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Abstract 
DNA damage response (DDR) mechanisms are critical to maintenance of overall genomic stability, and their dys-
function can contribute to oncogenesis. Significant advances in our understanding of DDR pathways have raised 
the possibility of developing therapies that exploit these processes. In this expert-driven consensus review, we 
examine mechanisms of response to DNA damage, progress in development of DDR inhibitors in IDH-wild-type 
glioblastoma and IDH-mutant gliomas, and other important considerations such as biomarker development, pre-
clinical models, combination therapies, mechanisms of resistance and clinical trial design considerations.
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DNA damage response (DDR) is a collective term for a suite of 
intra- and inter-cellular signaling events that play critical roles 
in maintaining genomic stability. Loss of these mechanisms 
can lead to the accumulation of deleterious mutations that 
contribute to oncogenesis. With better understanding of how 
DDR pathways function in cancer, our ability to exploit these 
processes for therapeutic benefit will increase. In this review, 
we provide a broad overview of DDR pathways, discuss how 
these processes are altered in primary brain tumors, and high-
light translational efforts to leverage this knowledge for devel-
oping new therapies to treat patients with brain tumors.

Therapeutically Relevant DNA Damage 
Repair Mechanisms in Glioma

Before discussing therapeutic efforts to target DDR deficits in 
glioma, we provide an overview of DDR pathways that are rele-
vant to translational opportunities in neuro-oncology (Figure 1).

Base Excision Repair and Methylguanine-DNA 
Methyltransferase

DNA damage limited to a single base is generally repaired by 
base excision repair (BER).1 Alterations affecting single bases, 
such as oxidation, oxidative deamination, and/or alkylation/
methylation (including alkylating chemotherapies) trigger 
BER.2 Repair of this damage goes through the steps of excising 
the damaged base, the sugar backbone, and the deoxyribose-
phosphate site, which effectively creates a strand break. A 
replacement base with the sugar and phosphate moiety is li-
gated in place. Alkylating agents such as temozolomide (TMZ) 
induce damage of DNA bases and trigger BER in glioma tu-
mors. Importantly, and relevant to glioma treatment, the func-
tion of the methylguanine methyltransferase (MGMT) protein 
counteracts DNA damage caused by alkylating agents. MGMT 
acts as a “suicide enzyme” that repairs the DNA damage 
caused by TMZ by removing alkyl groups from guanine res-
idues (Figure 2A) , hence reversing the effect of TMZ.2 Silencing 
of MGMT gene expression via methylation of the MGMT gene 
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Figure 1. Overview of relevant DNA DNA damage response (DDR) pathways in response to standard of care therapies of radiation therapy and 
alkylating chemotherapy (temozolomide). Antitumor therapy can cause DNA damage via double-strand breaks (DSBs) or single-strand breaks 
(SSBs). In the setting of double-strand breaks, DNA-PK is a multi-enzyme complex consistent with DNA binding domains and catalytic subunit, 
and it regulates non-homologous end-joining (NHEJ), which can occur in the absence of sister chromatids (eg, G1 arrest). DSBs can also activate 
the ATM pathway, which includes downstream phosphorylation of proteins including CHK2 and p53. ATR can be activated by several genotoxic 
stresses, including SSBs, and it phosphorylates several targets. DNA DDR pathways lead to cell cycle arrest, and possible outcomes include 
apoptosis or successful DNA repair. Relevant DNA repair mechanisms and relevant molecular factors are listed at the bottom of the figure. 
Cell-cycle specific timing and kinetics of double-strand break repair mechanisms, homologous recombination (HR), and NHEJ, are highlighted. 
The balance of HR versus NHEJ repair mechanisms reflects factors such as whether a template strand exists for HR-mediated repair, chromatin 
accessibility, the presence of relevant co-occurring mutations such as BRCA1/2 deficiency, and the burden of DNA damage. Targets of therapies 
that are under active testing in neuro-oncology are shaded with color and bolded.
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Figure 2. (A, top) MGMT, when unmethylated and expressed, repairs TMZ-induced DNA damage by removing alkyl groups from guanine res-
idues. (A, bottom) Methylation of the MGMT gene promoter silences the expression of MGMT. In this scenario, TMZ-induced DNA alkylation is 
less able to be removed by MGMT. In MMR-proficient tumor cells, this may trigger a futile cycle of MMR. (B) The active form of temozolomide, 
methyl diazonium ion, acts as a methyl donor at O6-methylguanine (O6MeG) adducts. If these alkylated lesions are not repaired by MGMT, MMR-
proficient cells can undergo futile cycling of mismatch repair and subsequent cell death. In MMR-deficient cells, cells may proliferate and de-
velop hypermutated phenotypes that may confer therapy resistance. Abbreviations: MGMT, O6-methylguanine-DNA methyltransferase; TMZ, 
temozolomide; Me3, methyl group; O6meG, O6-methylguanine; G, guanine; T, thymine; MMR, mismatch repair.
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promoter, a tumor-specific epigenetic event and rarely a 
germline event, is estimated to occur in 30%–40% of glio-
blastoma (GBM) patients.3,4 MGMT promoter methylation, 
which inactivates this repair gene, has been associated 
with improved prognosis.3

Mismatch repair.—Mismatch repair (MMR), as its name 
suggests, repairs DNA base pairing errors. MMR ma-
chinery, comprised of multiple MMR proteins, follows the 
replisome as a “check” on replication.5,6 In mismatch re-
pair, the MSH2/6 complex recognizes small mismatches, 
such as a single-base mismatch or 1 or 2 unpaired bases. In 
contrast, the MSH2/3 complex recognizes relatively larger 
insertion–deletion loops of ≤15 nucleotides, although it 
can also recognize small mismatch sites of 1 or 2 unpaired 
bases. These complexes then recruit MLH1 and PMS2 
to the site of repair, resulting in cleavage of mismatched 
DNA, excision of the mismatched region, and finally liga-
tion. Defects in MMR tend to increase mutational burden 
through increases in point mutations and mutational 
load (as opposed to large chromosomal losses). The phe-
notype of microsatellite instability has been described in 
MMR-deficient cancers such as colon cancer,7 ovarian 
cancer,8 gastric cancer,9 and others.10 Owing to their high 
mutational burden characteristic of MMR-deficient can-
cers, immune checkpoint inhibitors are often effective in 
such tumors and represent a recent paradigm shift in drug 
approval from tumor-specific indications to mutation-
burden-driven indications.11 Of note, while MMR germline 
deficiency is rare in gliomas, a hypermutated pheno-
type following chronic exposure to alkylating therapy is 
more commonly seen in glioblastoma (see Additional 
Considerations in Targeting DNA Damage Pathways, 
“Combination with immunotherapy”).12,13

Non-homologous end joining.—The most common 
mechanism for double-stranded break (DSB) repair is 
non-homologous end joining (NHEJ). NHEJ entails re-
pair of DSBs in the absence of a sister chromatid template 
(Figure 3). As such, it is a lower-fidelity mechanism that is 
more prone to error.14,15 Given that a sister chromatid tem-
plate is not required, NHEJ can occur at any phase of the cell 
cycle and often occurs during G1. NHEJ begins with localiza-
tion of the KU dimer (KU70 and KU80) to the double-strand 
DNA break (DSB) and recruitment of DNA-PK. DNA-PK, a 
multi-enzyme complex consisting of DNA binding domains 
(Ku70, Ku80) with a catalytic subunit (DNA-PKcs), regu-
lates NHEJ while also functioning to detect and modulate 
signaling of DSBs. After Ku proteins bind to exposed chro-
mosome ends, they interact with DNA-PKcs to create the 
repair complex. Once bound, DNA-PKcs is activated and 
can facilitate downstream activation of XRCC4, XLF, and 
ARTEMIS to facilitate NHEJ repair. The complex can recruit 
endonucleases to resect DNA and recruit polymerases to 
complete repair and join the resected ends of DSBs. DNA-
PKcs has been implicated as a drug target in ATM-deficient 
tumors (see “Targeting DDR kinases and PARP in GBM”).16

Homologous recombination.—In contrast to NHEJ, ho-
mologous recombination (HR) utilizes a sister chromatid 

template for DNA repair and as such is less error-prone 
compared to NHEJ.17,18 The first step entails nuclease-
mediated resection of portions of each of the strands to 
generate DNA “overhangs.” Replication protein A (RPA) 
binds to these overhangs and recruits single-stranded 
DNA to “fill the gap.” RPA is then exchanged for the Rad51 
protein, which promotes strand invasion into the sister 
chromatid that is used as the template for DNA synthesis. 
Following strand invasion, a new DNA strand is synthesized 
using the sister chromatid as a template, and this high-
fidelity strand joins the 2 ends of the strand break. Cancer 
patients with defects in HR (usually germline) may benefit 
from PARP inhibitors since these agents cause persistent, 
unrepaired single-strand breaks (SSBs). Persistence of 
these SSBs through DNA replication in the S-phase yields 
a DSB in the daughter cell, which cannot be adequately 
repaired in the presence of germline HR defects. Two im-
portant and overlapping strategies have emerged for 
inhibiting PARP: Blocking the catalytic enzyme activity and 
preventing release of PARP from DNA (ie, PARP trapping), 
the latter of which refers to PARP complexes at damaged 
DNA, preventing their catalytic function and stalling repli-
cation.19 PARP inhibitors can trap PARP1 in its bound form 
to DNA, causing replication fork stalling. BRCA1/2 proteins 
play a role in protecting stalled replication forks,20,21 and 
a deficiency in BRCA1/2 in setting of PARP inhibition can 
result in synthetic lethality.22,23 Various PARP inhibitors are 
felt to have different potencies as a direct inhibitor versus 
PARP trapper, which may have implications for clinical ef-
ficacy though further study is needed to explore these 
nuances.24 There is increasing interest in using PARP in-
hibitors in tumors with other HR defects beyond BRCA1/2 
mutations, a state sometimes referred to as “BRCAness,” 
which is of particular interest in isocitrate dehydrogenase-
mutant gliomas (see “IDH-mutant gliomas”).

Ataxia-Telangiectasia Mutated Kinase and 
Ataxia-Telangiectasia and Rad3-Related Kinase

The DDR kinases ataxia-telangiectasia mutated kinase 
(ATM) and ataxia-telangiectasia and rad3-related kinase 
(ATR) are particularly relevant DDR mechanisms in glioma 
given ongoing clinical testing of inhibitors of these pro-
teins. ATM is an apical serine/threonine kinase that is the 
master orchestrator of the cellular response to DSBs. ATM 
activity leads to downstream phosphorylation of many 
substrates, including key DNA damage pathway proteins 
such as p53, CHK2, MDM2, and BRCA1. Several of these 
targets (CHK2, p53) are direct regulators of cell cycle pro-
gression, allowing cells to repair DNA before progressing 
through G1/S, G2/M, and S-phase. Furthermore, ATM 
phosphorylates targets that are more directly involved 
in DSB repair, including NBS1, a component of the MRN 
complex.25–28 Patients with ataxia-telangiectasia (A-T) who 
harbor germline loss-of-function mutations in the ATM 
gene are profoundly sensitive to ionizing radiation as they 
are inefficient at repairing DSBs. This raises the possibility 
that ATM inhibition could be used to enhance the efficacy 
of radiation therapy, and possibly other DNA-damaging 
therapies. ATM preferentially triggers HR (as opposed to 
NHEJ) by phosphorylating numerous downstream targets. 
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ATM loss dramatically increases radiosensitivity in a va-
riety of gliomas in experimental models, and this effect is 
even more profound in models harboring nonfunctional 
p53 in several reports.29,30 As many GBMs harbor genetic 
alterations inactivating p53, these results imply that ATM 
inhibition may be particularly effective in a large subset of 
GBMs.

While inhibiting ATM might present a therapeutic vulnera-
bility for brain tumors, there is evidence suggesting that such 
inhibition could also offer protection to the normal brain 
from radiation. ATM plays a crucial role in radiation-induced 

apoptosis in the developing mouse brain, and its deletion 
appears to safeguard certain neuronal cell populations.31 
Recent research in mouse genetics has further implicated 
ATM in DDR-induced apoptosis specifically in immature 
brain progenitor cells, while other DDR kinases seem to be 
more vital in other brain cell types. This discovery hints at 
the possibility that some normal tissues could be shielded 
from radiation-induced toxicity when ATM inhibitors are ad-
ministered alongside radiation therapy.

ATR, the other master regulator of the DDR, is acti-
vated by replication stress and generally promotes NHEJ 
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DNA
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Figure 3. Overview of non-homologous end joining repair (NHEJ). NHEJ repair occurs in the absence of a sister chromatid template. First, there 
is localization of the KU dimer to the double-strand break. KU recruits DNA-PK and there is subsequent recruitment of ARTEMIS to facilitate 
processing of DNA ends. There is subsequent activation of XRCC4, XLF, and ARTEMIS. The complex recruits endonucleases and polymerases to 
complete repair and join resected ends.
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(see “Targeting DDR kinases and PARP in GBM”). Unlike 
ATM, ATR deletion is embryonically lethal in mice. ATR 
can be activated by a variety of genotoxic stresses such 
as SSBs. ATR is recruited to sites of DNA damage flagged 
by coating of single-strand DNA with RPA. Similar to ATM, 
ATR orchestrates the phosphorylation of numerous down-
stream targets. One of the most notable downstream tar-
gets is CHK1. ATM and ATR share numerous downstream 
targets, and ATM deficiency confers sensitivity to ATR in-
hibition,32 which raises the possibility of synthetic lethality 
by targeting ATR in tumors lacking functional ATM. Given 
the embryonic lethality in mice, ATR inhibition initially 
raised major off-target toxicity concerns. However, evi-
dence has accumulated that there may be a therapeutic 
window for ATR inhibition to exploit genomic instability 
in cancer cells, especially in combination with other DNA-
damaging therapies. Downstream of ATR-CHK1, Wee1 
acts as a regulator and phosphorylates CDK1 leading to its 
inhibition and block of the G2-M transition.33 Wee1 phos-
phorylates and inhibits CDK2 activity which can also delay 
the G1/S transition.34 Prior preclinical evidence suggests 
that Wee1 inhibition can sensitize tumors to radiation, and 
this represents another possible avenue for therapeutic 
development.35

Glioblastoma, IDH Wild Type

GBM, wild-type for IDH (IDH-WT) by definition, represents 
the most common primary malignant intracranial neo-
plasm in adults.36 Here we first review standard-of-care 
treatment, including mechanisms of response and resist-
ance37, emphasizing links to DDR. We then describe how 
this underpins the rationale for investigating specific DDR-
directed therapies in GBM. Selected clinical trials of DDR 
agents for GBM are summarized in Table 1.

Standard of Care: Surgery, Radiation/
Temozolomide, and Tumor-Treatment Fields

Adjuvant radiation (RT) following maximal safe resection 
showed a benefit in early trials, and dose escalation to 60 
Gy in 30 daily fractions was shown to confer superior sur-
vival compared to lower doses.53–55

In 2005, the European Organization for Research and 
Treatment of Cancer and the National Cancer Institute 
of Canada (EORTC trial 26981/22981 and NCIC trial CE.3) 
showed a significant increase in median survival from 12 
to 15 months with the addition of concurrent and adjuvant 
temozolomide (TMZ) to RT.56 In addition to surgery and 
chemoradiation, the use of tumor treating fields (TTF) has 
also demonstrated a survival benefit with an improvement 
of median survival from 16.0 to 20.9 months with the use 
of TTF in the adjuvant phase of therapy.57

Radiation therapy induces lethal DSBs, which trigger HR 
and/or NHEJ repair mechanisms. The factors that dictate 
specific mechanisms of repair include the burden and com-
plexity of DNA damage, the phase of the cell cycle in which 
the damage occurs, and chromatin accessibility. The type 
of radiation delivered may invoke varying DNA damage 

repair mechanisms with evidence suggesting that high 
linear energy transfer sources of radiation such as carbon 
ions may induce a greater density of breaks and utilize 
HR-mediated repair, whereas low linear energy transfer ra-
diation sources utilize less HR-mediated repair.58,59 In ad-
dition to the direct DSB and SSBs caused by radiation, it 
should be noted that radiation also induces indirect DNA 
damage through mechanisms such as reactive oxygen 
species (ROS) generation that may also result in lethal 
DNA damage.

Mechanism of TMZ Efficacy and Resistance

TMZ is an oral pro-drug, and the active moiety produces 
widespread base alkylation that is mostly readily repaired 
by BER. However, alkylation at the N7 and O6 positions of 
guanine residues is poorly repaired, especially in the con-
text of a specific deficiency of the repair enzyme MGMT. 
MGMT is inactive in a subset of newly diagnosed GBMs in 
which the MGMT promoter is methylated, silencing MGMT 
expression. Base alkylation by TMZ sets in motion a cas-
cade of events that exert cytotoxicity in a DDR-dependent 
manner. The O6-methylguanine lesions generated by TMZ 
frequently cause a guanine-thymine mismatch, exacer-
bated in the context of unavailable “exchange methyl” 
groups from a deficiency of MGMT, and this mismatch 
activates MMR. This leads to cleavage and reinsertion of 
thymine, ultimately leading to futile cycling of the MMR 
pathway that causes DNA breaks, triggers response to 
DNA damage, and leads to apoptosis (Figure 2A).60,61 As 
such, response to TMZ and mechanisms of resistance to 
TMZ can vary based on co-occurring mutations. For ex-
ample, p53 mutations can alter the duration of G2-M ar-
rest induced by TMZ and trigger different mechanisms of 
cytotoxicity in glioma.62 Additionally, downregulation of 
the MMR pathway, including mutations in MLH1, MSH2, 
MSH6, and PMS2, have been associated with resistance to 
TMZ.63–65 Suppression of the HR machinery has also been 
linked to increased sensitivity to TMZ,66 as has inhibition 
of Fanconi Anemia pathway genes,67 and inhibition of ATM 
or ATR kinases.68 Of note, TMZ has been posited to drive a 
hypermutation phenotype by inducing MMR deficiency as 
a resistance mechanism that then leads to genome-wide 
hypermutation, and there is some evidence suggesting 
that this phenotype may not be as responsive to immuno-
therapy as in other tumors (Figure 2B).69

MGMT promoter methylation.—In a setting with de-
creased expression of MGMT when the promoter is meth-
ylated, there is greater accumulation of O6-methylguanine 
lesions generated by TMZ.70 While there was preliminary ev-
idence suggesting that the use of dose-dense TMZ may rap-
idly and persistently deplete intracellular MGMT, this dosing 
strategy did not yield a survival benefit in a phase III ran-
domized trial.71 Suppression of MGMT activity to sensitize 
tumor cells to TMZ has been investigated both preclinically 
and in early-phase clinical trials, but these efforts have 
largely been stymied by excessive myeloid toxicity.72,73 
Attempts to circumvent these toxicities include use of a 
monoamine oxidase B-specific prodrug that is converted to 

D
ow

nloaded from
 https://academ

ic.oup.com
/neuro-oncology/advance-article/doi/10.1093/neuonc/noae072/7678727 by guest on 22 M

ay 2024



N
eu

ro-
O
n
colog

y
7Rahman et al.: DNA Damage Response in Neuro-Oncology

Table 1. Clinical Trials of DNA Damage Response Inhibitors in Adult Glioblastoma

Trial Agent Pathway/
target

Disease set-
ting

Design/combination Comments/results

ATM inhibitor

NCT03423628 AZD139038 ATM ndGBM 
uMGMT, 
rGBM

Phase 1 study, 3 arms (ndGBM 
uMGMT, rGBM, brain metastases)

-  Initial results demonstrate phar-
macologically relevant concentra-
tion in non-enhancing tissue

Wee1 inhibitor

NCT01849146 AZD177539 WEE1 ndGBM, 
rGBM

Phase 0: AZD1775 -> surgery -  20 patients
-  Good brain tumor penetration 

and evidence of Wee1 pathway 
suppression

NCT01849146 AZD1775 WEE1 rGBM Phase 1 nonrandomized:
Arm I: RT + TMZ + AZD1775 -> TMZ
Arm II: RT/TMZ -> TMZ.+ AZD1775

-  3 + 3 design
-  Initial results: MTD 200 mg for 

concurrent dosing with RT; MTD 
425 mg for adjuvant dosing

DNA-PK inhibitor

NCT04555577 M3814 
(Nedisertib)40

DNA-PK ndGBM 
uMGMT

Phase I, 2 stages:
Stage I: RT/M3814->TMZ
Stage II RT/M3814->resection-
>TMZ

-  Ongoing recruitment

NCT02977780 CC-11541 DNA-PK 
and 
mTOR

ndGBM 
uMGMT

Phase II randomized with safety 
lead-in:
Randomized: RT/CC-115 -> CC-115 
vs. RT/TMZ->TMZ

-  12 patients received CC-115
-  No evidence of PFS or OS benefit
-  Arm terminated due to concerns 
of toxicity and absence of efficacy 
signal

PARP inhibitor

NCT00770471 
(ABTC-0801)

Veliparib (ABT-
888)42

PARP ndGBM Phase I: RT + TMZ + veliparib -  With concurrent RT, DLT occurred 
in 4/12 patients; 3/6 patients at a 
lower dose

-  Veliparib is not tolerable with 
standard RT/TMZ at tested doses

VERTU43 Veliparib PARP ndGBM, 
uMGMT

Phase II: RT + TMZ +/− veliparib
(2:1 randomization to experi-
mental arm)

-  125 participants, 84 receiving 
veliparib

-  OS 12.7 vs. 12.8 months (ns)

NCT01026493 
(NRG/RTOG 
0929)44

Veliparib PARP rGBM Phase I/II randomized in BEV-naïve 
and BEV refractory rGBM
Arm 1: Veliparib + TMZ (75 mg/m2)
Arm 2: Veliparib + TMZ (150mg/m2)

-  OS similar in both arms
-  PFS-6 17% in BEV-naïve and PFS-6 

4% in BEV-refractory

NCT02152982 
(Alliance 
A071102)45

Veliparib PARP ndGBM, 
mMGMT

Phase II/III randomized, placebo-
controlled:
RT/TMZ -> TMZ +/− veliparib

-  421 patients
-  Median OS 28.1 months (veliparib) 

vs. 24.8 months (placebo)
-  Median PFS 13.2 vs. 12.1 months
-  Subset exploratory analysis sug-

gests benefit for TMZ + veliparib 
with TMZ at first recurrence

NCT01390571 
(OPARATIC)46

Olaparib PARP rGBM Phase 0/1 nonrandomized
Stage I: Olaparib -> surgery
Stage II: Olaparib -> surgery -> 
TMZ + Olaparib

-  Olaparib reliably penetrates rGBM 
at radiosensitizing concentrations

-  Olaparib was detected in 71/75 
tumor specimens with 36 
evaluable patients (PFS6 39%)

CRUK/13/034 
(PARADIGM)47

Olaparib PARP ndGBM Phase I: Hypofractionated 
RT + olaparib

-  16 patients (median age 72 years) 
with RP2D 200 mg BID daily

-  mOS 10.3 months

ISRCTN51253312 
(PARADIGM-2)47,48

Olaparib PARP ndGBM Phase I
mMGMT: RT + TMZ + Olaparib
uMGMT: RT + Olaparib

-  Ongoing, early results showing 
treatment is well-tolerated

NCT0321274249 Olaparib PARP ndHGG 
unresectable

Phase I/IIa nonrandomized: 
RT + TMZ + olaparib

-  Ongoing recruitment

NCT0297462150 Olaparib +  
cediranib

PARP rGBM Phase II randomized:
Olaparib + cediranib vs. BEV

-  70 total patients
-  No benefit for Olaparib + cediranib
-  Median PFS 118 vs. 92 days (ns)
-  Median OS 269.5 vs. 192 days (ns)
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an MGMT inhibitor in glioma, which has been shown to po-
tentiate the effects of TMZ.74 Finding effective ways to inhibit 
MGMT could perhaps improve the efficacy of this agent, but 
so far this approach remains challenging.75

Genetic drivers.—Genetic drivers of glioma may also 
themselves affect response to DNA damage. For example, 
p53 and MDM2 mutations are commonly observed in GBM 
and are direct regulators of DDR, in addition to mutations in 
cell cycle regulators such as CDK4 and CDKN2A/B.37 While 
mutations in these presumed driver mutations may directly 
affect response to DNA damage, the interactions between 
driver mutations and DDR are likely more complex. GBM is 
heterogeneous, and data from studies of glioma stem cells 
suggests that this subpopulation may exhibit an increase 
in DDR activation, which may drive clinically aggressive 
phenotypes such as radioresistance.76,77 There has been 
increased understanding of interplay of genetic drivers 
of GBM and DDR, including work showing increased sen-
sitivity to PARP in patients with EGFR amplification78 and 
interplay between PTEN phosphorylation and attenuated 
DNA repair.79 Likewise, there is work evaluating the role of 
the PI3K pathway, often activated in GBM, in DNA replica-
tion and genomic stability.80

Targeting DDR Kinases and PARP in GBM

ATM.—Several ATM inhibitors have been developed for 
clinical applications. KU-55933 was one of the first identi-
fied ATM small molecules and was noted to have potent 

radiosensitizer properties in vitro.81 This led to improved 
compounds such as the non-CNS-penetrant KU60019,82 
CP466722,83 AZ31, AZ32,30 WSD-0628,84 and SJ573017/
SJ573226.85 Recently, AZD0156, an ATM inhibitor optimized 
from AZ31, showed potentiation of irradiation and PARP 
inhibition in preclinical models of extracranial tumors.86 
Importantly, a brain-penetrant, orally-available inhibitor of 
ATM, AZD1390, has been developed and shown to signif-
icantly potentiate radiation response across a number of 
brain tumor models, including adult and pediatric GBM, 
without obvious CNS toxicity, consistent with findings in 
mice selectively lacking ATM in the brain.87,88 PET imaging 
in humans suggests that AZD1390 crosses the intact blood-
brain barrier (BBB).89

Several ATM inhibitors have entered clinical trials, and 
almost all combine ATM inhibition with either RT or DNA-
damaging chemotherapy. In addition to clinical trials 
evaluating AZD0156 and M3541 (combined with olaparib, 
NCT03225105) in extracranial tumors,40,90 a phase 0/Ib trial 
of AZD1390 administered concurrently with RT for adults 
with brain metastases and GBM is nearing completion 
(NCT03423628), with initial results suggesting that it is 
well-tolerated and achieves meaningful concentration in 
non-enhancing tissue and suppresses induction of pRAD50 
ex vivo after RT.91

ATR.—ATR inhibition enhances the effects of TMZ-induced 
cell death in GBM cell lines by inducing apoptosis.68 
However, TMZ can also trigger survival mechanisms such 
as senescence, which are characterized by activation of 

Table 1. Continued

Trial Agent Pathway/
target

Disease set-
ting

Design/combination Comments/results

NCT05188508 Olaparib +  
pembrolizumb +  
TMZ

PARP rGBM# Phase II nonrandomized
Arm 1: recurrent IDH mutant
Arm 2: Recurrent IDH-wt gliomas 
and homologous recombination 
deficient

-  Ongoing recruitment

NCT05463848 Pembro +  
Olaparib +  
TMZ

PARP rGBM Phase II randomized; surgical:
Arm A: 
Pembrolizumab + TMZ + Olaparib
Arm B: Pembrolizumab

-  Ongoing recruitment

NCT0507651351 Pamiparib PARP ndGBM, 
rGBM

Phase 0 trigger trial
Arm A (ndGBM): pamiparib -> 
surgery
Arm B (rGBM): pamiparib -> sur-
gery
Arm C (rGBM): pamiparib

-  Generally well-tolerated with 
meaningful concentration in 
nonenhancing tissue

-  PK threshold for expansion phase 
by all patients Arm A + B

-  Median PFS 5.4 mo (Arm A), 5.0 
mo (Arm B), 2.7 mo (Arm C)

NCT0315086252 Pamiparib PARP ndGBM 
uMGMT, 
rGBM

Phase 1b/2
ndGBM (uMGMT):
Arm 1: RT + pamiparib
Arm 2: RT + TMZ + pamiparib
rGBM: RT + pamiparib

-  Manageable safety profile for 
pamiparib +/− RT +/− TMZ

-  Median PFS 4.4 months and me-
dian OS 12.7mo in Arms A/B

-  Median PFS 1.9 months and me-
dian OS 7.3 months in Arm C

NCT04221503 Niraparib PARP rGBM Phase II nonrandomized: 
TTFields + niraparib

- Active, not recruiting

ndGBM, newly diagnosed glioblastoma; rGBM, recurrent glioblastoma, uMGMT, unmethylated MGMT promoter; mMGMT, methylated MGMT pro-
moter; RT, radiation therapy; TMZ, temozolomide; PFS, progression-free survival, OS, overall survival; PFS-6, PFS at 6 months; BEV, bevacizumab.
#NCT05188508 also has separate cohort for recurrent enhancing grade 2–3 IDH-mutated gliomas.
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DDR and cell cycle arrest.92 This senescence induction 
contributes to recurrence and depends on the ATR-CHK1 
pathway. It has been shown that TMZ activates ATR in 
an MGMT-dependent fashion, and MGMT-deficient cells 
treated with TMZ demonstrate an increased sensitivity 
to ATR inhibitors in in vitro and in vivo GBM models.93 
Additionally, ATR and CHK1 pathways are activated in 
glioma stem cells after radiation, and inhibiting these path-
ways can increase radiation sensitivity and induce mitotic 
catastrophe.41

Several clinical investigations of ATR inhibition have 
been pursued. Berzosertib (formerly M6620, VX-970) is an 
ATR inhibitor evaluated in GBM and lung cancer brain me-
tastasis, with conflicting preclinical data regarding CNS 
penetration and in vivo intracranial efficacy.94 Another ATR 
inhibitor AZD6738, which has shown manageable toxicity 
and efficacy in patients with gastric cancer,95 has entered 
phase I/II trials; however, AZD6738 did not appear to have 
a radiosensitizing effect in preclinical GBM models.96 Other 
ATR inhibitors such as BAY1895344 have shown blood-
brain barrier penetrance97 and promising antitumor effi-
cacy in combinations with DNA-damaging therapies in 
preclinical studies.98

There are several ongoing clinical trials that involve 
treating advanced solid cancers with RT or chemoradiation 
in combination with ATR inhibitors, such as BAY1895344, 
which has shown an acceptable safety profile as mono-
therapy.99 An ongoing neuro-oncology-focused trial is 
evaluating the ATR inhibitor M6220 in combination with 
whole-brain RT to treat non-small cell lung cancer patients 
with brain metastases (NCT02589522). Taken together, 
these findings suggest that the addition of an ATR inhibitor 
to chemoradiation may increase tumor sensitivity to these 
standard-of-care adjuvant therapies. BBB penetration and 
acceptable toxicity profiles, particularly in combinatorial 
regimens, remain ongoing areas of investigation.

DNA-PK.—Significant work evaluating the role of DNA-PK 
in gliomas is ongoing. DNA-PK inhibitors may be com-
bined with DNA-damaging therapies (chemotherapy and/
or RT), or may have monotherapy potential in tumors with 
aberrant DNA repair mechanisms.100 Earlier studies have 
suggested that hyperactivation of DNA-PKcs was asso-
ciated with glioma development and survival of glioma 
cells.101 Inhibition of DNA-PKcs sensitized glioma cells 
to TMZ, primarily through regulation of AKT signaling. 
Furthermore, in studies of glioma cancer stem cells, there 
is evidence that DNA-PK serves an important role in regu-
lating cellular overgrowth, radioresistance, and glioma 
progression.102 Initial studies with the DNA-PK inhibitor 
KU0060648 showed reduction in tumor proliferation in 
vitro and in vivo.101 Treatment with VX-984 (also known as 
M9831), a DNA-PKcs inhibitor, has been shown to enhance 
radiosensitivity of GBM cells in a concentration-dependent 
fashion, both in vitro and in vivo.103 Additionally, absence 
of DNA-PKcs appears to correlate with radiosensitivity of 
glioma cell lines, an effect that is rescued with DNA-PKcs 
re-expression.46,100

There are several DNA-PK inhibitors that have pro-
gressed into clinical trials. VX-984 with and without 
pegylated liposomal doxorubicin has been tested in a 

phase I study for advanced solid tumors (NCT02644278), 
as well as AZD7648 with or without other cancer agents 
(NCT03907969). DNA-PK inhibition has also been com-
bined with other chemotherapies to potentiate effects 
in GBM cells.47 Further along in development, M3814 
(nedisertib), an orally available agent, was first shown 
to have antitumor activity in mouse models in combina-
tion with RT.48,49 It is currently being tested in a phase I 
window-of-opportunity trial in newly diagnosed MGMT 
unmethylated GBM combined with RT (NCT04555577).

CC-115 is a CNS-penetrant, oral dual inhibitor of mTOR 
and DNA-PK.104 While initial phase I testing demonstrated 
good tolerability and ability to cross the BBB,105 fur-
ther testing through the Individualized Screening Trial of 
Innovative Glioblastoma Therapy (INSIGhT) phase II trial 
(NCT02977780)106 did not demonstrate significant clinical 
benefit and was discontinued due to unfavorable toxicity.42 
Despite these initial findings, there remains interest in ex-
ploiting these pathways for therapeutic advances.

PARP.—PARP inhibition is a proven therapeutic strategy in 
several malignancies and is now approved by the US Food 
and Drug Administration for use in breast and ovarian can-
cers with BRCA1/2 mutations.20 While only a minority of 
gliomas have a conventional BRCA defect, PARP1 inhibi-
tion has been shown to increase radiosensitivity and en-
hance the therapeutic ratio of RT in human glioma lines 
in vitro.107 Likewise, the use of PARP inhibitors has shown 
chemo-potentiating effects with TMZ in both in vitro and in 
vivo GBM models.108 Of note, MGMT methylation appears 
to also predict benefit from the combination of TMZ and 
veliparib in orthotopic xenograft models.44

Given the established safety profiles of several PARP in-
hibitors in non-glioma populations and the preclinical data 
demonstrating potential efficacy in primary brain tumor 
patients, multiple clinical trials have tested PARP inhibitors 
in GBM patients. For example, rucaparib and talazoparib 
likely do not have sufficient BBB penetration to have 
meaningful activity in the brain based on animal models 
of GBM,45,109 and clinical testing in glioma patients has fo-
cused primarily on alternative PARP inhibitors, including 
olaparib, veliparib, and niraparib.

The PARP inhibitor olaparib has been shown to have 
radiosensitizing effects in multiple glioma cell lines, 
as well as pediatric brain tumor cell lines.107,110 A phase 
I trial evaluated pharmacokinetics and tolerability of 
olaparib combined with TMZ (OPARATIC, NCT01390571) 
and showed that olaparib can reliably reach recurrent 
GBM tumors at clinically meaningful concentrations.51 
Of note, these results contrasted with initial preclinical 
work that suggested olaparib had poor BBB penetration. 
PARADIGM and PARADIGM-2 are currently evaluating 
olaparib in newly diagnosed GBM patients receiving con-
current radiation therapy, with or without TMZ based on 
MGMT methylation status.111,112 The OLA-TMZ-RTE-01 
trial is testing the use of olaparib with chemoradiation 
in unresectable high-grade gliomas (NCT03212742).113 A 
randomized phase II study compared olaparib combined 
with cediranib relative to bevacizumab in recurrent GBM 
patients and did not show a significant survival benefit 
(NCT02974621).114
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Veliparib is another PARP inhibitor known to cross the 
BBB,115,116 and it has been shown to have better brain pen-
etration relative to talazoparib and rucaparib though ini-
tial clinical trial results have not been favorable in GBM.116 
Clinical testing has demonstrated toxicity concerns with 
veliparib and TMZ (NCT00770471)117 and lack of signifi-
cant clinical benefit in combination with radiotherapy (eg, 
ACTRN12615000407594, VERTU).118–120 Given prior evidence 
that veliparib-mediated TMZ sensitization preferentially oc-
curs in MGMT promoter methylated patients,44 veliparib 
was tested in a randomized phase II/III trial in patients with 
MGMT-methylated GBM (NCT02152982, Alliance A071102), 
but it again did not demonstrate evidence of progression-
free or survival benefit in the overall population.121

A preclinical study evaluating the pharmacokinetics of 
PARP inhibitors showed that niraparib has more favor-
able tumor and brain distribution compared to olaparib.122 
Ongoing trials are evaluating the use of niraparib in newly 
diagnosed and recurrent GBM (NCT05076513), as well as 
with tumor-treatment fields (NCT04221503). Pamiparib, a 
potent PARP inhibitor and trapper,123 was generally well-
tolerated in a phase 0 study with meaningful accumulation 
in nonenhancing GBM tissue (NCT03150862).124 A phase 
Ib/II study assessing the use of pamiparib combined with 
RT or chemoradiation in newly diagnosed unmethylated 
GBM and methylated or unmethylated recurrent GBM has 
completed accrual (NCT03150862).

Most of the first-generation PARP inhibitors are 
dual PARP1 and PARP2 inhibitors/trappers. Since only 
PARP1 trapping is required for synthetic lethality in HR 
repair, while PARP2 inhibition is linked with hemato-
logic toxicity, there is interest in developing selective 
PARP1 inhibitors and DNA trappers such as AZD5305 or 
AZD9574 (NCT05417594) alone and in combination with 
temozolomide.125

Moving forward, there will need to be continued em-
phasis on rigorous preclinical and clinical assessment of 
BBB penetration, pharmacokinetic/pharmacodynamic 
endpoints, and monitoring of toxicities when combined 
with radiation therapy and TMZ in the clinical development 
of PARP inhibitors for the treatment of GBM. The interplay 
of DDR inhibitors with TTF also remains an area of interest 
given possible synergistic benefits in preclinical studies 
that should be further explored.126

IDH-Mutant Gliomas

IDH mutant gliomas exhibit distinct biology from their 
IDH-WT counterparts. The most common IDH mutation ob-
served in glioma patients is IDH1-R132H, representing an 
arginine-to-histidine substitution. The IDH1-R132H mutant 
protein is a neomorph and synthesizes the oncometabolite 
(R)-2-hydroxyglutarate (2HG), which competitively inhibits 
2-oxoglutarate (2OG)-dependent enzymes and contributes 
to glioma formation.127 Many of the elucidated cellular 
changes conferred by mutant IDH1 converge on mech-
anisms related to DNA damage, and we highlight efforts 
to translate these efforts into clinical practice in this sec-
tion. Selected clinical trials of DDR agents for IDH-mutant 
gliomas are summarized in Table 2.

Mutant IDH and Homologous Recombination

Given that many 2OG-dependent enzymes function as his-
tone and DNA demethylases, it is perhaps unsurprising 
that multiple reported mechanisms of DNA damage alter-
ations in IDH-mutant gliomas invoke epigenetic changes. 
One of the more mature lines of work in this regard 

Table 2. Select Completed and Ongoing Clinical Trials in IDH-Mutant Gliomas

Trial Patient population/ 
disease setting

Target Experimental 
therapy

Phase of 
testing

Status

NCT03561870128 Recurrent IDH-mutant 
gliomas
-35 patients

PARP inhibitor Olaparib II Completed
-  Olaparib was well tolerated 
- Median PFS 2.3 months
- Median OS 15.9 months

NCT05417594 Recurrent IDH-mutant 
glioma

PARP1 inhibitor AZD9574 and TMZ I Accruing

NCT05188508 Recurrent grade 2–3 
IDH-mutant

PARP inhibitor Olaparib, TMZ, and 
pembrolizumab

II Accruing

NCT05076513 Recurrent grade 
2–4 IDH-mutant 
astrocytoma

PARP inhibitor Niraparib 0 Accruing

NCT03914742 Recurrent grade 2–4 
IDH-mutant glioma

PARP inhibitor Pamiparib and 
metronomic TMZ

I/II Not accruing

NCT03991832 Recurrent IDH-mutant 
glioma

PARP inhibitor Olaparib and 
durvalumab

II Accruing

NCT03528642 Grade 2–3 IDH-mutant 
gliomas

Glutaminase inhibitor Telaglenastat I Not accruing

N/A Grade 4, recurrent  
IDH- mutant

de novo pyrimidine 
synthesis inhibitor

Orludodstat 0 In development

TMZ, Temozolomide; PFS, progression-free survival; OS, overall survival.
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includes a series of preclinical studies and ongoing clin-
ical trials testing the hypothesis that IDH-mutant gliomas 
display a “BRCAness” phenotype with defects in HR.129 In 
this model, (R)-2HG inhibits the 2OG-dependent KDM4B 
dioxygenase, resulting in hypermethylated H3K9 and a 
defect in DNA damage recognition. Therefore, DSB repair 
is compromised and renders IDH-mutant gliomas sensi-
tive to PARP inhibitor treatment. In addition to this mech-
anism based on H3K9 hypermethylation, hypersensitivity 
to PARP inhibitor and TMZ treatment may also be related 
to impaired NAD + metabolism in IDH-mutant gliomas.130 
Of note, recent data challenge this model and suggest that 
mutant IDH increases replication stress due to an increase 
in heterochromatin protein formation and slowing of cell 
cycle progression, in a HR-independent manner.131

Clinical trials testing PARP inhibitors in IDH-mutant 
gliomas are now ongoing (NCT03561870, NCT05076513, 
and NCT03914742). The OLAGLI trial was a single-arm 
phase II study that enrolled 35 recurrent IDH-mutant high-
grade glioma patients, who were treated with olaparib 
monotherapy. At a median follow-up of 11 months, 30 of 
the 35 patients had developed tumor progression. Median 
progression-free survival and overall survival were 2.3 and 
15.9 months, respectively.132 Results from a phase II trial 
testing olaparib and durvalumab combination therapy in 
IDH-mutant gliomas have also been reported, with 1 out 
of 9 patients achieving objective tumor response after 8 
cycles. Ongoing efforts are testing olaparib in combina-
tion with TMZ (ABTC1801, NCT03991832), and another 
trial is testing this combination in newly diagnosed and re-
current pediatric/adolescent and young adult IDH-mutant 
gliomas (PNOC017; NCT03749187). While most PARP in-
hibitors target PARP1 and PARP2, AZD9574 is a brain-
penetrant selective inhibitor and optimized trapper of 
PARP1 that is being tested with TMZ in IDH-mutant tumors 
(NCT05417594). Combining PARP inhibitors with additional 
systemic agents and/or radiation may yield enhanced effi-
cacy in IDH-mutant gliomas.133,134

It should be noted that the effect of IDH mutation on PARP 
inhibitor sensitivity may be context-dependent and could 
partially explain the lack of strong clinical benefit in the pro-
spective trial data reported thus far. Mutant IDH was also 
reported to increase RAD51-mediated HR and confer resist-
ance to TMZ-induced DNA damage.135 This is also consistent 
with other data136 suggesting that IDH mutations increase 
RAD51 expression as compared to IDH-WT controls.

Sensitivity to DNA-Damaging Therapies

In addition to potential defects in HR in IDH-mutant 
gliomas, multiple other mechanisms linking IDH mutations 
to DNA damage have been explored (Figure 4). Many of 
these mechanisms rely on therapeutically exploiting vul-
nerabilities related to DNA damage repair conferred by 
mutant IDH through epigenetic, transcriptional, and/or 
metabolic reprogramming.

Standard of care treatment for IDH-mutant glioma in-
volves DNA-damaging therapies, namely radiation 
therapy, TMZ, and/or other alkylating agent-based regi-
mens such as procarbazine, lomustine, and vincristine. 
As such, there have been efforts to better understand how 
mutant IDH affects response to these agents in gliomas. 

The effect of IDH mutations on radiation sensitivity has 
been investigated, though with conflicting results. While 
some studies in engineered glioma cells or hematopoi-
etic stem cells report that mutant IDH may synergistically 
increase sensitivity to radiation,133,137,138 other preclin-
ical data suggest that IDH mutations increase DNA re-
pair mechanisms135 and may confer radioresistance.136 
The direct role of IDH mutations in TMZ response has also 
been explored in previous studies.139,140 These studies de-
lineate the function of the AlkB family of proteins, which 
are 2OG-dependent enzymes that directly repair alkylated 
DNA.141,142 These AlkB proteins are thought to be inhibited 
by mutant IDH, sensitizing IDH-mutant glioma cells to the 
alkylating agents CCNU and procarbazine. Importantly, 
this effect was dependent on the catalytic activity of mu-
tant IDH1, as catalytically dead double-mutant IDH1 pro-
tein rescued sensitization to alkylating agents.

Many preclinical studies have introduced promising 
novel therapeutic strategies exploiting DNA damage 
deficits in IDH-mutant gliomas, leveraging a synthetic le-
thality approach. Consistent with the known epigenetic 
alterations caused by IDH mutations in gliomas, recent 
work demonstrated that mutant IDH increases expres-
sion of NRF2 pathway genes involved in antioxidant gene 
expression, the kinetics of which mirror that of an epige-
netic mechanism. This results in reliance on these genes 
to maintain ROS homeostasis,143 suggesting that mutant 
IDH may alter response to ROS-induced DNA damage 
through changes in the epigenome. In this regard, others 
have reported multiple mechanisms of disrupted ROS ho-
meostasis conferred by mutant IDH in glioma. Mutant IDH1 
generates (R)-2HG through an NADPH-dependent reaction, 
which can then affect the ability to generate reduced glu-
tathione, necessary for protecting DNA from ROS-induced 
DNA damage.144 Glutathione pools are also affected by 
(R)-2HG-dependent inhibition of 2OG-dependent trans-
aminases (BCAT1 and BCAT2), resulting in an increased 
reliance on glutaminase for glutathione synthesis.145 
Pharmacologic inhibition of glutaminase has been shown 
to deplete glutathione and sensitize IDH-mutant gliomas to 
radiation145 with acceptable early safety reported with the 
glutaminase inhibitor telaglenastat.146

More recently, the susceptibility to DNA damage has 
been shown to render IDH-mutant gliomas sensitive to 
drugs that inhibit pyrimidine nucleotide synthesis. IDH 
mutations predict sensitivity to the drug orludodstat (BAY 
2402234), an inhibitor of the de novo pyrimidine synthesis 
enzyme dihydroorotate dehydrogenase. Orludodstat treat-
ment induces nucleotide pool imbalance, increased DNA 
damage, and cell death in the presence of mutant IDH, and 
this drug will now undergo clinical testing in an upcoming 
early-phase clinical trial. Additional metabolic vulnerabil-
ities conferred by mutant IDH have been described. In this 
work, mutant IDH1 decreased pools of NAD+, an important 
substrate for PARP-mediated repair of DNA damage, which 
can be exploited by the use of NAMPT inhibitors that fur-
ther decrease NAD + pools and limit the PARP-mediated 
repair of DNA damage caused by alkylating agents. 
NAD + depletion through inhibitors of poly(ADP-ribose) 
glycohydrolase (PARG), which leads to NAD + sequestra-
tion, has also been shown to be a promising strategy for 
IDH-mutant gliomas based on preclinical data.147–149
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Ongoing clinical trials will provide important insights 
into how IDH mutations may predict response to some 
of the novel targeted therapies discussed above, as well 
as standard-of-care treatments including radiation and 
TMZ. Clinically, the timing and use of TMZ as concurrent, 
adjuvant, or monotherapy treatment has been the subject 
of large clinical trials. The benefit of adjuvant TMZ in IDH-
mutant, 1p/19q non-codeleted tumors has been supported 

by recently updated results from the CATNON trial,150 
where 12 cycles of adjuvant TMZ conferred an overall sur-
vival benefit specifically within the IDH-mutant subset of 
patients. Of note, the addition of concurrent TMZ with ra-
diation did not improve survival in this cohort, suggesting 
that TMZ may be more effective as an adjuvant mono-
therapy rather than delivered concurrently with radiation. 
However, among IDH-mutant, 1p/19q codeleted patients, 
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Figure 4. Overview of select altered DNA damage repair pathways that have been reported in IDH-mutated gliomas. (R)-2HG-mediated inhibi-
tion of ALKBH is thought to sensitize IDH-mutant gliomas to alkylating agents (far left). Inhibition of the histone demethylase KDM4B by (R)-2HG 
sensitizes IDH-mutant gliomas to PARP inhibition (middle left) and depletes NAD + pools (middle right), rendering IDH-mutant gliomas vulnerable 
to DNA repaired by NAD+-dependent enzymes such as PARP. (R)-2HG inhibits BCAAs including BCAT1, which depletes glutathione pools and sen-
sitizes IDH-mutant gliomas to oxidative stress (far right). Abbreviations: mIDH, mutant IDH; BCAA, branched-chain amino acids.
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the CODEL trial reported worse progression-free survival 
outcomes in the TMZ alone arm (no radiation) as compared 
to the radiation-containing arms (radiation alone and ra-
diation with concurrent and adjuvant temozolomide).151 
Taken together, these data suggest that TMZ could be 
most effective when used sequentially following radia-
tion; alternatively, it is possible that the most effective 
use and timing of TMZ are different in IDH-mutant 1p/19q 
codeleted versus non-codeleted tumors. The relative ben-
efit of TMZ in IDH-mutated 1p/19q codeleted versus non-
codeleted tumors has not been compared in a prospective 
randomized clinical trial. The potential disease control 
benefits of TMZ monotherapy should be contextualized 
within the risk of possible malignant transformation. Low-
grade astrocytomas have been reported to possibly un-
dergo TMZ-induced malignant transformation to more 
hypermutated and aggressive tumors,152,153 which should 
be a consideration when using TMZ monotherapy in low-
grade IDH-mutant gliomas.

Additional Considerations in Targeting 
DNA Damage Pathways

Molecular Predictors of Response

The discovery of molecular markers in glioma over the 
past several decades has revealed important insights into 
the biological heterogeneity of this disease. While some 
molecular markers (such as IDH and H3K27M alterations) 
comprise formal diagnostic criteria in the WHO classifica-
tion,154 the impact of these markers on predicting response 
to specific therapies is still not fully understood. As a rep-
resentative example, the OLAGLI trial presented modest 
clinical outcomes in a heavily pretreated IDH-mutant 
glioma population, but 2 patients had a durable benefit 
and remained on treatment 16–18 months after treatment 
started, suggesting that a subset of patients may benefit.132 
Given the known intertumoral heterogeneity of therapeutic 
response to such therapies, the discovery of predictive bio-
markers will be an important component of the develop-
ment of DDR agents.

Perhaps the prognostic and predictive biomarker with 
the most mature data is the use of alkylating agent TMZ in 
MGMT-methylated gliomas. As discussed above, MGMT-
methylated tumors have been shown to respond better to 
TMZ,3 and MGMT methylation status may now guide use 
of TMZ in the adjuvant setting. Preclinical data also sug-
gest that IDH mutations may confer specific DNA damage 
deficits that sensitize these tumors to various DNA-
damaging agents (see “IDH-mutant gliomas”) and may be 
a useful biomarker, pending ongoing clinical studies.

Aside from these established molecular biomarkers, 
other molecular biomarkers have been proposed as ways 
to predict response to DNA-damaging therapies. For 
example, preclinical data may support the use of ther-
apies based on p53 mutation status, with one preclinical 
study demonstrating that p53 mutant gliomas display in-
creased sensitivity to the ATM inhibitor KU60019.29 This is 
further supported by separate work demonstrating that 
p53-deficient, but not p53 wild-type, DIPG in genetically 

engineered mice display an increase in radiosensitivity 
upon genetic deletion of Atm, which supports the use 
of ATM inhibitors as radiosensitizers in p53 mutant 
gliomas.155 In contrast, treatment with the clinically ad-
vanced ATM inhibitor AZD1390 significantly improved the 
efficacy of radiation in both p53 wild-type and p53 mutant 
isogenic cell lines and distinct orthotopic xenograft models 
of pediatric HGG, including H3K27M-mutant diffuse mid-
line glioma,87 suggesting that in the context of genetically 
diverse human tumors, the use of p53 mutation status as 
a singular predictive biomarker for combination ATM inhi-
bition therapy may be limiting. Furthermore, when tested 
in a colorectal cancer cell line, the effect of ATM inhibition 
on radiosensitivity was independent of p53 status.156 These 
differences may be due to cancer context-dependent ef-
fects of p53, impact of other mutations concurrent with 
p53 loss, and/or differential effect of p53 mutations on 
the use of ATM inhibitors as a monotherapy versus as a 
radiosensitizer. Indeed, the effect of ATM inhibition ap-
pears to have tissue-specific effects, as evidenced by the 
fact that Atm deletion appears to induce differing degrees 
of radiosensitivity depending on tissue type.157–159

While ATM inhibitors have been tested in synthetic lethal 
strategies with p53 loss as described above and are under-
going clinical testing in brain tumor patients, ATM loss 
may also serve as a predictive biomarker in and of itself, 
with a prior study suggesting that it impairs HR, raising 
the possibility that ATM loss may predict sensitivity to 
PARP inhibitors.160 The effect of ATM loss on HR was partly 
compensated for by ATR in this study, in line with sepa-
rately reported data suggesting that ATM deficiency may 
be sensitized to ATR inhibitors in leukemia161 and pediatric 
high-grade-glioma.87

With regards to PARP inhibitors, genomic alterations be-
yond BRCA1/2 mutation, such as genomic signatures as-
sociated with HR deficiency, represent important possible 
biomarkers that will need to be further evaluated across 
different cancers to potentially identify patients most likely 
to benefit from these therapies.162

As data within glioma and other cancer types mature, 
insights into the mechanisms and cell biology of DNA 
damage pathways in glioma remain critical to inform ra-
tional design of therapeutic strategies and identification of 
relevant biomarkers.

Combination With Immunotherapy

Immunotherapy approaches have largely failed to improve 
outcomes in gliomas.163–165 While there is extensive on-
going work to better understand the biology behind this 
lack of efficacy, GBMs are generally thought to be immuno-
logically “cold” or “exhausted.” There has been substantial 
interest in using DDR inhibitors to increase DNA damage, 
stimulate neoantigen production, and alter the inflamma-
tory tumor microenvironment to increase the likelihood of 
improving the activity of immunotherapy (Figure 5).166 A 
prior window of opportunity study in patients with recur-
rent GBM receiving pembrolizumab showed an absence 
of an effector immunologic response in most patients, 
potentially due to scarcity of T cells within the tumor 
microenvironment.167
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There is growing evidence that DNA damage and 
DDR deregulation can enhance immune responses and 
increase PD-L1 expression.168,169 Indeed, emerging data 
suggest that pediatric gliomas with germline MMR defi-
ciency may be uniquely sensitive to immune checkpoint 
blockade.170 Given evidence of increased likelihood of 
benefit with checkpoint inhibitor therapy in other solid tu-
mors with high tumor mutation burden,171 an active area 
of study is to evaluate whether DDR inhibitor-induced 
hypermutation could augment responses to checkpoint 
inhibitors. This may be of particular interest in light of re-
cent work describing hypermutated states of GBM fol-
lowing treatment with TMZ.12 Preliminary data, however, 
suggest that checkpoint inhibitor therapy may have less 
activity in hypermutated GBM following temozolomide 
therapy relative to other malignancies.12 Strategies to 
increase tumor mutational burden in glioma include the 
use of PARP inhibitors. It has been increasingly appreci-
ated that PARP inhibitors may act at least in part through 
the innate immune system and activate the cGAS-STING 
pathway and potentially other DDR pathways (ATM-TR-
CHK1).172,173 Activation of the cGAS-STING pathway may 
also stimulate type 1 interferon, increase tumor-infiltrating 

lymphocytes, and induce antitumor activity independent 
of BRCA status.174 As such, there is an ongoing basket trial 
evaluating the use of olaparib with durvalumab for IDH-
mutated solid tumors (NCT 03991832),175 and trials testing 
olaparib, pembrolizumab, and TMZ in recurrent IDH mu-
tant gliomas (NCT05188508) and recurrent IDH-WT GBM 
(NCT05463848). Further trials are expected given the ra-
tionale for combining DDR inhibitors with immunotherapy.

Non-canonical Targets for DNA-Damaging 
Therapies

While direct inhibition of key functional enzymes in DNA 
damage repair may be a promising therapeutic strategy and 
is currently undergoing testing (see “Molecular Predictors 
of Response”), many promising targets exist that are not ca-
nonical DNA damage enzymes. For example, multiple syn-
thetic lethal drug targets that exploit DNA damage deficits 
that are not directly involved in DNA damage repair (see 
“IDH-mutant gliomas”). Additionally, preclinical and early 
clinical data suggest roles for druggable targets that may 
potentiate DNA-damaging therapies such as radiation. 

cGAS/STING

Type I IFN

•  Increased Ag presentation
•  Increased TlLs
•  Increased PDL1
•  Enhanced ICB efficacy

Bridging innate
to adaptive

immune
responses

RT

dsDNA
breaks

Cytosolic
dsDNA

DDR Modulation

Hypermutation

(such as PARPi,
ATMi, ATRi)

Figure 5. Molecular pathways by which modulation of the DNA damage response (DDR) could potentiate immune processes. DDR modulating 
agents such as PARP inhibitors, ATM inhibitors, and ATR inhibitors may increase production of extrachromosomal double-stranded DNA (dsDNA) 
in the cytosol, especially in the setting of cytotoxic therapies such as radiation therapy that can cause double strange DNA breaks. Such cytosolic 
dsDNA can be detected by cGAS/STING to potentiate innate immune responses by stimulating type I interferon expression, antigen presentation, 
tumor-infiltrating lymphocyte recruitment, PDL1 expression, and improved responses to immune checkpoint blockade therapy. Alternatively, DDR 
modulation could drive tumor hypermutation, which may also have immune modulatory effects. Abbreviations: Ag, antigen; TILs, tumor-infiltrating 
lymphocytes; ICB, immune checkpoint blockade; DDR, DNA damage response.
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For example, cell cycle inhibitors such as CDK4/6 inhibi-
tors have been shown to act as radiosensitizers in in vitro 
models across cancer types, including medulloblastoma,176 
atypical teratoid rhabdoid tumors,177 and GBM.178 More re-
cent work has also demonstrated the efficacy of combining 
CDK4/6 inhibitors with cytotoxic chemotherapy.179 However, 
the mechanisms underlying these interactions are not fully 
understood. Furthermore, while CDK4/6 inhibitors are incor-
porated into standard of care in subsets of breast cancer, 
use of CDK4/6 inhibitors as a radiosensitizer may pose chal-
lenges with regard to toxicity and tolerability, although in-
itial studies recently completed have not identified any 
undue toxicities.180

Additional potential radiosensitizers include drugs 
blocking vascular endothelial growth factor (VEGF), which 
have been shown experimentally to increase radiosensitivity 
through suppression of autophagy in nasopharyngeal car-
cinoma181 and enhance radiation response in preclinical 
schwannoma models.182 While some conflicting data exist,38 
other groups have reported radiosensitization with VEGF in-
hibitors across multiple cancer types, including GBM.39,43 
Similar to the radiosensitization effects of CDK4/6 inhibitors, 
the mechanism of potential synergy between VEGF inhibi-
tors and radiation is not fully understood. Importantly, the 
VEGF-A inhibitor bevacizumab was not shown to improve 
survival when added to chemoradiation in GBM patients,50 
suggesting that if such a radiosensitization effect does exist 
in glioma, further work to identify subsets of patients that 
benefit is needed to better translate these findings to clinical 
practice.

Cell cycle inhibitors and VEGF inhibitors are 2 examples 
of therapeutic targets outside of classical DNA damage 
enzymes that may directly potentiate DNA damage or 
prevent DNA damage repair. Emerging data continue to 
shed light on additional enzymes that may play impor-
tant roles in DNA damage and serve as additional thera-
peutic targets. For example, some evidence suggests that 
the MAPK/ERK/Akt pathway harbors direct DNA damage 
repair function.52,128,183,184 As such, these “non-canonical” 
DNA damage enzymes may become additional viable ther-
apeutic targets that leverage alterations in the DDR for 
antitumor efficacy.

Clinical Trial Considerations

While there are many clinical trials evaluating DDR inhibi-
tors across neuro-oncology, several considerations have 
become apparent in designing clinical trials for these ther-
apies. Some of the challenges with the development of 
DDR inhibitors include poor correlation between preclinical 
studies and clinical outcomes, poor BBB penetration asso-
ciated with limited drug exposure, poorly defined patient-
selection criteria and endpoints, difficulty ascertaining 
response (particularly in the setting of chemoradiation)185 
or obtaining pathological correlates via biopsy, challenging 
toxicity in combining with existing standard-of-care ther-
apies of radiation therapy and chemotherapy, and/or insuf-
ficient financial investment.186

Given the distinct challenges with drug development 
for the treatment of CNS diseases, there have been many 
failures. Thus, more efficient testing of therapies early in 

development is critical to better identify therapies most 
likely to be successful.186

Prior studies have indicated significant variability of 
clinically tested DDR inhibitors with respect to BBB pene-
tration. Furthermore, while BBB penetration is commonly 
cited as a primary concern, it is just as important to en-
sure that biologically active concentrations and target en-
gagement can be achieved in tumor tissue. Because BBB 
is often disrupted in malignant gliomas, potent drugs can 
still achieve sufficient exposure in the tumor core, but 
only drugs specifically designed to cross the BBB will be 
able to target glioma cells that have invaded surrounding 
“normal” brain parenchyma with intact BBB.

Evaluation of treated tumor tissue in patients has long 
been identified as a need in neuro-oncology,187 though im-
plementation has been slow. Surgical window of oppor-
tunity trial designs represent an important consideration 
that can be used to identify intratumoral concentrations 
of experimental therapies and generate pharmacody-
namic data to understand the effects of drugs on tumor 
tissue by assessing surgical specimens after therapy 
administration.188,189

A representative example of a window of opportunity 
study tests the DNA-PK inhibitor M3814 in combination 
with radiation therapy in MGMT unmethylated newly diag-
nosed GBM (NCT0455577).190 In the first stage, patients 
receive M3814 concurrently with RT; in the second stage, 
patients receive standard-of-care RT with M3814 followed 
by surgical resection within 1–14 days of completing RT. 
Window of opportunity trials provides an opportunity to 
understand target engagement as well as the mechanism 
of response. Use of this trial design could allow for a more 
efficient and reliable selection of therapies more likely to 
be successful in later phase testing. Pharmacokinetics/
pharmacodynamics (PK/PD) and window of opportunity 
studies to confirm target inhibition will also continue to be 
important in this regard.

Beyond the window of opportunity trials, testing of DDR 
inhibitors could be more efficiently conducted in later-
phase trials that also utilize novel trial designs.186,191 DDR 
inhibitors have been tested on adaptive platform trials, in-
cluding CC-115 on INSIGhT.192 Regardless of trial design, 
there should be careful monitoring of toxicities, particularly 
when combining them with standard-of-care therapies. 
Assessment of toxicity for new therapeutic strategies that 
combine a new therapy with radiation can be challenging, 
and causality can be difficult to determine against the ex-
pected toxicity of treatment. Furthermore, there may be 
higher rates of pseudoprogression with DDR agents, which 
raises the need for confirmation scans and implementation 
of response assessment criteria that allow for confirmation 
scans to increase fidelity of response assessments.185

Future Directions

The future of therapies targeting the DDR in gliomas re-
quires focused investigations in several key areas. First, 
there is a crucial need for improved preclinical models 
that faithfully recapitulate the complex biology and ge-
netic heterogeneity of gliomas, enabling better prediction 
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of therapeutic responses. Furthermore, exploring the po-
tential of combination therapies is essential, as targeting 
multiple DDR pathways simultaneously may enhance 
treatment efficacy. In parallel, correlative studies aimed 
at elucidating the molecular determinants of response 
and resistance to DDR-targeted therapies are imperative. 
Understanding the mechanisms underlying resistance will 
guide the development of strategies to overcome treat-
ment obstacles. Biomarker discovery and validation are 
pivotal for identifying patients most likely to benefit from 
DDR-targeted therapies, enabling personalized treatment 
approaches. As described above, the rational combina-
tion of DDR-targeted therapies with immunotherapies 
holds immense potential, as it can exploit the interplay be-
tween DNA damage and the immune system, enhancing 
the overall therapeutic response. Finally, comprehensive 
studies exploring the timing, sequencing, and dosage of 
radiation in combination with DDR-targeted agents will be 
vital to determine the most effective methods to rationally 
combine investigational therapies with radiation. Future 
investigations in these areas will propel the development 
of effective and personalized treatments for gliomas, 
improving patient outcomes.
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