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Abstract: Gliomas, the most common type of primary malignant brain tumors in adults, pose signifi-
cant challenges in diagnosis and management due to their heterogeneity and potential aggressiveness.
This review evaluates the utility of O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) positron emission
tomography (PET), a promising imaging modality, to enhance the clinical management of gliomas.
We reviewed 82 studies involving 4657 patients, focusing on the application of [18F]FET in several key
areas: diagnosis, grading, identification of IDH status and presence of oligodendroglial component,
guided resection or biopsy, detection of residual tumor, guided radiotherapy, detection of malignant
transformation in low-grade glioma, differentiation of recurrence versus treatment-related changes
and prognostic factors, and treatment response evaluation. Our findings confirm that [18F]FET helps
delineate tumor tissue, improves diagnostic accuracy, and aids in therapeutic decision-making by
providing crucial insights into tumor metabolism. This review underscores the need for standardized
parameters and further multicentric studies to solidify the role of [18F]FET PET in routine clinical
practice. By offering a comprehensive overview of current research and practical implications, this
paper highlights the added value of [18F]FET PET in improving management of glioma patients from
diagnosis to follow-up.

Keywords: neuro-oncology; glioma; fluoroethyltyrosine (FET); PET; nuclear medicine

1. Introduction

Gliomas represent the majority of primary malignant brain tumors in adults, with
a yearly incidence of approximately 6 per 100,000 in Europe [1]. They are categorized
according to the World Health Organization (WHO) classification into grades ranging from
1 to 4 depending on their malignancy [2]. Glioblastoma, the most aggressive and common
type of glioma, remains incurable with an almost systematic progression within the year
and a median survival of 14.6 months despite optimal treatment [3].

In high-grade tumors, treatment usually consists of maximal resection of the tumor
(if feasible) followed by chemotherapy and radiotherapy depending on tumor grade and
analysis of molecular markers (i.e., 1p/19q codeletion, IDH mutation, and MGMT promoter
methylation) [4]. Treatment of grade 4 gliomas, the same since 2005, is based on the so-called
“Stupp protocol”, which includes concomitant radiochemotherapy with Temozolomide [3].

Patients’ monitoring consists of MRI before and after treatment with periodic follow-
up. An increase in enhancing areas is considered suspect of recurrence according to the
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Response Assessment in Neuro-Oncology (RANO) criteria but is not specific [5]. Indeed,
frequent post-radiation changes such as pseudoprogression and radionecrosis can cause
the same type of suspicious gadolinium-enhancing lesion.

Pseudoprogression typically occurs several weeks up to months (often less than
3 months) after completion of radiotherapy. This phenomenon is responsible for a transitory
worsening of MR imaging with an increased contrast enhancement area, resolving without
changes in treatment on subsequent MRI scans. There is generally no symptom associated.

Radionecrosis is a severe reaction to radiotherapy, which generally occurs later, months
to several years after radiation therapy. MRI findings involve a space-occupying necrotic
lesion with a mass effect, which can cause neurological dysfunction.

MRI changes can also be induced by treatments such as corticosteroids, antiangiogenic
therapy, or immunotherapy.

For these reasons, there is a need to find other reliable methods to differentiate glioma
recurrence from treatment-related changes, given the different managements of these two
processes.

Different MRI techniques have been implemented in this indication, such as diffu-
sion weighted imaging (DWI) [6], perfusion-weighted imaging (PWI) [7], and magnetic
resonance spectroscopy (MRS) [8].

In nuclear medicine, positron emission tomography using 2-deoxy-2-[18F]fluoro-D-
glucose ([18F]FDG) has already proven itself in oncology imaging and has become common
practice in numerous pathologies. However, its physiologically high brain metabolism and
increased uptake in inflammatory lesions make it difficult to appreciate tumor uptake [9].

Radiolabeled amino acids are preferred in neuro-oncology due to low uptake in normal
brain tissue contrasting with increased uptake in neoplastic processes, resulting in a better
signal-to-noise ratio [10].

The most widely used amino acid tracers for PET are [11C-methyl]-methionine ([11C]MET),
O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET), and 3,4dihydroxy-6-[18F]fluoro-L-phenylalanine
([18F]F-DOPA) (Table 1). Their uptake is believed to be driven by an overexpression of the
L-type amino-acid transporter (LAT) by brain tumors (Figure 1).

Table 1. Comparative table of different radiolabeled amino acids.

Aspect [11C]MET [18F]F-DOPA [18F]FET

Radiotracer Type Amino acid analog Amino acid precursor Amino acid analog

Mechanism of Uptake
Uptake via L-type amino acid transporter
(LAT) into tumor cells with high protein
synthesis.

Uptake via amino acid transport (LAT) is
overexpressed in tumor cells. Converted
into dopamine in dopaminergic neurons.

Uptake via LAT, reflecting increased amino
acid transport correlated to tumor
proliferation.

Half-Life 20 min 110 min 110 min

Production Requires on-site cyclotron due to short
half-life. Can be produced off-site, longer shelf life. Can be produced off-site, longer shelf life.

Sensitivity in Gliomas High sensitivity, more effective in
detecting high-grade gliomas. High sensitivity in detecting glioma. High sensitivity, more effective in detecting

high-grade gliomas.

Specificity in Gliomas Moderate specificity, possible uptake in
inflammatory lesions.

High specificity, with potential uptake in
inflammatory tissues.

High specificity, with less non-specific
uptake in inflammatory tissues compared
to [11C]MET.

Advantages Rapid uptake, good lesion contrast. Longer half-life allows broader clinical
application.

Longer half-life allows broader clinical
application.
Dynamic acquisition allows additional
information on tracer kinetics, particularly
useful for tumor grading.

Disadvantages
Short half-life limits use to facilities with
a cyclotron, potential uptake in
inflammation.

May have false positives in inflamed
tissues. High physiologic uptake in the
basal ganglia.

Potential uptake in inflammatory lesions
but less than [11C]MET.

Clinical Application

Primarily used in facilities with a
cyclotron, used to detect tumor
recurrence and in monitoring the
response to therapy.

Mostly used for differentiating tumor
recurrence from necrosis, especially in
high-grade gliomas.

Widely used for differentiating high-grade
glioma early and late progression from
radiation effects.
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pathways. Molecular structures (A) and associated uptake mechanism (B) of each radiolabeled 
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Its high efficiency production and its half-life of 110 min allow its transportation to 
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Europe.  

In the present review, we aimed to summarize its performance in different 
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Figure 1. Radiolabeled amino acids O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET), [11C-methyl]-
methionine ([11C]MET), and L-3,4-dihydroxy-6-[18F]fluoro-phenyl-alanine ([18F]FDOPA) metabolic
pathways. Molecular structures (A) and associated uptake mechanism (B) of each radiolabeled amino
acid. Created with BioRender.com.

Detailed Description of different radiolabeled amino acids
11C-Methionine ([11C]MET)
Mechanism: [11C]MET is an amino acid analog taken up by tumor cells via the L-type

amino acid transporter (LAT). It reflects increased protein synthesis, which is often elevated
in gliomas.

Advantages: High sensitivity in detecting both low- and high-grade gliomas; more
effective in high-grade gliomas [11]. Provides rapid uptake and good contrast between
tumor and normal brain tissue. It is particularly effective to detect tumor recurrence [12]
and in monitoring therapy response [13].

Disadvantages: The short half-life of 11C (about 20 min) necessitates the use of an
on-site cyclotron, limiting its use to specialized centers. [11C]MET may also accumulate in
inflammatory tissues, leading to potential false positives [14].

[18F]F-DOPA
Mechanism: [18F]F-DOPA is a precursor to dopamine and is taken up by dopaminergic

neurons, with uptake also observed in gliomas due to increased amino acid transport and
altered tumor metabolism. It is decarboxylated to dopamine and subsequently trapped
in cells.

BioRender.com
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Advantages: The longer half-life of 18F (about 110 min) allows for broader clinical
application as it can be transported from off-site production facilities. It has high sensitivity
for gliomas [15] and is particularly useful in differentiating between tumor recurrence and
radiation necrosis [16].

Disadvantages: Uptake of [18F]F-DOPA in inflamed tissues can lead to false-positive
results [17].

18F-Fluoroethyl-L-tyrosine ([18F]FET)
Mechanism: [18F]FET is an artificial amino acid taken up by glioma cells via LAT,

reflecting the increased amino acid transport associated with tumor proliferation.
Advantages: [18F]FET has a longer half-life, like 18F-DOPA, allowing it to be produced

off-site. It has high sensitivity for gliomas, especially high-grade gliomas [18], with low
uptake in inflammatory lesions, making it particularly effective in distinguishing tumor
recurrence from treatment-induced changes. Additionally, dynamic acquisition allows
information on tracer kinetics, particularly useful for tumor grading [19].

Disadvantages: Though it offers high specificity. There is also potential, though
reduced, for uptake in inflammatory tissues [20].

While recent meta-analyses report high sensitivity and specificity of both 18F-DOPA
and [18F]FET to differentiate true progression to treatment-related changes, there are still
discrepancies in determining the best radiolabeled amino acid [21–23].

[18F]FET market authorizations have been delivered in Europe recently, enabling its
widespread use in hospitals.

Its high efficiency production and its half-life of 110 min allow its transportation to
other sites. For these reasons, it is being increasingly used in glioma management in Europe.

In the present review, we aimed to summarize its performance in different indications
in low- and high-grade gliomas.

2. Materials and Methods
2.1. Search Strategy

The primary literature was searched up to 31 December 2023, using the PubMed
database.

A combination of the search terms «PET», «FET» OR «amino acid» OR «fluoroethylty-
rosine» OR «fluoroethylltyrosine», «Glioma» OR «brain tumor», «pediatric», and «neuro-
oncology» were used. The screening of abstracts and full-text articles was performed by
one reviewer (J.A.R.).

Inclusion criteria were studies in English, using FET, and in humans with a full text
available.

Exclusion criteria included studies that included less than 20 patients, did not report
on diagnostic test parameters or metrics representing impact on clinical management
decisions and/or survival outcomes, did not give information about histology or tumor
grades, and studies that included other malignancies. We also excluded studies that did
not include histological confirmation or follow-up.

2.2. Data Synthesizing

For each study, the indication, principal author, publication year, study design, number
of patients, grade, age, sex, type of imaging modality, test parameter, cut-off used, and their
performances were recorded.

3. Results
3.1. Literature Search

We selected 152 studies according to their title and abstract, but upon full-text review,
70 studies were excluded (Figure 2).

The remaining 82 studies [19,24–104] were included in this review, with a total of 4657
patients. Details of these study characteristics can be found in Table 2.
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Table 2. Characteristics of the 82 included studies. §: did not reach significance, &: did not reach significance after Bonferroni multiple-test correction, #: significance
not available.

Indication Author,
Year Reference Design Number of

Patients Grade Mean Age Sex Imaging
Modality Parameters Optimal

Cut-Off Sensitivity Specificity AUC Accuracy

Diagnosis

Pauleit
et al., 2009 [24] Prospective 52 Not

glioma:9 46 36 M 16 F PET Lmean/B # -

Grade 2:22 Lmax/B # -

Grade 3:12 Visual grading
system # -

Grade 4:9

Mauler
et al., 2023 [25] Prospective 30 Not

glioma:6 48 16 M 14 F PET 18F-FETn uptake
1.4 x back-

ground 76% 80% 0.89 78%

Grade 2:7 MRI Cho/NAAn 2.16 59% 83% 0.81 71%

Grade 3:7

Grade 4:10

Floeth
et al., 2005 [26] Prospective 50 Not

glioma:16 44 21 M 29 F PET FET lesion/brain
ratio 1.6 88% 88% -

Grade 1:2 MRI Gd enhancement - 44% 69% 68%

Grade 2:13 NAA/Cho ratio 0.7 100% 81% -

Grade 3:14

Grade 4:5

Pauleit
et al., 2005 [27] Prospective 28 Not

glioma:5 42 9 M 19 F PET FET ratio 1.6 92% 81% -

Grade 1:2 MRI T1 ratio 1.0 85% 12% -

Grade 2:7 Gd-T1 ratio 1.0 38% 96% -

Grade 3:12 FLAIR ratio 1.0 96% 4% -

Grade 4:2 T1/Gd-
T1/FLAIR ratio - 96% 53% 68%

PET/CT +
MRI

FET/T1/Gd-
T1/FLAIR ratio - 93% 94% 94%
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Table 2. Cont.

Indication Author,
Year Reference Design Number of

Patients Grade Mean Age Sex Imaging
Modality Parameters Optimal

Cut-Off Sensitivity Specificity AUC Accuracy

Grading
(LGG vs.

HGG)

Jeong and
Lim, 2012 [28] Prospective 20 Grade 2:3 52 13 M 7 F PET SUVmax -

Grade 3:2 TNR -

Grade 4:15

Verger
et al., 2017 [29] Retrospective 72 Grade 1:1 49 42 M 30 F PET TBRmax 2.62 82% 68% 0.83 78%

Grade 2:21 TBRmean 1.69 82% 68% 0.80 78%

Grade 3:25 TTP 30 min 54% 91% 0.78 65%

Grade 4:25 Slope −0.03
SUV/h 64% 91% 0.78 72%

PWI rCBF TBRmax 1.51 64% 64% 0.74 64%

TBRmean 0.69 62% 59% 0.66 61%

PWI rCBV TBRmax 1.80 88% 72% 0.81 83%

TBRmean 1.14 72% 77% 0.80 74%

PWI MTT TBRmax § 1.16 64% 50% 0.58 60%

TBRmean § 0.98 54% 36% 0.43 49%

Lopez
et al., 2015 [30] Prospective 23 No-

grade:2 56 18 M 5 F PET UR 3.0

Grade 1:1

Grade 2:7

Grade 3:2

Grade 4:11

Lohmann
et al., 2015 [31] Prospective 36 Grade 2:12 49 19 M 17 F PET TBRmean § 2 83% 58% 0.65 75%

Grade 3:8 ∆TBRmean 20–40
min/70–90 min −8% 83% 75% 0.85 81%

Grade 4:16 TTP 35 min 58% 92% 0.76 69%

Kinetic pattern II/III 88% 75% - 83%
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Table 2. Cont.

Indication Author,
Year Reference Design Number of

Patients Grade Mean Age Sex Imaging
Modality Parameters Optimal

Cut-Off Sensitivity Specificity AUC Accuracy

Calcagni
et al., 2011 [32] Prospective 32 Grade 1:3 41 21 M 11 F PET TAC # I/II vs. III 73% 100% 87%

Grade 2:14 Early SUV 2.32 73% 71% 72%

Grade 3:11 Middle SUV § - - - -

Grade 4:4 Late SUV § - - - -

e-m ratio 0.93 93% 94% 94%

e-l ratio 0.95 87% 88% 87%

Tpeak 25 min 87% 100% 94%

SoD 0.5 93% 82% 87%

Logistic
regression using

Early SUV +
SoD §

50% 93% 100% 97%

Albert
et al., 2016 [33] Retrospective 314 Grade 1:3 49 181 M

133 F PET TBRmax
(20–40 min) 2.7 67% 78% 70%

Grade
2:128

TBRmax
(0–10 min) 2.8 76% 79% 76%

Grade 3:95 TBRmax
(5–15 min) 2.7 78% 76% 77%

Grade 4:88 TBRmax
(5–20 min) 2.6 80% 74% 76%

TBRmax
(10–30 min) 2.5 75% 75% 74%

Kinetic pattern # Decreasing 90% 66% 80%

Pöpperl
et al., 2007 [19] Prospective 54 Grade 2:15 49 30 M 24 F PET SUVmax/BG 2.58 71% 85% 0.798

Grade 3:21 SUV90 10–60 min 0.20 94% 100% 0.969

Grade 4:18 SUV90 15–60 min −0.41 94% 100% 0.965
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Table 2. Cont.

Indication Author,
Year Reference Design Number of

Patients Grade Mean Age Sex Imaging
Modality Parameters Optimal

Cut-Off Sensitivity Specificity AUC Accuracy

e 2/3 vs.
grade 4

Hua et al.,
2021 [34] Retrospective 58 Grade 2:33 42 37 M 21 F PET TBRmax 2.67 92% 61% 0.824 67%

Grade 3:13 TBRpeak 2.35 92% 61% 0.832 67%

Grade 4:12 TBRmean 2.31 58% 93% 0.791 86%

COV 27.21 58% 91% 0.808 84%

HI 1.77 67% 87% 0.826 83%

MTV 20.13 75% 80% 0.801 79%

TLU 50.93 75% 83% 0.841 81%

SUVsd 0.45 67% 87% 0.816 83%

TBRmax +
SUVsd +

TBRmean
- 75% 85% 0.850 83%

HI + SUVsd +
MTV - 75% 83% 0.848 81%

HI + SUVsd +
TLU - 75% 84% 0.848 81%

Kunz et al.,
2011 [35] Prospective 55 Grade 2:31 44 33 M 22 F PET TAC

Increasing
vs.

decreasing
96% 94%

Grade 3:22 MRI Tumor volume § - - -

Grade 4:2

Grade 2/3
vs. grade 4

Röhrich
et al., 2018 [36] Retrospective 44 Grade 2:10 53 - PET TAC #

LGG-like
vs. mixed

vs.
HGG-like

- - -

Grade 3:13 SUVmax/BG - - - -

Grade 4:21 TTP § - - - -

Relative K1 - 85% 60% 0.766

Relative K2 § - - - -

Relative K3 § - - - -

Relative FD - 67% 78% 0.716
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Table 2. Cont.

Indication Author,
Year Reference Design Number of

Patients Grade Mean Age Sex Imaging
Modality Parameters Optimal

Cut-Off Sensitivity Specificity AUC Accuracy

SUVmax/BG +
TTP - - - 0.745

SUVmax/BG +
TTP + relative K1

+ relative FD
- - - 0.799

Jansen
et al., 2012 [37] Retrospective 127 No

tumor:7 46 72 M 55 F PET TAC #
Increasing

vs.
decreasing

95% 72%

Grade 1:4 FET uptake #

Reduced
vs. normal

vs.
increased

- -

Grade 2:69 FET uptake
pattern §

Inhomogeneous
vs. diffuse
vs. focal

- -

Grade 3:42 SUVmax/BG § - - -

Grade 4:5 SUVmean/BG § - - -

BTV § - - -

grade 2
vs. 3

Jansen
et al., 2012 [38] Prospective 144 Grade 2:79 45 84 M 60 F PET TAC # Decreasing 88% 63%

Grade 3:65 SUVmax/BG § - - -

BTV § - - -

SUVtotal/BG § - - -

SUVmean/BG § - - -

grade 3
vs. 4

Pyka et al.,
2016 [39] Retrospective 113 Grade 3:26 59 43 M 70 F PET TBRmax § 2.74 0.614

Grade 4:87 TBRmean 1.68 0.644

MTV 19.7 0.710

TLU 46.2 0.704

Textural
parameters:

Coarseness 0.607 0.757
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Table 2. Cont.

Indication Author,
Year Reference Design Number of

Patients Grade Mean Age Sex Imaging
Modality Parameters Optimal

Cut-Off Sensitivity Specificity AUC Accuracy

Contrast 0.203 0.775

Busyness 1.12 0.737

Complexity 0.069 0.633

Combined 2.05 0.830

IDH status
determina-

tion

Hua et al.,
2021 [34] Retrospective 58 Grade 2:33 42 37 M 21 F PET TBRmax 2.21 48% 87% 0.658 72%

Grade 3:13 TBRpeak § 2.15 57% 73% 0.638 67%

Grade 4:12 TBRmean § 1.84 62% 68% 0.633 66%

COV 8.85 52% 76% 0.650 67%

HI 1.26 48% 87% 0.676 72%

MTV 19.48 90% 46% 0.660 62%

TLU 28.95 81% 57% 0.698 66%

SUVsd 0.11 47% 57% 0.710 66%

TBRmax +
SUVsd +

TBRmean
- 76% 84% 0.821 81%

HI + SUVsd +
MTV - 86% 81% 0.804 83%

HI + SUVsd +
TLU - 76% 84% 0.799 81%

Zhou et al.,
2021 [40] Retrospective 58 Grade 2:31 - 26 M 22 F PET SUVSD 0.23 - - - -

Grade 3:14 TLU§ - - - - -

Grade 4:13 MTV§ - - - - -

TBRmax § - - - - -

TBRmean § - - - - -

TBRpeak § - - - - -
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Table 2. Cont.

Indication Author,
Year Reference Design Number of

Patients Grade Mean Age Sex Imaging
Modality Parameters Optimal

Cut-Off Sensitivity Specificity AUC Accuracy

Midline
involvement Yes vs. no - - - -

Simple predictive
model - 85% 71% 0.786 76%

Radiomics
models:

PET-Rad model - 80% 74% 0.812 76%

CT CT-Rad model - 85% 76% 0.883 79%

PET/CT PET/CT-Rad
model - 85% 87% 0.912 86%

Lohmann
et al., 2018 [41] Retrospective 84 Grade 2:7 54 50 M 34 F PET TBRmean 1.68 12% 100% 0.66 73%

Grade 3:26 TBRmax § 2.07 8% 100% 0.59 71%

Grade 4:51 TTP 45 min 27% 93% 0.75 73%

Slope 0.30
SUV/h 58% 90% 0.79 80%

Slope + Radiomic
feature SZHGE - 54% 93% - 81%

Radiomic
features:

SkewnessH § - 31% 90% 0.53 71%

LRHGE § - 8% 100% 0.52 71%

Verger
et al., 2018 [42] Retrospective 90 Grade 2:16 51 55 M 35 F PET TBRmean 1.85 44% 92% 0.73 69%

Grade 3:27 TBRmax 2.15 56% 77% 0.68 67%

Grade 4:47 TTP 25 min 86% 60% 0.75 72%

Slope −0.26
SUV/h 81% 60% 0.75 70%

TBRmean +
TBRmax

1.85 and
2.15 44% 91% - 69%

TTP + Slope
25 min and

−0.26
SUV/h

77% 70% - 73%
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Table 2. Cont.

Indication Author,
Year Reference Design Number of

Patients Grade Mean Age Sex Imaging
Modality Parameters Optimal

Cut-Off Sensitivity Specificity AUC Accuracy

TBRmean + TTP 1.85 and 25
min 40% 96% - 69%

TBRmax + TTP 2.15 and 25
min 51% 94% - 73%

TBRmean +
Slope

1.85 and
−0.26

SUV/h
40% 94% - 68%

TBRmax + Slope
2.15 and
−0.26

SUV/h
47% 91% - 70%

Blanc-
Durand

et al., 2018
[43] Retrospective 37 Grade 1:3 45 23 M 14 F PET TBRmax - -

Grade 2:15 TBRmean - -

Grade 3:14 TTP - -

Grade 4:5 Slope - -

TAC
Centroid

#1 vs.
centroid #3

- -

Bette et al.,
2016 [44] Retrospective 65 Grade 1:11 38 36 M 29 F PET TBR # 1.3 89% 36%

Grade 2:54 TBR # 1.6 71% 53%

TBR # 2.0 57% 68%

TBRmax § - - -

Prediction of
oligoden-
droglial

components

Jansen
et al., 2012 [38] Prospective 144 Grade 2:79 45 84 M 60 F PET SUVmax/BG 2.6 70% 72%

Grade 3:65 BTV 4.0 71% 69%

SUVmean/BG 2.1 61% 59%

SUVtotal/BG 6.9 75% 66%
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Table 2. Cont.

Indication Author,
Year Reference Design Number of

Patients Grade Mean Age Sex Imaging
Modality Parameters Optimal

Cut-Off Sensitivity Specificity AUC Accuracy

Bette et al.,
2016 [44] Retrospective 65 Grade 1:11 38 36 M 29 F PET TBR # 1.3 100% 23%

Grade 2:54 TBR # 1.6 93% 48%

TBR # 2.0 86% 65%

TBRmax - - -

Guided resec-
tion/biopsy

Ort et al.,
2021 [45] Retrospective 30 Grade 3:5 59 19 M 11 F PET BTV 1 cm3

Grade 4:25

Floeth
et al., 2011 [46] Prospective

30
patients/38

biopsies
Grade 2:17 43 20 M 10 F PET TBR 1.6

Grade 3:19 MRI Gd-DTPA
enhancement -

Grade 4:2 5-ALA-
fluorescence Fluorescent areas -

Ewelt et al.,
2011 [47] Prospective 30 Grade 2:13 42 20 M 10 F LGG subgroup:

Grade 3:15 PET Tumor/brain
tissue ratio 1.6 54% 12%

Grade 4:2 MRI Gd enhancement - 8% 36%

5-ALA-
fluorescence Fluorescent areas - 8% 29%

PET/MRI - - 8% 35%

MRI/5-
ALA - - 8% 41%

PET/5-
ALA - - 8% 29%

PET/MRI/5-
ALA - - 8% 41%
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Table 2. Cont.

Indication Author,
Year Reference Design Number of

Patients Grade Mean Age Sex Imaging
Modality Parameters Optimal

Cut-Off Sensitivity Specificity AUC Accuracy

HGG subgroup:

PET Tumor/brain
tissue ratio 1.6 88% 46%

MRI Gd enhancement - 65% 92%

5-ALA-
fluorescence Fluorescent areas - 71% 92%

PET/MRI - - 65% 92%

MRI/5-
ALA - - 59% 92%

PET/5-
ALA - - 71% 92%

PET/MRI/5-
ALA - - 59% 92%

Verburg
et al., 2020 [48] Prospective 20 Grade 2:8 - 12 M 8 F PET TBR - - - 0.76

Grade 4:12 T1G-MRI - - - - 0.56

PET/MRI ADC + TBR - - - 0.89

Detection of
residual
tumor

Buchmann
et al., 2016 [49] Retrospective 62 Grade 4:62 61 37 M 25 F PET TBR 1.6

MRI
Contrast-

enhanced tissue
areas

-

Kläsner
et al., 2015 [50] Prospective 25 Grade 2:4 62 16 M 9 F PET Visual uptake >Background

Grade 3:3 MRI
Contrast-

enhancement
volume

0.175 cm2

Grade 4:18

Guided
radiotherapy
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Table 2. Cont.

Indication Author,
Year Reference Design Number of

Patients Grade Mean Age Sex Imaging
Modality Parameters Optimal

Cut-Off Sensitivity Specificity AUC Accuracy

Allard
et al., 2022 [51] Prospective 23 Grade 3:3 59 14 M 9 F PET TBRmax # 1.6

Grade 4:20 SUVmax # 30%

SUVmax # 40%

SUVmax # 50%

SUVmax # 60%

SUVmax # 70%

SUVmax # 80%

SUVmax # 90%

CE-MRI Visual analysis # -

Munck af
Rosen-
schold

et al., 2015

[52] Prospective 54 Grade 3:19 55 - PET TBR # 1.6

Grade 4:35 CE-MRI Visual analysis # -

Fleischmann
et al., 2020 [53] Retrospective 36 Grade 4:36 66 20 M 16 F PET TBRmax # 1.6

MRI Visual analysis #

Harat et al.,
2016 [54] Prospective 34 Grade 4:34 - - PET FET uptake # 1.6 x

SUVmean

MRI Visual analysis # -

Dissaux
et al., 2020 [55] Prospective 30 Grade 3:5 63 20 M 10 F PET TBR# 1.6

Grade 4:25 MRI Visual analysis # -

Hayes
et al., 2018 [56] Retrospective 26 Grade 3:5 61 17 M 9 F PET TBR # 1.6

Grade 4:21 CE-MRI Visual analysis # -

FLAIR-
MRI Visual analysis # -
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Table 2. Cont.

Indication Author,
Year Reference Design Number of

Patients Grade Mean Age Sex Imaging
Modality Parameters Optimal

Cut-Off Sensitivity Specificity AUC Accuracy

Detection of
malignant

transforma-
tion in LGG

Galldiks
et al., 2013 [57] Prospective 27 Grade 2:27 44 18 M 9 F PET TBRmax ∆33% 72% 89% 0.87 78%

TBRmean ∆13% 72% 78% 0.80 74%

TTP ∆-6 min 72% 89% 0.78 78%

Kinetic pattern
change I to II/III 72% 89% - 78%

TBRmax + TTP +
Kinetic pattern

change

∆ + 33% or
∆-6 min or
I to II/III

83% 78% - 81%

MRI
Contrast

enhancement
change

- 44% 100% - 63%

Unterrainer
et al., 2016 [58] Retrospective 31 Grade 2:26 38 18 M 13 F PET TBRmax 2.46 82% 89% 0.92 85%

Grade 3:5 TTPmin 17.5 min 73% 67% - 70%

Bashir
et al., 2018 [59] Retrospective

42
patients/47

PET
Inconclusive:2 41 18 M 24 F PET TBRmax § - 57% 41% 0.476

Grade 1:1 TAC § - 71% 41% 0.549

Grade
1/2:1 TTP § 25 min 57% 47% 0.511

Grade 2:43 TBRmax + TAC +
TTP §

1.6 + II/III
+ 25 min 65% 58% 0.634

TBRmax + TAC § 1.6 + II/III 65% 58% 0.639

TBRmax + TTP § 1.6 + 25
min 96% 25% 0.591

MRI
Contrast

enhancement §
(CE)

new area 43% 77% 0.597
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Table 2. Cont.

Indication Author,
Year Reference Design Number of

Patients Grade Mean Age Sex Imaging
Modality Parameters Optimal

Cut-Off Sensitivity Specificity AUC Accuracy

PET/MRI TBRmax + TAC +
TTP + CE § - 70% 50% 0.643

TBRmax + TAC +
CE § - 52% 75% 0.656

TBRmax + TTP +
CE § - 57% 58% 0.620

Recurrence
vs. treatment-

related
changes

Jeong et al.,
2010 [60] Retrospective 32 Grade 2:10 47 12 M 20 F PET SUVmax 1.66 87% 100% 0.978

Grade 3:8 LNR 2.18 86% 88% 0.940

Grade 4:14 LGG subgroup:

SUVmax 1.48 88% 89% 0.951

LNR 1.64 100% 75% 0.893

HGG subgroup:

SUVmax 1.66 93% 100% 0.993

LNR 2.46 86% 100% 0.964

Jansen
et al., 2013 [61] Prospective 33 Grade 3:20 - - PET BTV after 6

months -

Grade 4:13 SUVmax/BG
after 6 months -

Puranik
et al., 2021 [62] Retrospective 72 Grade 3:13 - 47 M 25 F PET T/Wm 2.65 80% 88%

Grade 4:59

Kertels
et al., 2019 [63] Retrospective 36 Grade 4:36 54 22 M 14 F PET TBRmax 3.69 79% 88% 0.86

TBRmax 3.58 64% 100% 0.84

TBRmax 3.44 86% 88% 0.86

TBRmean 2.31 61% 100% 0.83
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Table 2. Cont.

Indication Author,
Year Reference Design Number of

Patients Grade Mean Age Sex Imaging
Modality Parameters Optimal

Cut-Off Sensitivity Specificity AUC Accuracy

TBRmean 2.19 71% 88% 0.80

TBR16 mm 2.44 82% 75% 0.82

TBR10 mm 2.86 86% 75% 0.81

TBR90% 3.23 71% 100% 0.85

TBR80% 3.08 82% 88% 0.88

TBR70% 2.72 86% 88% 0.87

Verger
et al., 2018 [64] Retrospective

31
patients/32

tumors
Grade 2:2 52 16 M 15 F PET TBRmax 2.61 80% 86% 0.78 81%

Grade 3:3 TBRmean § - - - 0.74 -

Grade 4:27 TTP § - - - 0.71 -

Slope § - - - 0.70 -

PWI rCBF TBRmax § - - - 0.65 -

TBRmean § - - - 0.55 -

PWI rCBV TBRmax § - - - 0.58 -

TBRmean§ - - - 0.64 -

PWI MTT TBRmax § - - - 0.59 -

TBRmean § - - - 0.59 -

Pyka et al.,
2018 [65] Retrospective

47
patients/63

lesions
Grade 2:5 54 22 M 25 F PET TBR30–40 min 2.07 80% 85% 0.863

Grade 3:20 TBR10–20 min 1.71 76% 85% 0.848

Grade 4:38 TTP 20 min 64% 79% 0.728

PWI MRI rCBVuncor 4.32 62% 77% 0.726

rCBVcor 3.35 66% 77% 0.708

DWI MRI ADC
1610 ×
10−6

mm2/s
50% 77% 0.688

nADC 1.22 62% 77% 0.697

FA § 98.9 65% 62% 0.593
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Table 2. Cont.

Indication Author,
Year Reference Design Number of

Patients Grade Mean Age Sex Imaging
Modality Parameters Optimal

Cut-Off Sensitivity Specificity AUC Accuracy

PET/MRI
TBR30–40 min +
TTP + rCBVcor +

nADC
- 78% 92% 0.891

Werner
et al., 2021 [66] Retrospective 23 Grade 4:23 58 13 M 10 F PET TBRmax 2.85 64% 92% 0.75 78%

TBRmean 1.95 82% 92% 0.77 87%

Slope § 0.02
SUV/h 73% 75% 0.72 74%

TTP 35 min 64% 83% 0.82 74%

TBRmax + TTP 2.85 and
35 min 36% 100% - 70%

TBRmean + TTP 1.95 and
35 min 55% 100% - 78%

MRI RANO criteria § - 30% 79% - 58%

Galldiks
et al., 2015 [67] Retrospective 22 Grade 4:22 56 14 M 8 F PET TBRmax 2.3 100% 91% 0.94 96%

TBRmean 2.0 82% 82% 0.91 82%

Kinetic pattern II/III - - - -

TBRmax+ Kinetic
pattern

2.3 and
II/III 80% 91% - 86%

TBRmean+
Kinetic pattern

2.0 and
II/III 60% 91% - 76%

Werner
et al., 2019 [68] Retrospective 48 Grade 3:8 50 29 M 19 F PET TBRmax 1.95 100% 79% 0.89 83%

Grade 4:40 TBRmean 1.95 100% 79% 0.89 83%

TTP 32.5 min 80% 69% 0.79 72%

Slope 0.32
SUV/h 70% 75% 0.82 74%

TBRmax/mean +
TTP

1.95 and
32.5 min 89% 91% - 90%

TBRmax/mean +
Slope

1.95 and
0.32

SUV/h
78% 97% - 93%
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Table 2. Cont.

Indication Author,
Year Reference Design Number of

Patients Grade Mean Age Sex Imaging
Modality Parameters Optimal

Cut-Off Sensitivity Specificity AUC Accuracy

DWI-MRI Visual
assessment § - 70% 66% - 67%

ADC § 1.09×10−3

mm2/s
60% 71% 0.73 69%

PET/MRI TBRmax/mean +
ADC - 67% 94% - 89%

Lohmann
et al., 2020 [69] Retrospective 34 Grade 3:1 57 21 M 13 F PET TBRmax 2.25 81% 67% 0.79 74%

Grade 4:33 TBRmean 1.95 75% 61% 0.73 68%

TTP § 25 min 75% 44% 0.61 59%

Slope § 0.3 SUV/h 56% 61% 0.55 59%

TBRmean +
TBRmax - 75% 72% - 74%

TBRmean + TTP - 69% 78% - 74%

TBRmean +
Slope § - 50% 78% - 65%

TBRmax + TTP - 69% 83% - 76%

TBRmax + Slope - 50% 89% - 71%

TTP + Slope § - 56% 61% - 59%

TBRmax +
TBRmean + TTP - 69% 89% - 79%

Radiomics
features - 100% 40% 0.74 70%

Kebir et al.,
2016 [70] Retrospective 26 Grade 4:26 58 21 M 5 F PET TBRmax 1.9 84% 86% 0.88 85%

TBRmean 1.9 74% 86% 0.86 77%

TAC II/III 84% 100% - 89%

TTP - - - 0.86 -

Rachinger
et al., 2005 [71] Retrospective 45 Grade 1:1 45 23 M 22 F PET SUVmax 2.2 100% 93%

Grade 2:10 MRI Volume/Gd-
enhancing area

∆25%/new
area 94% 50%
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Table 2. Cont.

Indication Author,
Year Reference Design Number of

Patients Grade Mean Age Sex Imaging
Modality Parameters Optimal

Cut-Off Sensitivity Specificity AUC Accuracy

Grade 3:12

Grade 4:22

Lohmeier
et al., 2019 [72] Retrospective 42 Grade

1–2:2 47 32 M 10 F PET SUVmax § - - - -

Grade
3–4:40 SUV80mean § - - - -

SUV-BG § - - - -

TBR80mean - - - -

TBRmax 2.0 81% 60% 0.81

DWI-MRI ADCmean
1254 ×
10−6

mm2/s
62% 100% 0.82

ADC-BG § - - - -

rADCmean - - - -

PET/MRI TBRmax +
ADCmean - 97% 60% 0.90

Bashir
et al., 2019 [73] Retrospective 146 Grade

4:146 60 96 M 50 F PET TBRmax 2.0 99% 94% 0.970 99%

TBRmean 1.8 96% 94% 0.977 96%

BTV 0.55 cm3 98% 94% 0.955 98%

Steidl et al.,
2020 [74] Retrospective 104 Grade 2:9 52 68 M 36 F PET TBRmax 1.95 70% 60% 0.72 68%

Grade 3:24 TBRmean - - - 0.72 -

Grade 4:71 TTP § - - - 0.60 -

Slope 0.69
SUV/h 84% 62% 0.69 80%

TBRmax +
Slope #

1.95
and/or

0.69
SUV/h

96% 43% - 86%

MRI rCBVmax 2.85 54% 100% 0.75 63%
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Table 2. Cont.

Indication Author,
Year Reference Design Number of

Patients Grade Mean Age Sex Imaging
Modality Parameters Optimal

Cut-Off Sensitivity Specificity AUC Accuracy

PET/MRI
rCBVmax +
TBRmax +

Slope #
- 98% 43% - 87%

Pöpperl
et al., 2006 [75] Prospective 24 Grade 3:5 49 15 M 9 F PET Tumax/BG # 2.0 100% 78%

Grade 4:19 Tumax/BG # 2.1 97% 91%

Tumax/BG # 2.2 82% 95%

Tumax/BG # 2.3 74% 98%

Tumax/BG # 2.4 74% 100%

Tumax/BG # 2.5 62% 100%

Visual analysis #
Nodular
vs. non-
nodular

94% 94%

Müller
et al., 2022 [76] Retrospective 151 Grade 2:28 52 97 M 54 F PET TBRmax - - - -

Grade 3:40 TBRmean - - - -

Grade 4:83 TBRmax +
TBRmean # - 66% 80% 0.78

Radiomics
features # - 73% 80% 0.85

TBRmax +
TBRmean +
radiomics
features #

- 81% 70% 0.85

Mehrkens
et al., 2008 [77] Prospective 31 Grade 2:17 46 17 M 14 F PET SUVmax/BG § 2.0

Grade 3:6

Grade 4:8

Galldiks
et al., 2015 [78] Retrospective 124 Grade 2:55 52 81 M 43 F PET TBRmax 2.3 68% 100% 0.85 71%

Grade 3:19 TBRmean 2.0 74% 91% 0.91 75%

Grade 4:50 TTP 45 min 82% 73% 0.81 81%
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Table 2. Cont.

Indication Author,
Year Reference Design Number of

Patients Grade Mean Age Sex Imaging
Modality Parameters Optimal

Cut-Off Sensitivity Specificity AUC Accuracy

Curve pattern II/III 78% 73% - 77%

TBRmax + Curve
pattern

2.3 and/or
II/III 93% 73% - 91%

TBRmean +
Curve pattern

2.0 and/or
II/III 93% 73% - 91%

TBRmax + TTP 2.3 and/or
45 min 92% 73% - 90%

TBRmean + TTP 2.0 and/or
45 min 93% 100% - 93%

MRI RANO criteria § - 92% 9% - 85%

Pöpperl
et al., 2004 [79] Prospective 53 Grade 1:1 - 28 M 25 F PET SUVmax 2.2

Grade 2:9 SUVmax/BG 2.0

Grade 3:16 SUV80/BG -

Grade 4:27 SUV70/BG -

Prognosis/Treatment
response

evaluation

Müther
et al., 2019 [80] Prospective 31 Grade 4:31 67 13 M 18 F PET Volume 4.3 cm3

Jansen
et al., 2013 [61] Prospective 33 Grade 3:20 - - PET Uptake kinetics Increasing

Grade 4:13

Suchorska
et al., 2018 [81] Retrospective 61 Grade 2:44 46 31 M 30 F PET Initial BTV§ -

Grade 3:17 Initial TBRmax § -

Initial TAC§
Increasing

vs.
decreasing

BTV after 6
months -

TBRmax after 6
months § -
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Table 2. Cont.

Indication Author,
Year Reference Design Number of

Patients Grade Mean Age Sex Imaging
Modality Parameters Optimal

Cut-Off Sensitivity Specificity AUC Accuracy

TAC after 6
months §

Increasing
vs.

decreasing

BTV response ∆ ± 25%

TBRmax
response ∆ ± 10%

TAC response §

Stable
increasing

vs.
Decreasing

to
increasing

vs.
Increasing

to
decreasing
vs. Stable
decreasing

FET-PET
response Yes vs. no

MRI Initial T2 volume -

T2 volume after 6
months -

T2 volume
response §

RD vs. SD
vs. PD

Galldiks et
al., 2012 [82] Prospective 25 Grade 4:25 54 15 M 10 F PET TBRmax change

∆-10%
(PFS)/∆-
20% (OS)

83% (OS) 67% (OS) 0.75
(OS)

TBRmean change ∆-5% 67% 75% 0.72

Tvol 1.6 change ∆0% (PFS) - - -

MRI Gd-volume§ ∆0%/∆-
25% - - -

Suchorska
et al., 2015 [83] Prospective 79 Grade 4:79 - - PET BTVpreRCx 9.5 cm3 64% 70%

LBRmax-preRCx 2.9 (OS) 68% 73%
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Table 2. Cont.

Indication Author,
Year Reference Design Number of

Patients Grade Mean Age Sex Imaging
Modality Parameters Optimal

Cut-Off Sensitivity Specificity AUC Accuracy

Initial TAC

Increasing
vs.

decreasing
(OS)

- -

MRI Gd+ volume - - -

Jansen
et al., 2014 [84] Retrospective 59 Grade 2:59 43 32 M 27 F PET TAC

Increasing
vs.

decreasing

Uptake § Positive vs.
negative

SUVmax/BG § -

SUVmean/BG § -

SUVtotal/BG § -

BTV § -

MRI Contrast
enhancement § Yes vs. no

Largest diameter 6 cm (PFS)

Tumor crossing
midline § Yes vs. no

Thon et al.,
2015 [85] Prospective 98 Grade 2:54 - 56 M 42 F PET TAC

Homogeneous
decreasing

vs. focal
decreasing
vs. homo-
geneous

increasing

Grade 3:40 SUVmax § 2.3

Grade 4:4 MRI Tumor volume § 35 mL

Kunz et al.,
2018 [86] Prospective 98 Grade 2:59 - - PET TAC

Homogeneous
increasing
vs. mixed
vs. homo-
geneous

decreasing
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Table 2. Cont.

Indication Author,
Year Reference Design Number of

Patients Grade Mean Age Sex Imaging
Modality Parameters Optimal

Cut-Off Sensitivity Specificity AUC Accuracy

Grade 3:35 TTPmin

>25 min vs.
12.5 < t ≤
25 min vs.
≤12.5 min

Grade 4:4 SUVmax § 2.3

MRI Tumor volume § 35 mL

Ceccon
et al., 2021 [87] Prospective 41 Grade 2:1 52 22 M 19 F PET TBRmax baseline

2.0
(PFS)/1.9 §

(OS)

Grade 3:2 TBRmean
baseline §

1.9
(PFS)/1.8

(OS)

Grade 4:38 MTV baseline
28.2 mL

(PFS)/13.8
mL (OS)

TBRmax change 0%

TBRmean
change § 0%

MTV change 0%

MRI RANO criteria § SD/PR/CR
vs. PD

Galldiks et
al., 2018 [88] Prospective 21 Grade 4:21 55 13 M 8 F PET TBRmax relative

reduction § 27% 92% 63% 0.78

TBRmean
relative

reduction §
16% 92% 63% 0.81

MTV relative
reduction § 27% 77% 63% 0.82

Absolute MTV at
follow-up 5 mL 85% 88% 0.92

MRI RANO criteria § PR or SD 63% 69% -

Carles
et al., 2021 [89] Prospective 32 Grade 4:32 52 17 M 15 F PET Radiomic

features:

SUVmin & -
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Table 2. Cont.

Indication Author,
Year Reference Design Number of

Patients Grade Mean Age Sex Imaging
Modality Parameters Optimal

Cut-Off Sensitivity Specificity AUC Accuracy

SUVmean & -

GLV & -

GLV2 & -

WF_GLV & -

Qacor & -

QHGZE & -

QSZHGE & -

QGLN2 & -

QHGRE & -

QSRHGE & -

QLRHGE & -

SZLGE -

Busyness & -

WF_TS & -

QvarianceCM & -

Eccentricity & -

SUVmean +
WF_GLV +
QLRHGE +

SUVmin

-

SZLGE +
Busyness +

QVarianceCM +
Eccentricity

-

Suchorska
et al., 2018 [90] Retrospective 300 Grade

2:121 48 166 M
134 F PET TBRmax § 1.6

Grade
3:106 TBRmax § 2.6

Grade 4:73 TTPmin 17.5 min
(OS)
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Table 2. Cont.

Indication Author,
Year Reference Design Number of

Patients Grade Mean Age Sex Imaging
Modality Parameters Optimal

Cut-Off Sensitivity Specificity AUC Accuracy

MRI Contrast
enhancement § Yes vs. no

T2 volume § 49 mL

Wirsching
et al., 2021 [91] Retrospective 31 Grade 4:31 - - PET

TBR in
non-contrast

enhancing tumor
portions at
follow-up

High vs.
low

MRI
Contrast

enhancement at
baseline

-

ADC at baseline -

Contrast
enhancement at

follow-up
-

Sweeney
et al., 2013 [92] Retrospective 28 Grade 2:5 - 21 M 7 F PET SUVmax 2.6

Grade 3:12 TBRmax § -

Grade 4:11 TBRmean § -

Tumor volume §

VolSUVmax ≥
2.2 -

Vol ≥
40%SUVmax -

MRI VolMRI -

PET/MRI
VolMRI +

VolSUVmax ≥
2.2

-

VolMRI + Vol≥
40%SUVmax -

Non-overlap,
VolMRI +

VolSUVmax ≥
2.2

-
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Table 2. Cont.

Indication Author,
Year Reference Design Number of

Patients Grade Mean Age Sex Imaging
Modality Parameters Optimal

Cut-Off Sensitivity Specificity AUC Accuracy

Non-overlap,
VolMRI + Vol ≥

40%SUVmax
-

Pyka et al.,
2014 [93] Retrospective 34 Grade 1:2 41 22 M 12 F PET TBRmax 2.5 0.696

Grade 2:19 TBRmean 2.3 0.696

Grade 3:3 TTP 20 min 0.848

Grade 4:10 Peak TBR 2.2 0.704

Slope-to-peak 7 × 10−5/s 0.711

Wollring
et al., 2022 [94] Retrospective 36 Grade 3:8 54 20 M 16 F PET New distant FET

hotspot Yes vs. no

Grade 4:28 TBRmax change 0%

TBRmean
change § 0%

MTV change 0%

TTP change § 0%

MRI RANO criteria SD/PR/CR
vs. PD

Bauer
et al., 2020 [95] Retrospective 60 Grade 3:15 55 35 M 25 F PET TBRmax § 2.55 70% 57% 0.63

Grade 4:45 TBRmean § 2.05 60% 70% 0.69

MTV § 11.15 mL 72% 54% 0.56

TTP 25 min 90% 87% 0.90

Slope § −0.103
SUV/h 70% 90% 0.77

Piroth
et al., 2011 [96] Prospective 44 Grade 4:44 57 16 M 28 F PET VolTBR ≥ 1.6 25 mL

VolTBR ≥ 2.0 10 mL

TBRmax 2.4

TBRmean 2.0

MRI Gd-volume § 10 mL
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Table 2. Cont.

Indication Author,
Year Reference Design Number of

Patients Grade Mean Age Sex Imaging
Modality Parameters Optimal

Cut-Off Sensitivity Specificity AUC Accuracy

Jansen
et al., 2015 [97] Retrospective 121 Grade 3:51 54 73 M 48 F PET TTPmin 12.5 min

Grade 4:70 SUVmax/BG § -

SUVmean/BG § -

BTV § -

MRI contrast
enhancement § Yes vs. no

Moller
et al., 2016 [98] Prospective 31 Grade 3:6 54 - PET BTV baseline -

Grade 4:25 Tmax/B
baseline # -

∆BTV scan 2 § -

∆BTV scan 3 § -

∆Tmax/B scan
2 # -

∆Tmax/B scan
3 # -

MRI Volume
(+necrosis) § -

Volume
(−necrosis) -

Dissaux
et al., 2020 [99] Prospective 29 Grade 3:3 60 17 M 12 F PET TBRmax Median

(5.03)

Grade 4:26 TBRmean § Median

SUVmax § Median

SUVmean § Median

SUVpeak § Median

TLG § Median

Volume § Median

Piroth
et al., 2011 [100] Prospective 22 Grade 4:22 56 13 M 9 F PET Volume 20 mL
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Year Reference Design Number of

Patients Grade Mean Age Sex Imaging
Modality Parameters Optimal

Cut-Off Sensitivity Specificity AUC Accuracy

TBRmax § 3.0

TBRmean § 2.0

TBRmean 2.4

Early TBRmax
response ∆-10%

Early TBRmean
response ∆-10%

MRI
Diameter of

contrast-
enhanced area

4 cm

Schneider
et al., 2020 [101] Retrospective 42 Grade 2:19 46 26 M 16 F PET SUVmax 3.4

Grade 3:23 TBRmax 3.03

BTV 10 cm3

Kertels et
al., 2019 [102] Retrospective 35 Grade 2:14 48 20 M 15 F PET FET positivity Yes vs. no

Grade 3:21

Floeth
et al., 2007 [103] Prospective 33 Grade 2:33 - 20 M 13 F PET Mean FET

uptake 1.1

Maximum FET
uptake § 2.0

MRI Hemisphere§ Right vs.
left

Brain lobe
location § -

Extension § Deep vs.
superficial

Size § 3 cm

Mass shift § Yes vs. no

Appearance Circumscribed
vs. diffuse
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Table 2. Cont.

Indication Author,
Year Reference Design Number of

Patients Grade Mean Age Sex Imaging
Modality Parameters Optimal

Cut-Off Sensitivity Specificity AUC Accuracy

PET/MRI
Mean FET

uptake + MRI
appearance

-

Niyazi
et al., 2012 [104] Retrospective 56 Grade 3:13 50 34 M 22 F PET Kinetics pre

re-RT

G1–2 vs.
G3 vs.
G4–5

Grade 4:43 Kinetics post
re-RT §

G1–2 vs.
G3 vs.
G4–5

SUVmax/BG pre
re-RT § 3.3

SUVmax/BG
post re-RT § 2.6

SUVmean/BG
pre re-RT § 2.2

SUVmean/BG
post re-RT § 2.3

BTV pre re-RT § 13.7 cc

BTV post re-RT § 7.3 cc

Pyka et al.,
2016 [39] Retrospective 113 Grade 3:26 59 43 M 70 F PET TBRmax § 2.5

Grade 4:87 TBRmean §
1.56

(PFS)/1.57
(OS)

MTV
19.4 (PFS)

§/18.9
(OS)

TLU
35.0 (PFS)

§/17.1
(OS)

Textural
parameters:
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Year Reference Design Number of

Patients Grade Mean Age Sex Imaging
Modality Parameters Optimal

Cut-Off Sensitivity Specificity AUC Accuracy

Coarseness

5.96 ×
10−3

(PFS)/6.88
× 10−3

(OS)

Contrast 0.427

Busyness
1.366

(PFS)/0.984
(OS)

Complexity
0.085

(PFS)/0.094
(OS)

Blanc-
Durand

et al., 2018
[43] Retrospective 37 Grade 1:3 45 23 M 14 F PET TBRmax § -

Grade 2:15 TBRmean § -

Grade 3:14 TTP -

Grade 4:5 Slope -

TAC -
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Figure 2. Flowchart of the literature selection.

Regarding PET parameters, we noticed a high variability in the determination of tumor
region of interest (ROI) with an impact on the subsequent calculation of tumor-to-brain
ratios (TBRs). We consequently sorted different TBRs according to the methodology used to
obtain them (Table 3) in order to be able to compare their performances and then grouped
every PET parameter in Table 4. We signified the change of parameters in the legend of
Table 4 by writing the name of the parameter used in the table and the name of the original
parameter(s) corresponding to this approach.

Table 3. Different tumor-to-brain ratios and the methodology used to obtain them.

Parameter Definition

TBRmean
Mean uptake in the tumor area with a TBR ≥ 1.6 divided by mean
uptake in the normal brain

TBRmax
Maximal uptake in the tumor area divided by mean uptake in the
normal brain

TBR10/16mm

Mean uptake in a ROI/VOI with a diameter of 10/16 mm centered on
the tumor area with the highest uptake divided by mean uptake in
the normal brain

TBR25mm2

Mean uptake in a standardized ROI/VOI with a size of 25 mm2

placed manually at the biopsy sites centered to the titanium pellets on
postoperative images divided by mean uptake in the normal brain

TBR3SD

Mean uptake in an isocontour region around the lesion maximum
using a cutoff of three standard deviations above average activity in
the reference region divided by mean uptake in the normal brain

TBR70/80%
Mean in a 70/80% isocontour region divided by mean uptake in the
normal brain

TBR Uptake in the tumor area (unspecified) divided by mean uptake in
the normal brain

SUVmax/mean/BG SUVmax/mean of the tumor area divided by maximal uptake in the
normal brain



Pharmaceuticals 2024, 17, 1228 35 of 62

Table 4. Summary of PET parameters. *: reached significance, X: did not reach significance, &: did not stay significant after Bonferroni multiple-test correction, NA:
not available. TBRmax: Lmax/B, SUVmax/BG, LNR, TNR, LBRmax, T/Wm, TBRmax(20–40min), Tmax/B, maximum FET uptake, Tumax/BG; TBR3SD: Lmean/B, mean
FET uptake; TBR25mm2: TBR, FET ratio; TBR10mm: TBRmean; TBR16mm: TBRmean, TBRmax; TBR70%: SUV70/BG; TBR80%: SUV80/BG; TBR: UR, FET lesion/brain ratio,
FET uptake, tumor/brain tissue ratio, TBRmean, TBRmax; TAC: kinetic pattern, curve pattern; TTP: Tpeak; BTV: volume, MTV, Vol, Tvol 1.6; radiomic features: textural
parameters.

Indication Number of
Studies Grade Parameters Threshold Sensitivity Specificity AUC Accuracy Significance

Diagnosis

1 LGG and HGG Visual grading system - - - - - NA

1 LGG and HGG TBRmax - - - NA

1 LGG and HGG TBR25mm2 1.6 92% 81% - *

1 LGG and HGG TBR3SD - - - NA

1 LGG and HGG TBR 1.6 88% 88% - *

1 LGG and HGG 18F-FETn uptake 1.4 x background 76% 80% 0.89 78% *

Grading (LGG vs.
HGG)

1 LGG and HGG FET uptake Reduced vs. normal
vs. increased - - NA

1 LGG and HGG FET uptake pattern Inhomogeneous vs.
diffuse vs. focal - - X

1 LGG and HGG Early SUV 2.32 73% 71% 72% *

1 LGG and HGG Middle SUV - - - - - X

1 LGG and HGG Late SUV - - - - - X

1 LGG and HGG e-m Ratio 0.93 93% 94% 94% *

1 LGG and HGG e-l Ratio 0.95 87% 88% 87% *

1 LGG and HGG SoD 0.5 93% 82% 87% *

1 LGG and HGG SUVmax - - - *

Grade 2/3 vs.
Grade 4 1 LGG and HGG SUVsd 0.45 67% 87% 0.816 83% *
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Table 4. Cont.

Indication Number of
Studies Grade Parameters Threshold Sensitivity Specificity AUC Accuracy Significance

Grade 2/3 vs.
Grade 4 1 LGG and HGG SUVmax/BG - - - *

2 LGG and HGG SUVmean/BG - - - X

Grade 2 vs. 3 LGG and HGG - - - X

Grade 2 vs. 3 1 LGG and HGG SUVtotal/BG - - - X

1 LGG and HGG SUV90 10–60 min 0.2 94% 100% 0.969 *

1 LGG and HGG SUV90 15–60 min −0.41 94% 100% 0.965 *

1 LGG and HGG TBRmax(0–10min) 2.8 76% 79% 76% *

1 LGG and HGG TBRmax(5–15min) 2.7 78% 76% 77% *

1 LGG and HGG TBRmax(5–20min) 2.6 80% 74% 76% *

1 LGG and HGG TBRmax(10–30min) 2.5 75% 75% 74% *

7 LGG and HGG TBRmax 2.58 71% 85% 0.798 *

LGG and HGG 2.62 82% 68% 0.83 78% *

Grade 2/3 vs.
Grade 4 LGG and HGG 2.67 92% 61% 0.824 67% *

LGG and HGG 2.7 67% 78% 70% *

LGG and HGG - - - *

LGG and HGG - - - X

Grade 2 vs. 3 LGG and HGG - - - X

Grade 2/3 vs.
Grade 4 1 LGG and HGG TBRpeak 2.35 92% 61% 0.832 67% *

2 LGG and HGG TBRmean 2 83% 58% 0.65 75% X

Grade 2/3 vs.
Grade 4 LGG and HGG 2.31 58% 93% 0.791 86% *

1 LGG and HGG ∆TBRmean
20–40 min/70–90 min −8% 83% 75% 0.85 81% *

1 LGG and HGG TBR16mm 1.69 82% 68% 0.8 78% *
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Table 4. Cont.

Indication Number of
Studies Grade Parameters Threshold Sensitivity Specificity AUC Accuracy Significance

Grade 3 vs. 4 3 HGG TBR 1.68 - - 0.644 *

Grade 3 vs. 4 HGG 2.74 - - 0.614 X

LGG and HGG 3 - - *

4 LGG and HGG TTP 25 min 87% 100% 94% *

LGG and HGG 30 min 54% 91% 0.78 65% *

LGG and HGG 35 min 58% 92% 0.76 69% *

Grade 2/3 vs.
Grade 4 LGG and HGG - - - - X

1 LGG and HGG Slope −0.03 SUV/h 64% 91% 0.78 72% *

7 LGG and HGG TAC II/III 88% 75% 83% *

LGG and HGG I/II vs. III 73% 100% 87% NA

LGG and HGG Decreasing 90% 66% 80% NA

Grade 2 vs. 3 LGG and HGG 88% 63% NA

LGG and HGG Increasing vs.
Decreasing 95% 72% NA

LGG and HGG 96% 94% *

Grade 2/3 vs.
Grade 4 LGG and HGG LGG-like vs. mixed

vs. HGG-like - - - NA

Grade 2/3 vs.
Grade 4 1 LGG and HGG COV 27.21 58% 91% 0.808 84% *

Grade 2/3 vs.
Grade 4 1 LGG and HGG HI 1.77 67% 87% 0.826 83% *

Grade 3 vs. 4 4 HGG BTV 19.7 - - 0.71 *

Grade 2/3 vs.
Grade 4 LGG and HGG 20.13 75% 80% 0.801 79% *

LGG and HGG - - - X

Grade 2 vs. 3 LGG and HGG - - - X
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Indication Number of
Studies Grade Parameters Threshold Sensitivity Specificity AUC Accuracy Significance

Grade 3 vs. 4 2 HGG TLU 46.2 - - 0.704 *

Grade 2/3 vs.
Grade 4 LGG and HGG 50.93 75% 83% 0.841 81% *

Grade 2/3 vs.
Grade 4 1 LGG and HGG Relative K1 - 85% 60% 0.766 *

Grade 2/3 vs.
Grade 4 1 LGG and HGG Relative K2 - - - - X

Grade 2/3 vs.
Grade 4 1 LGG and HGG Relative K3 - - - - X

Grade 2/3 vs.
Grade 4 1 LGG and HGG Relative FD - 67% 78% 0.716 *

Grade 2/3 vs.
Grade 4 1 LGG and HGG TBRmax + SUVsd +

TBRmean
- 75% 85% 0.850 83% *

Grade 2/3 vs.
Grade 4 1 LGG and HGG HI + SUVsd + MTV - 75% 83% 0.848 81% *

Grade 2/3 vs.
Grade 4 1 LGG and HGG HI + SUVsd + TLU - 75% 84% 0.848 81% *

Grade 2/3 vs.
Grade 4 1 LGG and HGG SUVmax/BG + TTP - - - 0.745 *

Grade 2/3 vs.
Grade 4 1 LGG and HGG

SUVmax/BG + TTP +
relative K1 + relative
FD

- - - 0.799 *

1 LGG and HGG Logistic regression
using early SUV + SoD 50% 93% 100% 97% X

Radiomic features: *

Grade 3 vs. 4 1 HGG Coarseness 0.607 - - 0.757 *

Grade 3 vs. 4 1 HGG Contrast 0.203 - - 0.775 *

Grade 3 vs. 4 1 HGG Busyness 1.12 - - 0.737 *

Grade 3 vs. 4 1 HGG Complexity 0.069 - - 0.633 *
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Indication Number of
Studies Grade Parameters Threshold Sensitivity Specificity AUC Accuracy Significance

Grade 3 vs. 4 1 HGG Combined 2.05 - - 0.830 *

IDH status
determination

2 LGG and HGG SUVsd 0.11 47% 57% 0.710 66% *

LGG and HGG 0.23 - - - - *

5 LGG and HGG TBRmax 2.07 8% 100% 0.59 71% X

LGG and HGG 2.21 48% 87% 0.658 72% *

LGG - - - - - X

LGG and HGG - - - - - X

LGG and HGG - - - - - *

2 LGG and HGG TBRpeak 2.15 57% 73% 0.638 67% X

LGG and HGG - - - - - X

5 LGG and HGG TBRmean 1.68 12% 100% 0.66 73% *

LGG and HGG 1.84 62% 68% 0.633 66% X

LGG and HGG 1.85 44% 92% 0.73 69% *

LGG and HGG - - - - - X

LGG and HGG - - - - - *

1 LGG and HGG TBR16mm 2.15 56% 77% 0.68 67% *

3 LGG TBR 1.3 89% 36% - - NA

LGG 1.6 71% 53% - - NA

LGG 2.0 57% 68% - - NA

3 LGG and HGG TTP 25 min 86% 60% 0.75 72% *

LGG and HGG 45 min 27% 93% 0.75 73% *

LGG and HGG - - - - - *

3 LGG and HGG Slope −0.26 SUV/h 81% 60% 0.75 70% *
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Indication Number of
Studies Grade Parameters Threshold Sensitivity Specificity AUC Accuracy Significance

LGG and HGG 0.30 SUV/h 58% 90% 0.79 80% *

LGG and HGG - - - - - *

1 LGG and HGG TAC centroid #1 vs.
centroid #3 - - - - *

1 LGG and HGG COV 8.85 52% 76% 0.65 67% *

1 LGG and HGG HI 1.26 48% 87% 0.676 72% *

2 LGG and HGG BTV 19.48 90% 46% 0.66 62% *

LGG and HGG - - - - - X

2 LGG and HGG TLU 28.95 81% 57% 0.698 66% *

LGG and HGG - - - - - X

1 LGG and HGG TBRmean + TBR16mm 1.85 and 2.15 44% 91% - 69% *

1 LGG and HGG TTP + Slope 25 min and
−0.26 SUV/h 77% 70% - 73% *

1 LGG and HGG TBRmean + TTP 1.85 and 25 min 40% 96% - 69% *

1 LGG and HGG TBR16mm + TTP 2.15 and 25 min 51% 94% - 73% *

1 LGG and HGG TBRmean + Slope 1.85 and
−0.26 SUV/h 40% 94% - 68% *

1 LGG and HGG TBR16mm + Slope 2.15 and
−0.26 SUV/h 47% 91% - 70% *

1 LGG and HGG TBRmax + SUVsd +
TBRmean

- 76% 84% 0.821 81% *

1 LGG and HGG HI + SUVsd + MTV - 86% 81% 0.804 83% *

1 LGG and HGG HI + SUVsd + TLU - 76% 84% 0.799 81% *

1 LGG and HGG Midline involvement Yes vs. no - - - - *

1 LGG and HGG Simple predictive
model - 85% 71% 0.786 76% *

1 LGG and HGG PET-Radiomics model - 80% 74% 0.812 76% *
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Indication Number of
Studies Grade Parameters Threshold Sensitivity Specificity AUC Accuracy Significance

1 LGG and HGG Slope + Radiomic
feature SZHGE - 54% 93% - 81% *

1 LGG and HGG SkewnessH - 31% 90% 0.53 71% *

1 LGG and HGG LRHGE - 8% 100% 0.52 71% *

Prediction of
oligodendroglial
components

1 LGG and HGG SUVmean/BG 2.1 61% 59% *

1 LGG and HGG SUVtotal/BG 6.9 75% 66% *

2 LGG and HGG TBRmax 2.6 70% 72% *

LGG - - - *

3 LGG TBR 1.3 100% 23% NA

LGG 1.6 93% 48% NA

LGG 2 86% 65% NA

1 LGG and HGG BTV 4 mL 71% 69% *

Guided
resection/biopsy

1 HGG BTV 1 cm3 *

1 LGG and HGG TBR25mm2 1.6 - - *

3 LGG TBR 1.6 54% 12% *

HGG 88% 46% *

LGG and HGG - - - 0.76 *

Detection of
residual tumor

1 HGG TBR 1.6 - - *

1 LGG and HGG Visual uptake >Background - - *
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Indication Number of
Studies Grade Parameters Threshold Sensitivity Specificity AUC Accuracy Significance

Guided
radiotherapy

7 HGG SUVmax 30% - - NA

HGG 40% - - NA

HGG 50% - - NA

HGG 60% - - NA

HGG 70% - - NA

HGG 80% - - NA

HGG 90% - - NA

1 HGG TBRmax 1.6 - - NA

5 HGG TBR 1.6 - - NA

HGG - - NA

HGG - - NA

HGG - - NA

HGG - - NA

Detection of
malignant
transformation in
LGG

3 LGG TBRmax ∆ + 33% 72% 89% 0.87 78% *

LGG and HGG 2.46 82% 89% 0.92 85% *

LGG - 57% 41% 0.476 X

1 LGG TBRmean ∆ + 13% 72% 78% 0.8 74% *

2 LGG TTP ∆-6 min 72% 89% 0.78 78% *

LGG 25 min 57% 47% 0.511 X

1 LGG and HGG TTPmin 17.5 min 73% 67% - 70% *
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Indication Number of
Studies Grade Parameters Threshold Sensitivity Specificity AUC Accuracy Significance

1 LGG TAC - 71% 41% 0.549 X

1 LGG TAC change I to II/III 72% 89% - 78% *

1 LGG TBRmax + TTP + TAC
change

∆ + 33% or ∆-6 min
or I to II/III 83% 78% - 81% *

1 LGG TBRmax + TAC + TTP 1.6 + II/III + 25 min 65% 58% 0.634 X

1 LGG TBRmax + TAC 1.6 + II/III 65% 58% 0.639 X

1 LGG TBRmax + TTP 1.6 + 25 min 96% 25% 0.591 X

Recurrence vs.
treatment-related
changes

1 HGG Visual analysis Nodular vs.
non-nodular 94% 94% NA

6 LGG SUVmax 1.48 88% 89% 0.951 *

LGG and HGG 1.66 87% 100% 0.978 *

HGG 93% 100% 0.993 *

LGG and HGG 2.2 100% 93% *

LGG and HGG - - *

LGG and HGG - - - X

1 LGG and HGG SUV80mean - - - X

1 LGG and HGG SUV-BG - - - X

20 LGG TBRmax 1.64 100% 75% 0.893 *

LGG and HGG 2 81% 60% 0.81 *

LGG and HGG - - X

LGG and HGG - - *

HGG 99% 94% 0.970 99% *

HGG 100% 78% NA
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Indication Number of
Studies Grade Parameters Threshold Sensitivity Specificity AUC Accuracy Significance

HGG 2.1 97% 91% NA

LGG and HGG 2.18 86% 88% 0.940 *

HGG 2.2 82% 95% NA

HGG 2.3 74% 98% NA

HGG 2.4 74% 100% NA

HGG 2.46 86% 100% 0.964 *

HGG 2.5 62% 100% NA

LGG and HGG 2.61 80% 86% 0.78 81% *

HGG 2.65 80% 88% *

HGG 2.85 64% 92% 0.75 78% *

HGG 3.44 86% 88% 0.86 *

HGG 3.58 64% 100% 0.84 *

HGG 3.69 79% 88% 0.86 *

LGG and HGG - - - - *

1 HGG TBRmax after 6 months - - - *

11 HGG TBRmean 1.8 96% 94% 0.977 96% *

HGG 1.9 74% 86% 0.86 77% *

HGG 1.95 82% 92% 0.77 87% *

HGG 100% 79% 0.89 83% *

HGG 75% 61% 0.73 68% *

LGG and HGG 2.0 74% 91% 0.91 75% *

HGG 82% 82% 0.91 82% *

HGG 2.19 71% 88% 0.80 *

HGG 2.31 61% 100% 0.83 *

LGG and HGG - - - 0.72 *
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Indication Number of
Studies Grade Parameters Threshold Sensitivity Specificity AUC Accuracy Significance

LGG and HGG - - - - *

1 LGG and HGG TBR30–40min 2.07 80% 85% 0.863 *

1 LGG and HGG TBR10–20min 1.71 76% 85% 0.848 *

1 HGG TBR10mm 2.86 86% 75% 0.81 *

8 HGG TBR16mm 1.9 84% 86% 0.88 85% *

LGG and HGG 1.95 70% 60% 0.72 68% *

HGG 100% 79% 0.89 83% *

HGG 2.25 81% 67% 0.79 74% *

LGG and HGG 2.3 68% 100% 0.85 71% *

HGG 100% 91% 0.94 96% *

HGG 2.44 82% 75% 0.82 *

LGG and HGG - - - 0.74 X

2 HGG TBR70% 2.72 86% 88% 0.87 *

LGG and HGG - - - *

2 HGG TBR80% 3.08 82% 88% 0.88 *

LGG and HGG - - - *

1 HGG TBR90% 3.23 71% 100% 0.85 *

1 LGG and HGG TBR80mean - - - *

8 LGG and HGG TTP 20 min 64% 79% 0.728 *

HGG 25 min 75% 44% 0.61 59% X

HGG 32.5 min 80% 69% 0.79 72% *

HGG 35 min 64% 83% 0.82 74% *

LGG and HGG 45 min 82% 73% 0.81 81% *

LGG and HGG - - - 0.60 X

LGG and HGG - - - 0.71 *
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Indication Number of
Studies Grade Parameters Threshold Sensitivity Specificity AUC Accuracy Significance

HGG - - - 0.86 - *

5 HGG Slope 0.02 SUV/h 73% 75% 0.72 74% X

HGG 0.3 SUV/h 56% 61% 0.55 59% X

HGG 0.32 SUV/h 70% 75% 0.82 74% *

LGG and HGG 0.69 SUV/h 84% 62% 0.69 80% *

LGG and HGG - - - 0.70 *

3 LGG and HGG TAC II/III 78% 73% - 77% *

HGG 84% 100% - 89% *

HGG - - - - *

1 HGG BTV 0.55 cm3 98% 94% 0.955 98% *

1 HGG BTV after 6 months - *

1 LGG and HGG TBRmean + TBRmax - 66% 80% 0.78 NA

1 HGG TBRmean + TBR16mm - 75% 72% - 74% *

1 HGG TBRmax + TTP 2.85 and 35 min 36% 100% 70% *

3 LGG and HGG TBRmean + TTP 2.0 and/or 45 min 93% 100% 93% *

HGG 1.95 and 35 min 55% 100% 78% *

HGG - 69% 78% - 74% *

2 LGG and HGG TBR16mm + TTP 2.3 and/or 45 min 92% 73% 90% *

HGG - 69% 83% 76% *

1 HGG TBR16mm/mean + TTP 1.95 and 32.5 min 89% 91% 90% *

1 HGG TBRmax+ TAC 2.3 and II/III 80% 91% 86% *

2 LGG and HGG TBRmean + TAC 2.0 and/or II/III 93% 73% 91% *

HGG 2.0 and II/III 60% 91% 76% *

1 LGG and HGG TBR16mm + TAC 2.3 and/or II/III 93% 73% 91% *

1 HGG TBRmean + Slope - 50% 78% 65% X
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Indication Number of
Studies Grade Parameters Threshold Sensitivity Specificity AUC Accuracy Significance

2 LGG and HGG TBR16mm + Slope 1.95 and/or
0.69 SUV/h 96% 43% 86% NA

HGG - 50% 89% 71% *

1 HGG TBR16mm/mean + Slope 1.95 and
0.32 SUV/h 78% 97% 93% *

1 HGG TTP + Slope - 56% 61% 59% X

1 HGG TBR16mm + TBRmean +
TTP - 69% 89% 79% *

2 LGG and HGG Radiomics features - 73% 80% 0.85 NA

HGG - 100% 40% 0.74 70% *

1 LGG and HGG TBRmax + TBRmean +
radiomics features - 81% 70% 0.85 NA

Prognosis/Treatment
response evaluation

1 LGG Uptake Positive vs.
negative - - X

1 LGG and HGG FET positivity Yes vs. no - - *

1 HGG New distant FET
hotspot Yes vs. no *

1 LGG and HGG FET-PET response Yes vs. no - - *

3 LGG and HGG SUVmax/BG - - - X

LGG and HGG - - - X

LGG and HGG - - - X

1 LGG and HGG Initial SUVmax/BG - - - X

2 LGG SUVmean/BG - - - X

HGG - - - X

1 HGG SUVmean/BG pre re-RT 2.2 - - X
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Indication Number of
Studies Grade Parameters Threshold Sensitivity Specificity AUC Accuracy Significance

1 HGG SUVmean/BG post
re-RT 2.3 - - X

1 LGG SUVtotal/BG - - - X

5 LGG and HGG SUVmax 2.3 - - X

LGG and HGG - - X

LGG and HGG 2.6 - - *

LGG and HGG 3.4 - - *

HGG Median - - X

1 HGG SUVmean Median - - X

1 HGG SUVpeak Median - - X

12 LGG and HGG TBRmax 1.6 - - X

LGG 2 - - X

HGG 2.4 - - *

LGG and HGG 2.5 - - 0.696 *

LGG and HGG 2.6 - - X

HGG 3 - - X

LGG and HGG 3.03 - - *

HGG Median (5.03) *

LGG - - - X

LGG and HGG - - - X

LGG and HGG - - - X

HGG - - - X

1 HGG TBRmax-preRCx 2.9 (OS) 68% 73% *

2 LGG and HGG TBRmax baseline 2.0 (PFS)/1.9 (OS) - - * (PFS)

HGG - - - NA
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Indication Number of
Studies Grade Parameters Threshold Sensitivity Specificity AUC Accuracy Significance

1 LGG and HGG TBRmax after 6 months - - - X

1 HGG Early TBRmax response ∆-10% - - *

1 LGG and HGG TBRmax response ∆ ± 10% - - *

3 LGG and HGG TBRmax change 0% - - *

HGG - - *

HGG ∆-10% (PFS)/∆-20%
(OS) 83% (OS) 67% (OS) 0.75 (OS) *

1 HGG TBRmax pre re-RT 3.3 - - X

1 HGG TBRmax post re-RT 2.6 - - X

1 HGG TBR16mm relative
reduction 27% 92% 63% 0.78 NA

1 HGG ∆TBRmax scan 2 - - - NA

1 HGG ∆TBRmax scan 3 - - - NA

2 HGG TBRmean 2 - - *

HGG 2.05 60% 70% 0.69 X

1 HGG TBRmean relative
reduction 16% 92% 63% 0.81 NA

1 LGG and HGG TBR16mm baseline 1.9 (PFS)/1.8 (OS) - - X

3 LGG and HGG TBR16mm change 0% - - X

HGG - - X

HGG ∆-5% 67% 75% 0.72 *

1 HGG
TBR in non-contrast
enhancing tumor
portions at follow-up

High vs. low - - *

1 LGG TBR3SD 1.1 - - *

1 LGG and HGG TBR10mm 2.3 - - 0.696 *
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Table 4. Cont.

Indication Number of
Studies Grade Parameters Threshold Sensitivity Specificity AUC Accuracy Significance

1 HGG TBR16mm 2.55 70% 57% 0.63 X

5 HGG TBR 1.56 (PFS)/1.57 (OS) - - X

HGG 2 - - X

HGG 2.4 - - *

HGG 2.5 - - X

HGG Median - - X

1 HGG Early TBR response ∆-10% *

1 HGG TLG Median X

1 HGG TLU 35.0 (PFS)/17.1 (OS) - - * (OS)

1 LGG and HGG TTP 20 min - - 0.848 *

1 HGG 25 min 90% 87% 0.90 *

1 LGG and HGG - - - *

1 HGG TTP change 0% - - X

1 HGG TTPmin 12.5 min - - *

1 LGG and HGG
>25 min vs. 12.5 < t
≤ 25 min vs. ≤12.5
min

- - *

1 LGG and HGG 17.5 min - - *

1 HGG Slope −0.103 SUV/h 70% 90% 0.77 X

1 LGG and HGG - - - *

1 LGG and HGG Slope-to-peak 7 × 10−5/s - - 0.711 *

5 LGG TAC Increasing vs.
decreasing - - *

LGG and HGG

Homogeneous
increasing vs.
mixed vs.
homogeneous
decreasing

- - *
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Table 4. Cont.

Indication Number of
Studies Grade Parameters Threshold Sensitivity Specificity AUC Accuracy Significance

LGG and HGG

Homogeneous
decreasing vs. focal
decreasing vs.
homogeneous
increasing

- - *

HGG Increasing - - *

LGG and HGG - - - *

1 HGG TAC pre re-RT G1–2 vs. G3 vs. G4–5 *

1 HGG TAC post re-RT G1–2 vs. G3 vs. G4–5 X

1 LGG and HGG Initial TAC Increasing vs.
decreasing - - X

1 HGG Increasing vs.
decreasing (OS) - - *

1 LGG and HGG TAC after 6 months Increasing vs.
decreasing - - X

1 LGG and HGG TAC response

Stable increasing vs.
decreasing to
increasing vs.
Increasing to
decreasing vs.
Stable decreasing

- - X

1 LGG and HGG Peak TBR 2.2 - - 0.704 *

8 HGG BTV 4.3 cm3 - - *

LGG and HGG 10 cm3 *

HGG 11.15 mL 72% 54% 0.56 X

HGG 19.4 (PFS)/18.9 (OS) - - * (OS)

HGG 20 mL - - *

HGG Median X

LGG - - - X
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Table 4. Cont.

Indication Number of
Studies Grade Parameters Threshold Sensitivity Specificity AUC Accuracy Significance

HGG - - - X

1 HGG BTVpreRCx 9.5 cm3 64% 70% *

1 LGG and HGG Initial BTV - - - X

1 LGG and HGG BTV baseline 28.2 mL
(PFS)/13.8 mL (OS) - - *

1 HGG - - - *

1 LGG and HGG BTV after 6 months - - - *

1 HGG Absolute BTV at
follow-up 5 mL 85% 88% 0.92 *

1 LGG and HGG BTV response ∆ ± 25% - - *

3 LGG and HGG BTV change 0% - - *

HGG 0% - - *

HGG 0% (PFS) - - - *

1 HGG BTV relative reduction 27% 77% 63% 0.82 NA

1 HGG ∆BTV scan 2 - - - X

1 HGG ∆BTV scan 3 - - - X

1 LGG and HGG BTVSUVmax≥2.2 - - - X

1 LGG and HGG BTV≥40%SUVmax - - - X

1 HGG BTVTBR≥ 1.6 25 mL - - *

1 HGG BTVTBR≥ 2.0 10 mL - - *

1 HGG BTV pre re-RT 13.7 cc - - X

1 HGG BTV post re-RT 7.3 cc - - X

Radiomic features: *

1 HGG SUVmin - - - *, &

1 HGG SUVmean - - - *, &
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Table 4. Cont.

Indication Number of
Studies Grade Parameters Threshold Sensitivity Specificity AUC Accuracy Significance

1 HGG GLV - - - *, &

1 HGG GLV2 - - - *, &

1 HGG WF_GLV - - - *, &

1 HGG Qacor - - - *, &

1 HGG QHGZE - - - *, &

1 HGG QSZHGE - - - *, &

1 HGG QGLN2 - - - *, &

1 HGG QHGRE - - - *, &

1 HGG QSRHGE - - - *, &

1 HGG QLRHGE - - - *, &

1 HGG SZLGE - - - *

1 HGG Busyness 1.366
(PFS)/0.984 (OS) - - *

1 HGG - - - *, &

1 HGG WF_TS - - - *, &

1 HGG QvarianceCM - - - *, &

1 HGG Eccentricity - - - *, &

1 HGG Coarseness
5.96 × 10−3

(PFS)/6.88 × 10−3

(OS)
- - *

1 HGG Contrast 0.427 - - *

1 HGG Complexity 0.085
(PFS)/0.094 (OS) - - *

1 HGG SUVmean + WF_GLV
+ QLRHGE + SUVmin

- - - *

1 HGG
SZLGE + Busyness +

QVarianceCM +
Eccentricity

- - - *
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3.2. Diagnosis

Four prospective studies [24–27] evaluated the performance of [18F]FET PET in patients
with cerebral lesions suspicious of glioma. Each study chose a different method of TBR
determination to detect glioma tissue with a threshold of 1.6 in two of them [26,27], resulting
in a sensitivity of 88 to 92% and a specificity of 81 to 88%.

3.3. Grading

Thirteen studies [19,28–39] evaluated the performance of [18F]FET PET in glioma
grading. Most studies aimed at differentiating low-grade gliomas (LGGs) from high-grade
gliomas (HGGs). Multiple TBR methods were used, with a predominance of maximum
tumor-to-brain ratio (TBRmax) with sensitivity and specificity ranging from 67 to 92% and
61 to 85%, respectively. Dynamic parameters and notably tumor-activity curves (TAC) had
better performance, with a sensitivity of 73 to 96% and a specificity of 63 to 100%.

Notably, one study by Lohmann et al. [31] chose to supplement dynamic imaging
from 0 to 50 min post-injection (p.i.) with an additional acquisition from 70 to 90 min p.i.
The goal was to compare conventional dynamic imaging to dual-time-point imaging: one
acquisition from 20 to 40 min p.i. and a delayed second acquisition from 70 to 90 min p.i.
Mean tumor-to-brain ratio (TBRmean) change and TAC achieved similar accuracy of 81%
and 83%, respectively.

3.4. IDH Status Determination

Six retrospective studies [34,40–44] evaluated the performance of [18F]FET PET in
IDH status determination. Static parameters’ significancy was variable depending on
the studies, whereas dynamic ones (Slope, Time-to-peak (TTP), TAC) always showed
significant differences between IDH mutated and IDH wild-type groups with an accuracy
of around 73%.

3.5. Prediction of Oligodendroglial Components

Two studies [38,44] reported on the performance of [18F]FET PET to determine the pres-
ence of oligodendroglial tumor components. Every static parameter tested was significant.
Tumor-to-brain ratios showed good sensitivity, but specificity did not exceed 65%.

There were no dynamic parameters studied.

3.6. Guided Resection or Biopsy

Four studies [45–48] tested the addition of [18F]FET PET to better detect tumor tissue
for resection or biopsy. In a study by Ewelt et al. [47], results were separated according to
glioma grades (LGG vs. HGG), showing better tissue detection in high-grade glioma with
sensitivity and specificity of 88% and 46%. Sensitivity was higher than those of MRI and
5-ALA-fluorescence, with a specificity being the lowest. Combining different modalities
did not improve results compared to those of 5-ALA-fluorescence alone (sensitivity of 71%
and specificity of 92%).

3.7. Detection of Residual Tumor

Two studies [49,50] aimed at detecting residual tumor tissue after surgery.
Buchmann et al. [49] also aimed to assess whether performing [18F]FET PET after 72 h

after neurosurgery had an influence, as it is the case with MRI. Indeed, postoperative MRI
after 72 h can lead to falsification of results because of inflammatory reactions. This study
found higher sensitivity of PET using a TBR > 1.6 compared to MRI and no influence of
timing of [18F]FET PET imaging.

3.8. Guided Radiotherapy

Studies [51–56] used the TBR threshold of 1.6 to define the tumor volume to be
irradiated. This PET-based volume was increased compared to the MRI-based volume
commonly used.
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One study (Harat et al. [54]) reported 74% of failures inside primary gross tumor
volume (GTV) PET volumes, with no solitary progressions inside the MRI-defined margin
+20 mm but outside the GTV PET detected.

3.9. Detection of Malignant Transformation in Low-Grade Gliomas

Three studies [57–59] evaluated the use of [18F]FET PET to detect differences between
non-transformed LGGs and LGGs that had transformed to high-grade gliomas. Two studies
found a good detection value of both static and dynamic parameters in this indication,
whether by comparing to baseline or by using parameter thresholds.

The remaining study (Bashir et al. [59]) did not find significant differences when
considering all patients. After excluding the oligodendroglial subgroup, however, a sig-
nificant difference was observed between non-transformed and transformed LGGs when
combining [18F]FET parameters. The best result was observed with a combined analysis
of TBRmax > 1.6 and TAC with a plateau or decreasing pattern (sensitivity of 75% and
specificity of 83%).

3.10. Recurrence vs. Treatment-Related Changes

Twenty studies [60–79] evaluated the performance of [18F]FET PET in the differentia-
tion of recurrence from treatment-related changes.

The majority of studies included patients treated with multiple modalities (such as
operation, chemotherapy, and radiotherapy) who had a suspected tumor recurrence or
progression as revealed by follow-up MRI. High-grade gliomas represented 87% (992/1141)
of tumors.

Most studies used static parameters TBRmax and TBRmean along with dynamic param-
eters TTP and Slope.

TBRmax was significant in 13 studies with thresholds between 1.64 and 3.69. TBRmean
significantly differentiated recurrence from pseudoprogression in 11 studies. The thresholds
used varied from 1.8 to 2.31. Accuracy of TBRmax and TBRmean was comparable.

Dynamic parameters, when combined with static ones, allowed to increase diagnostic
accuracy in some studies such as Werner et al. [68] and Galldiks et al. [78]. In Werner
et al., TBRs alone had a diagnostic accuracy of 83%, which increased to 90% and 93% when
combined with TTP and Slope, respectively. This finding was not supported by other
studies, such as Werner et al. [66] and Galldiks et al. [67].

3.11. Prognosis and Treatment Response Evaluation

Twenty-eight studies [39,43,61,80–104] evaluated the performance of [18F]FET PET in
prognosis and treatment response evaluation.

Prognostic parameters can be extracted before, during, and after treatment. For
example, Pyka et al. [93] studied patients with untreated, first-diagnosed gliomas and were
able to predict tumor recurrence, with dynamic parameters showing better results than
static ones, especially in the low-grade subgroup.

Overall, static parameters tended to not reach significance, whereas dynamic ones
such as TTP and TAC demonstrated better results. TTP was the best parameter in two
studies (Pyka et al. [93] and Bauer et al. [95]) with AUCs of 0.848 and 0.90, respectively.

Many studies also decided to use biological tumor volume (BTV), often determined
by an autocontouring process using a TBR threshold of 1.6. Every study used a different
cut-off when considering absolute values, and half of them did not reach significance. Three
studies [82,87,94] opted for a BTV change after the initiation of chemotherapy to separate
responders (relative change ≤ 0%) from non-responders (relative change > 0%). Two of
them examined patients at first diagnosis and the third one at recurrence. These studies
found a decreasing BTV to predict a significantly longer progression-free survival and to
be associated with prolonged overall survival.
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3.12. Radiomics

Radiomic parameters were used by 1 study, for grading [39] (grade 3 vs. 4), 2 stud-
ies in IDH status determination [40,41], 2 studies in the differentiation of recurrence vs.
pseudoprogression [69,76], and 2 studies for prognosis [39,89].

Different textural features showed good performance in each study, and the combina-
tion of standard PET parameters with textural features could improve results, for example
in IDH genotype determination, as shown by Lohmann et al. [41]. Combination of the
dynamic parameter Slope with the radiomic feature SZHGE slightly increased diagnostic
accuracy to 81% vs. 80% with Slope alone.

4. Discussion/Conclusions

This review proposes an up-to-date summary of PET performance in glioma manage-
ment using O-(2-[18F]fluoroethyl)-L-tyrosine. The homogenization of PET tumor-to-brain
ratios according to the determination of the different regions of interest allowed to truly
compare their sensibility, specificity, AUC, and accuracy.

[18F]FET can be useful in every step of glioma management, from diagnosis to suspi-
cion of recurrence.

The ability to discriminate tumor tissue from healthy brain tissue is helpful in diagno-
sis, to guide a surgical procedure or radiotherapy, and to detect the presence of a residue
after surgery. Most studies agree on a TBR threshold > 1.6 to delineate tumor extent.

Different thresholds of tumor-to-brain ratio are also useful to predict histological
characteristics (low vs. high grade, malignant transformation of a low-grade glioma,
and oligodendroglial components), to differentiate post-treatment changes from a true
recurrence, and to extract prognostic parameters and assess treatment response.

It is important to note that while many studies used static parameters TBRmax and
TBRmean, the definition of these ratios differs depending on the article. For example, the
ratio between the mean standard uptake value (SUVmean) of a 16 mm ROI centered on
the maximal tumor uptake and the SUVmean of a contralateral background ROI, named
TBR16mm in this review, can be called TBRmean in a study (Verger et al. [64]) and TBRmax in
another (Galldiks et al. [78]).

Kertels et al. [63] expressed the need to use comparable approaches to be able to
obtain relevant and reliable results. Despite the absence of a significant difference between
methods chosen, approaches focusing on voxels with the highest uptake tended to perform
superior.

Dynamic acquisition also adds valuable information with parameters such as TTP,
TAC, or Slope and should be preferred. An interesting alternative proposed by Lohmann
et al. [31] is dual-time point imaging, allowing to reduce costs due to higher patient
throughput and imaging time.

Relatively new tools are also available, such as radiomics and hybrid PET/MR imaging,
and could be of great interest in the future. The use of hybrid PET/MR is set to increase
in neuro-oncology and could improve performance, as suggested by Lohmann et al. [41]
concerning radiomics.

Joint EANM/EANO/RANO practice guidelines [9] published in 2018 summarized
methods and cut-off values in different clinical situations concerning radiolabeled amino
acids and [18F]FDG. It is of importance to note that the studies used to extract these
guidelines are often retrospective and/or based on small effectives.

At the beginning of the year, Albert et al. [105] published the first version of PET
RANO criteria in an effort to facilitate the structured implementation of PET imaging into
clinical research and, ultimately, clinical routine.

The principal limitation of this review is the methodology used and the fact that
many of the included studies are also retrospective and do not reflect clinical practice.
Additionally, none of the studies included focused on pediatric gliomas, probably because
of the limited number of patients in the available research.
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While [18F]FET is becoming an important tracer in neuro-oncology, [18F]F-DOPA also
showed good results and should not be overlooked. A recent meta-analysis and systematic
review compared [18F]F-DOPA and [18F]FET for differentiating treatment-related change
from true progression (Yu et al. [21]) and found that [18F]F-DOPA seems to demonstrate
superior sensitivity and similar specificity to [18F]FET. Nevertheless, [18F]F-DOPA PET
results were obtained from studies with limited sample sizes.

There is a need to pursue research with prospective, multicentric studies to be able to
standardize imaging analysis and define the use of technological advancements such as
hybrid PET/MRI imaging and radiomics and to compare [18F]FET with existing radiophar-
maceuticals such as [18F]F-DOPA head-to-head comparisons.
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