, FGFR)

Tumor and
endothelial cells

Experimental; inhibits angiogenesis
and tumor cell growth [135]

Axitinib VEGFR tyrosine
kinase inhibitor Endothelial cells Experimental; inhibits angiogenesis [136]

3.4. Immunotherapy

GBM is a highly malignant and refractory kind of brain tumor. Immunotherapy is
a promising method to overcome resistance to antiangiogenic treatment in GBM [137]. It
involves utilizing the body’s immune system to identify and destroy tumor cells. Check-
point inhibitors, including PD-1 and CTLA-4 antibodies, have demonstrated promise
in counteracting the immune suppression frequently observed in GBM [138]. Targeting
tumor-associated myeloid cells through pharmacological means is a promising strategy in
the field of developing immunotherapy. Remarkably, myeloid cells exhibit heterogeneity,
which includes a specific subgroup of myeloid cells that exhibit angiogenic features in
solid tumors [139]. Checkpoint inhibitors can restore the functionality of tired T lympho-
cytes and enhance their capacity to recognize and eliminate cancer cells by obstructing
inhibitory signals [140]. Nevertheless, the efficacy of checkpoint inhibitors in GBM has
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been constrained by the profoundly immunosuppressive TME [47]. CAR-T cell therapy
is a medical procedure that modifies a patient’s T cells to produce receptors that target
specific antigens found in GBM [141]. After modifying the T cells, they are reintroduced
into the patient’s body. These changed cells can specifically identify and destroy GBM
cells. Although CAR-T cell therapy shows potential, it encounters obstacles such as the
variability of GBM antigens and the existence of the blood–brain barrier [142]. Cancer
vaccines are designed to stimulate a strong immune response against specific antigens
found in GBM [143]. Peptide-based vaccinations and dendritic cell vaccines have been in-
vestigated for their ability to elicit an immune response against tumors [144]. The EGFRvIII
vaccination specifically targets a mutated version of the epidermal growth factor receptor
that is frequently present in GBM [145]. Although vaccines have demonstrated some level
of success, their efficacy is frequently hindered by the immunosuppressive TME and the
tumor’s capacity to avoid immune surveillance [146]. Oncolytic viruses are viruses that
have been genetically designed to infect and destroy cancer cells specifically, while also trig-
gering an immune response against the tumor [147]. These viruses can be manipulated to
produce immunostimulatory chemicals, which in turn boost the immune response against
tumors [148]. Clinical experiments involving oncolytic viruses, specifically the genetically
modified herpes simplex virus (HSV), have demonstrated potential in the treatment of GBM
by effectively eliminating tumor cells and regulating the immune response [149]. In general,
immunotherapy shows potential in overcoming resistance to antiangiogenic treatment in
GBM [150]. However, its effectiveness relies on tackling the specific difficulties presented
by the TME and enhancing the administration and effectiveness of these therapies. Table 4
provides a concise overview of immunotherapy medications, including information on
their molecular mechanism of action, target cells, recommended doses, and current usage
in the treatment of GBM.

Table 4. Immunotherapy medications for the treatment of GBM.

Drug
Name Molecular Action Target Cells Doses Application in GBM References

Nivolumab (Opdivo) PD-1 inhibitor T cells 240 mg
every 2 weeks

Investigational; ongoing
clinical trials [151]

Pembrolizumab
(Keytruda) PD-1 inhibitor T cells 200 mg

every 3 weeks
Investigational; ongoing

clinical trials [152]

Ipilimumab (Yervoy) CTLA-4 inhibitor T cells 3 mg/kg
every 3 weeks for 4 doses

Investigational;
combination trials with

PD-1 inhibitors
[153]

Avelumab (Bavencio) PD-L1 inhibitor Tumor cells,
T cells

10 mg/kg
every 2 weeks

Investigational; ongoing
clinical trials [154]

Durvalumab
(Imfinzi) PD-L1 inhibitor Tumor cells,

T cells
10 mg/kg

every 2 weeks
Investigational; ongoing

clinical trials [155]

Bevacizumab
(Avastin) VEGF inhibitor Endothelial cells 10 mg/kg

every 2 weeks
Approved for

recurrent GBM [156]

Rindopepimut EGFRvIII-targeted
peptide vaccine Tumor cells

Variable; typically
administered
intradermally

Phase II/III clinical trials [157]

DCVax-L Dendritic cell-based
vaccine Dendritic cells Personalized;

dose varies Phase III clinical trials [158]

ONC201
Imipridone; induces

TRAIL and DRD2
pathway activation

Tumor cells 625 mg
once a week Phase II clinical trials [159]

CDX-110
(Rindopepimut)

EGFRvIII-targeted
peptide vaccine Tumor cells

Variable; typically
administered
intradermally

Phase II/III clinical trials [160]
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3.5. Nanoparticle-Mediated Treatment Options

Nanoparticle-based therapies offer a hopeful strategy for overcoming resistance to antian-
giogenic treatment in GBM [86]. These tactics utilize the distinct characteristics of nanoparticles
(NPs) to optimize drug delivery, enhance targeting, and minimize side effects [161]. An impor-
tant benefit of nanoparticles is their capacity to cross the blood–brain barrier (BBB), a major
obstacle in the treatment of GBM [162]. Nanoparticles can be designed to transport diverse
therapeutic agents, including chemotherapeutic therapies, small interfering RNA (siRNA),
and monoclonal antibodies, directly to the location of the tumor [163]. This precise delivery
mechanism aids in retaining a concentrated amount of the therapeutic substance specifically
at the tumor location, hence increasing effectiveness and reducing the potential for harmful
effects on the entire body [163]. Lipid-based nanoparticles and polymeric nanoparticles have
been utilized to provide temozolomide (TMZ), the established chemotherapeutic agent for
GBM, therefore enhancing its therapeutic index and surmounting drug resistance [164]. In
addition, nanoparticles can be modified by targeting ligands, such as peptides or antibodies,
that selectively bind to receptors that are highly expressed on GBM cells or the blood vessels of
the tumor [165]. This focused strategy not only enhances the absorption of the therapeutic sub-
stances by the cancerous cells but also aids in disturbing the tumor microenvironment, which
is vital in overcoming resistance to antiangiogenic treatment. RGD (arginine–glycine–aspartic
acid) peptide-functionalized nanoparticles, when used, have demonstrated an increased abil-
ity to specifically target integrins that are expressed on GBM cells [166]. This has resulted in
improved therapeutic results. Other than delivering medications, nanoparticles can also be
engineered to simultaneously transport numerous agents, such as combining antiangiogenic
therapies with chemotherapy or immunotherapy [103]. This integrated method can effectively
target the tumor from various angles, addressing the complex nature of GBM resistance
mechanisms [167]. Therefore, the use of nanoparticles in treatment has great potential to
improve the effectiveness of therapies for GBM patients [103]. This is achieved by improved
distribution of drugs, enhanced targeting abilities, and overcoming resistance to antiangio-
genic treatments. Table 5 provides a concise overview of the current treatment approaches for
addressing resistance to antiangiogenic therapy in GBM using nanoparticle-based treatment.

Table 5. Name of the treatment type of nanoparticle action in mechanism of target in GBM.

Treatment Name Nanoparticle Type Mechanism of Action Target/Focus References

Bevacizumab-loaded
nanoparticles Lipid-based Inhibits VEGF, reducing blood

vessel formation VEGF pathway [168]

Iron oxide nanoparticles Magnetic Targets tumor cells via magnetic
fields, improving delivery

Hyperthermia, drug
delivery [169]

Curcumin-loaded
nanoparticles Polymeric Anti-inflammatory and

antiangiogenic effects NF-κB pathway [170]

Doxorubicin-loaded
nanoparticles Liposome-based Improves drug accumulation in

tumor, reducing angiogenesis
DNA intercalation,

inhibiting topoisomerase [171]

Temozolomide-loaded
nanoparticles Polymeric Enhances drug delivery and

overcomes drug resistance
DNA alkylation, increasing

tumor cell death [172]

Paclitaxel-loaded
nanoparticles Micelle-based Enhances antiproliferative effects,

targeting microtubules Microtubule stabilization [173]

siRNA-loaded
nanoparticles Gold nanoparticles Silences genes involved in

angiogenesis and resistance Gene expression inhibition [174]

HER2-targeted
nanoparticles Polymer-based

Targets HER2 receptor, enhancing
specificity and

reducing resistance
HER2 receptor [175]

Dual drug-loaded
nanoparticles

Hybrid (e.g.,
polymer/lipid)

Combines different mechanisms
to enhance therapeutic effects Multiple targets [176]

Ceramide-loaded
nanoparticles Lipid-based Induces apoptosis in resistant

cancer cells Sphingolipid metabolism [177]
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Nanoparticle-based medication delivery devices are being investigated in preclin-
ical phase I trials to address these resistance mechanisms [178]. Nanoparticles possess
advantageous characteristics such as their diminutive size and modifiable surface features,
which enable them to augment the transportation of drugs to the tumor location, enhance
drug durability, and facilitate regulated release [179]. Consequently, the effectiveness of
antiangiogenic medicines is heightened. Furthermore, nanoparticles can be designed to
circumvent the blood–brain barrier (BBB), which is a major obstacle in GBM treatment,
thereby enabling increased medication levels within the tumor microenvironment [103].
Current research has concentrated on utilizing different types of nanoparticle platforms,
including as liposomes, polymeric nanoparticles, and inorganic nanoparticles, with the
purpose of delivering a combination of antiangiogenic medicines and other treatments,
such as chemotherapeutic medications or RNA interference molecules [180,181]. These
combinations are designed to simultaneously target numerous resistance pathways, thus
decreasing the probability of resistance development. For example, the use of polymeric
nanoparticles to contain bevacizumab, an anti-VEGF antibody, and a chemotherapeutic
drug has demonstrated potential in decreasing tumor growth and invasion in GBM models
that are resistant to antiangiogenic monotherapy [103]. Furthermore, researchers are also
studying nanoparticles that are specifically engineered to release antiangiogenic medica-
tions in response to the acidic microenvironment of tumors [182]. This has the potential
to improve the effectiveness of therapies by ensuring that they are delivered directly to
the targeted area. In summary, the use of nanoparticles in preclinical phase I research is
a breakthrough in addressing the problem of antiangiogenic resistance in GBM. These
methods provide a novel opportunity to enhance the effectiveness of treatments for this
difficult kind of cancer and have the potential to be tested in clinical trials soon.

4. Limitations and Future Perspectives of Antiangiogenic Resistance in GBM

Antiangiogenic therapy, which primarily focuses on inhibiting the VEGF pathways,
has shown great potential as a treatment option for glioblastoma, an extremely aggressive
brain tumor [183]. Nevertheless, there are numerous limitations that hinder its effectiveness.
Glioblastomas demonstrate both inherent and acquired resistance to antiangiogenic treat-
ment. Intrinsic resistance refers to the inherent inability of tumors to respond to treatment,
which is caused by genetic or molecular factors [184]. Tumors gradually gain acquired
resistance as they adjust to the antiangiogenic conditions [118]. Mechanisms involve the
activation of additional proangiogenic pathways such as FGF and PDGF, enhanced inva-
siveness, and metabolic reprogramming [32]. The use of antiangiogenic therapy can cause a
lack of oxygen inside the TME, which triggers adaptive reactions that support the survival
and expansion of the tumor [13]. HIFs are increased in response to low oxygen levels,
leading to the activation of other angiogenic factors and promoting invasive and metastatic
characteristics [56]. This adaptability hinders the long-term efficacy of antiangiogenic thera-
pies. GBM could use non-vascular techniques to support their growth. This includes taking
advantage of existing blood vessels or using alternate methods of forming blood vessels,
such as vasculogenic mimicry [185]. These changes allow the tumor to circumvent the
impact of antiangiogenic therapies. Antiangiogenic medications can have notable adverse
effects, such as high blood pressure, bleeding, and blood clotting disorders [186]. The
presence of these negative effects can restrict the length of time and amount of medication
used in treatment, so diminishing its overall effectiveness.

To overcome the limits of antiangiogenic therapy in glioblastoma, it is necessary to
employ novel methodologies and achieve a more comprehensive understanding of tumor
biology. Combination therapies involve the use of antiangiogenic drugs in conjunction
with other treatments, such as immunotherapy, chemotherapy, or targeted therapy, to
potentially increase the effectiveness of the treatment [29]. For example, the combination
of VEGF inhibitors with immune checkpoint inhibitors has the potential to counteract
the immunosuppressive effects caused by the tumor microenvironment [187]. Biomarker
development is essential to identify dependable biomarkers that may be used to predict
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and monitor the response to antiangiogenic therapy [188]. Biomarkers can be utilized
to customize treatment for individuals, so guaranteeing a more tailored approach and
potentially enhancing outcomes [189]. Exploring and focusing on alternate angiogenic
routes and resistance mechanisms is crucial. Comprehending the interaction between
several proangiogenic factors and their function in the advancement of tumors can pro-
vide insights for the creation of therapies that target many variables simultaneously [102].
Advanced drug delivery technologies, such as nanoparticles or convection-enhanced deliv-
ery, can improve the transportation of antiangiogenic medications to the tumor site [190].
This leads to higher levels of therapeutic agents in the tumor and reduces the negative
effects on the rest of the body. Enhancing preclinical models to accurately replicate human
glioblastoma and implementing meticulously planned clinical trials are crucial for effec-
tively transferring laboratory discoveries into successful therapeutic therapies [191]. To
summarize, antiangiogenic therapies targeting VEGF or VEGF receptors (VEGFRs) were
designed and thought to be an effective tool for controlling the growth of GBM. However,
recent results of several clinical trials using humanized monoclonal antibodies against
VEGF (bevacizumab), as along with tyrosine kinase inhibitors (TKIs) that target different
VEGFRs alone or in combination with other therapeutic agents [192–194], demonstrated
mixed results, with the majority of reports indicating that gliomas developed resistance to
the employed antiangiogenic treatments.. Future research should prioritize investigating
combination therapy, developing biomarkers, targeting alternative pathways, enhancing
drug delivery systems, and conducting rigorous preclinical and clinical trials to optimize
the efficacy of antiangiogenic techniques in managing GBM.

5. Conclusions

Antiangiogenic treatments encounter substantial obstacles in the treatment of glioblas-
toma because resistance mechanisms emerge despite their initial potential [18]. GBM has
demonstrated resistance to these therapies via multiple mechanisms [195]. These factors
encompass redundant angiogenic signaling, in which numerous angiogenic pathways
compensate when one is blocked, and heightened invasion and metastasis, in which GBM
cells adjust to antiangiogenic pressure by becoming more invasive [121]. Hypoxia-induced
resistance is a significant factor in promoting resistance to treatment which occurs because
the lack of oxygen in the TME triggers survival pathways that support resistance [23].
Moreover, the phenomenon of VM, in which tumor cells create structures resembling blood
vessels, circumvents conventional antiangiogenic systems. Immunological regulation,
which refers to alterations in the immunological milieu that promote tumor development
and survival, adds complexity to the effectiveness of antiangiogenic therapy. Presently,
the strategies employed to combat these resistance mechanisms revolve around a com-
prehensive and diverse approach. The integration of antiangiogenic therapies with other
treatments, including chemotherapy and radiotherapy, in combination therapies has the
potential to enhance efficacy [196]. Personalized medicine, utilizing individual genetic and
molecular profiles, seeks to deliver more precise and efficient solutions. Immunotherapy,
which utilizes the body’s immune system to fight against cancer, is becoming a highly
promising approach, especially when combined with antiangiogenic therapies. In addi-
tion, treatment options facilitated by nanoparticles provide novel approaches to enhance
medication delivery efficiency and minimize systemic toxicity [197]. However, there are
still notable constraints that remain, such as the diverse nature of GBM and the intricate
mechanisms of resistance. Future perspectives highlight the necessity for ongoing research
to comprehend the fundamental biology of resistance and to formulate more accurate and
efficient treatment approaches. Utilizing multi-omics techniques and modern technologies
will be crucial in addressing these problems and enhancing outcomes for patients with
GBM. To conclude, although there has been some advancement, the struggle against antian-
giogenic resistance in GBM continues to be a constantly evolving and ongoing challenge,
necessitating a collaborative endeavor from the scientific and medical sectors.
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