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Abstract

Glioblastoma (GB), a prevalent and highly malignant primary brain tumour with a very high mortality rate due to its resist-
ance to conventional therapies and invasive nature, resulting in 5-year survival rates of only 4—-17%. Despite recent advance-
ments in cancer management, the survival rates for GB patients have not significantly improved over the last 10-20 years.
Consequently, there exists a critical unmet need for innovative therapies. One promising approach for GB is Targeted Alpha
Therapy (TAT), which aims to selectively deliver potentially therapeutic radiation doses to malignant cells and the tumour
microenvironment while minimising radiation exposure to surrounding normal tissue with or without conventional external
beam radiation. This approach has shown promise in both pre-clinical and clinical settings. A review was conducted follow-
ing PRISMA 2020 guidelines across Medline, SCOPUS, and Embase, identifying 34 relevant studies out of 526 initially
found. In pre-clinical studies, TAT demonstrated high binding specificity to targeted GB cells, with affinity rates between
60.0% and 84.2%, and minimal binding to non-targeted cells (4.0-5.6%). This specificity significantly enhanced cytotoxic
effects and improved biodistribution when delivered intratumorally. Mice treated with TAT showed markedly higher median
survival rates compared to control groups. In clinical trials, TAT applied to recurrent GB (rGB) displayed varying success
rates in extending overall survival (OS) and progression-free survival. Particularly effective when integrated into treatment
regimens for both newly diagnosed and recurrent cases, TAT increased the median OS by 16.1% in newly diagnosed GB
and by 36.4% in rGB, compared to current standard therapies. Furthermore, it was generally well tolerated with minimal
adverse effects. These findings underscore the potential of TAT as a viable therapeutic option in the management of GB.

Key Points

Glioblastoma (GB), an aggressive brain cancer, exhibits
poor prognosis with a 5-year survival rate of 4-17%

Targeted Alpha Therapy (TAT) emerges as a promis-
ing approach, delivering therapeutic radiation doses to
malignant cells while minimising exposure to normal
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dose-dependent reduction in cell viability, and cell cycle
arrest in G2/M phase.

Intratumoral delivery of targeted agents showed promis-
ing biodistribution with significant tumour accumulation.

TAT is generally well-tolerated with minimal side
effects, irrespective of the specific alpha-emitting radio-
nuclide used.
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1 Introduction

Glioblastoma (GB) is the most aggressive form of malignant
primary brain cancer, carrying an extremely poor prognosis
[1]. International studies have shown an annual incidence
rate of approximately 0.59-5 per 100,000 persons, with an
increasing incidence with age, and have indicated a rise in
incidence number [2]. Globally, GB is among the most com-
mon primary malignant brain tumour, with a 5-year survival
rate ranging from 4 to 17% [3].

GB, previously known as glioblastoma multiforme, is
classified as a grade 4 tumour according to the World Health
Organization (WHO) grading system for brain tumours [1].
GB is pathologically known to be highly heterogenous, inva-
sive, proliferating and hypoxic [1, 4-7]. These characteristics
collectively contribute to the aggressive and therapy resist-
ant nature of GB, making it one of the most difficult types
of brain cancers to achieve long-term control. The current
standard treatment for GB patients involves maximal safe
surgical resection followed by external beam radiotherapy
(EBRT) plus concomitant and adjuvant chemotherapy with
temozolomide (TMZ) [8]. Due to the diffuse invasiveness
of GB, achieving a macroscopic and microscopic complete
surgical resection is near impossible [9]. The persistence of
subclinical infiltrating tumour cells at the edge of the tumour
bed dispersed in the adjacent white matter pathways not
eradicated by adjuvant non-surgical oncological treatments
ultimately results in disease recurrence and progression [9].

Considering the low survival rate associated with the
current standard treatment protocols compared to many
other cancers, research has shifted its focus to new thera-
peutic approaches to address the challenges posed by GB.
One promising approach for GB is Targeted Alpha Therapy
(TAT), which aims to selectively deliver therapeutic radia-
tion doses using alpha particles to the tissue of remaining
malignant tumour cells and the tumour microenvironment,
while minimising radiation exposure to surrounding critical
normal tissue [10].

1.1 Targeted Alpha Therapy

TAT is a form of Target Radionuclide Therapy (TRT),
which involves the administration of alpha-emitting radio-
nuclides into the patient, either intravenously or intratumor-
ally/locally. These radionuclides specifically accumulate at
tumour sites due to their inherent chemical properties or
active targeting mechanisms, and release ionising alpha par-
ticles that can precisely target cancer cells [10]. There are
three main methods of delivering TAT:
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i. Passive targeting: This approach utilises radionu-
clides that naturally accumulate in certain tissues
without a targeting agent. An example is Radium-224
(Ra-224), which has a natural affinity for bone and is
under investigation for potential use in glioblastoma
(GB) treatment due to its ability to target bone-like or
calcified tumour tissues [11, 12].

ii. Active targeting: In this more common approach,
alpha-emitting radionuclides are conjugated to mon-
oclonal antibodies (mAb), peptides or small mole-
cules that target tumor-associated antigens expressed
on cancer cells [13]. This method ensures that the
radionuclide is delivered directly to the cancer cells,
increasing the treatment's efficacy and reducing uptake
by normal tissues.

iii. Intratumoral implants: Referred to as diffusing
alpha-emitters radiation therapy (DaRT), this method
involves implanting sources ('seeds') containing low
levels of Ra-224 directly into the tumour [14]. This
strategy is akin to brachytherapy, a well-established
treatment using radiation sources placed inside or
next to the area requiring treatment. Both DaRT and
brachytherapy deliver localised radiation; however,
DaRT provides a targeted alpha-emission that may
offer enhanced tumour control with minimal impact
on surrounding healthy tissues [14].

Another form of TRT is Targeted Beta Therapy (TBT),
which uses beta-emitting radionuclide instead of alpha. TBT
is currently the most common TRT approach; however, TBT
has two major drawbacks: beta-particles have a long range
in tissue, ranging from 1 to 10 mm, resulting in unwanted
exposure to neighbouring healthy tissue [15-17]; and a low
linear energy transfer (LET) of around 0.2 keV/pm [16].
LET is a measurement of the mean rate of energy deposited
locally along the track of a charged particle. Therefore, with
low LET, ionisations within the cell are not as dense, caus-
ing a lower probability of irreparable DNA double-strand
breaks and base chemical modifications that induce apop-
tosis (Fig. 1) [10].

Alpha-emitting radionuclides undergo radioactive decay
releasing alpha-particles, a helium nucleus consisting of
two protons and two neutrons with an electric charge of
+2. Unlike beta-particles, alpha-particles have a much
shorter range of 50-100 um and a higher LET, which var-
ies between 50 keV/pm and 230 keV/pm depending on the
alpha-emitting isotope used [10]; therefore, they can deliver
higher potent short-ranged radiation directly to the tumour
cells while sparing more of the neighbouring healthy tissue
(Fig. 1). Additionally, cell death due to alpha-particles are
near-independent of oxygen level or rate of proliferation,
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which makes TAT suitable for treating hypoxic tumours such
as GB [18].

The high LET of alpha particles significantly increases
their Radiobiological Effectiveness (RBE) compared to beta
particles. RBE is a comparative measure of cellular damage
done by different types of radiation, reflecting the efficiency
of energy deposition at the molecular level. Remarkably,
while the general RBE for alpha particles is typically in the
range of 5-10, it can rise dramatically to around 120 in sce-
narios where alpha particles are targeted internally [15]. This
extremely high RBE is due to the fact that targeted alpha
particles, due to their short range and concentrated energy
deposition, are much more likely to hit and kill cancer cells
directly. Most targeted cancer cells receive a large fraction
of the alpha radiation's energy directly to the cell nucleus,
which induces double-strand DNA breaks. In contrast, beta
particles, their longer range and diffuse energy spread result
in a significantly smaller fraction of the radiation dose, effec-
tively damaging the targeted cells, and affirming their RBE
of about 1 [15]. As such, there has been increased interest in
TAT in recent years due to its advantageous characteristics
over TBT.

This review aims to provide an overview of the current
literature on TAT for GB treatment. Specifically, the focus
is on studies investigating TAT efficacy in both pre-clinical
models and clinical studies. Additionally, the review aimed
to identify and highlight existing gaps in knowledge, and
scopes for future research.
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2 Search Method

To conduct a review of the existing literature on TAT for GB,
a systematic literature search was performed across three
databases: MEDLINE, Scopus and Embase. The search
strategy (detailed in Appendix A, Online Supplemental
Material) was developed in collaboration with a University
of South Australia (UniSA) librarian, adhering to PRISMA
2020 guidelines [19]. Additionally, a grey literature search
using Google Scholar was conducted, with the first 10 pages
of results extracted for screening. The screening process
was done through Covidence (Veritas Health Innovation,
Melbourne, Australia), a specialised software for literature
reviews, and after removing duplicates, exclusion criteria
were applied, excluding conference abstracts, posters, review
articles, and non-English language publications.
Subsequently, a review of the abstracts and full texts of
the remaining papers was conducted independently by two
reviewers (MES and EB), and any conflicts were discussed
and resolved. Following this evaluation, 34 papers were
deemed relevant and selected for inclusion in this review.
Figure 2 is the overview of the search and article inclusion
process. Although systematic approaches were used in the
data extraction and analysis, the large variation in report-
ing and the small number of studies made meta-analysis of
the literature not possible. Therefore, the approach taken
involved integrating and synthesising the overall results.
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Fig.2 Overview of the search method

3 Results and Discussion

The results and discussion of this review are organised into
sections that detail the use of various radionuclides, as well
as summarising findings from in vitro, in vivo and clinical
studies relevant to TAT in GB.

3.1 Radionuclides

A wide array of isotopes has been explored for TAT in the
context of GB. Among these isotopes, Astatine-211 (At-211)
has been used in 14 pre-clinical studies, Bismuth-213 (Bi-
213) in five clinical trials, and Actinium-225 (Ac-225) in
six pre-clinical studies and one phase I clinical trial. Each

Duplicate papers removed:

Screening

Irrelevant studies/conference
abstracts/posters:
(n=298)

’

o Review of the abstracts:

(n=38) o
Studies included in
the Review:
(n=34)

Review of full text: /

(n=34)
Studies excluded:

(n=4)

Included

isotope exhibits a unique set of characteristics. Ac-225, char-
acterised by its 100% a-emission, a range of 0.04-0.10 mm,
and a half-life (T,,,) of 238.10 h (~ 10 days), is shown to
offer several advantages [20-27]. Notably, it exhibits com-
patibility with DOTA-complexation, rendering it a versa-
tile choice for a variety of compounds [26]. Furthermore,
its relatively extended half-life (T,,,) allows for enhanced
transport and more efficient distribution before radioactive
decay, particularly beneficial when treating larger tumour
volumes, as indicated by Cordier et al. [28]. However, the
longer T, of Ac-225 results in the generation of multiple
alpha particles due to its rapid decay chain (as depicted
in Fig. 3). Moreover, recoiled daughters might impact its

98 % B": 1.4 MeV a: 8.4 MeV
a: 5.8 MeV a:6.3 MeV. a: 7.1 Me\( t,/,= 45.9 min ty,= 4.2 pis B 0.6 MeV
ty,=9.92 days ty/,=4.8 min ty,= 32 min W tp=3.3 h
m m m GPolonlum 213 m
Actinium-225 [Francium-ZZl } { Astatine-217 } J[ Bismuth-213 J [ Lead-209 Bis;r:);th-
218 KeV 440 KeV, \-}halhum -209
11.4% 25.9%

u

B7: 2.0 MeV
ty,=2.2 min

2% a: 5.9 MeV
ty/,=45.9 min

Fig.3 Ac-225 decay chain; photons with a branching ratio > 3% relative to 225Ac decay are shown
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stability. Studies involving Ac-225 can be found in the refer-
ences [20-26].

Bi-213, which boasts a 2.2% o-emission and 97.8%
B-emission, possesses a range of 0.05-0.10 mm and a T, of
0.77 h [27-33]. Like Ac-225, it can be effectively complexed
with DOTA, offering a straightforward and universal solu-
tion [26, 30-32]. However, its short T, and gamma-energy
combination make it less efficient in terms of tumour distri-
bution before radioactive decay [28]. The primary drawback
of Bi-213 is its brief T,/,, which affects its residence time
within critical GB cells. In these cases, the ratio between
cell membrane coverage (receptor affinity) and time plays a
pivotal role. Studies involving Bi-213 are listed in the refer-
ences [28-33].

Lastly, At-211, featuring 42.0% a-emission and 58.0%
electron capture, possesses a range of 0.05 mm and a T,
of 7.20 h [27, 34-47]. Its longer T, gives it the potential to
have a more advantageous biodistribution. However, At-211
is limited to applications involving mAb and smaller frag-
ments, which can often exhibit low biological and chemical
stability. Relevant studies pertaining to 211At are listed in
the references [34—47].

3.2 Pre-Clinical Studies

A total of 26 pre-clinical papers were identified that investi-
gated various aspects of TAT for GB. There were 12 in vitro
studies, four in vivo studies, nine combined in vitro/in vivo
studies, and one modelling study. A summary of pre-clinical
studies is presented in Tables 1 and 2.

3.2.1 InVitro Studies

In vitro studies primarily focused on several key aspects,
including the binding affinity of different targeting agents,
clonogenic survival/cell viability, and the potential for cell
cycle arrest.

The binding affinity and binding rate of labelled alpha
emitters were consistently high compared to non-targeted
and unlabelled emitters. Notably, studies conducted by
Zalutsky et al. [39, 41] and Larsen et al. [36] demonstrated
that At-211 conjugated to mAbs 81C6/Mel-14 and 2'-deox-
yuridine (AUdR) exhibited high binding specificity to tar-
geted cells (ranging from 60.0% to 84.2%) and low binding
to non-targeted cells (4.0-5.6%). Moreover, Ma et al. [42]
and Liu et al. [43] found that the binding rates to targeted
cells were 24.9% and 32.0%, respectively, while the binding
rate to non-targeted cells was less than 7%. These studies
explored At-221 conjugated to either a heterodimeric pep-
tide (targeting vascular endothelial growth factor receptor
(VEGFR) and integrins) or a fibroblast activation protein
inhibitor (FAPI).

The therapeutic effectiveness of TAT was assessed in
various ways in the literature, including cell viability, rela-
tive biological effectiveness (RBE), survival fraction of GB
cells at specific absorbed dose rates, and activity concentra-
tion resulting in a specific survival rate. Larsen et al. [35, 36]
and Rosenkranz et al. [37] investigated the activity concen-
trations resulting in a 37% survival rate (A;) of GB cells
using At-211 conjugated to mAbs 81C6/Mel-14, AUdR, and
engineered modular recombinant transporters. The A val-
ues for conjugated At-211 were significantly lower (4.4-56.6
kBg/ml) compared to free At-211 (32.6-132 kBqg/ml). These
findings underscore the heightened effectiveness and pre-
cision of At-211 conjugated to a targeting agent in killing
clonogenic GB cells.

Majkowska-Pilip et al. [25], Ma et al. [42] and Liu et al.
[43] reported on cell viability; a dose-dependent decrease in
all studies was observed. Ac-225 conjugated to substance-P
reduced cell viability to 50% at 50 kBq/ml; At-211 conju-
gated to FAPI and control reduced viability to 42.1% and
56.5% at 92 kBq/ml, respectively; and At-211 conjugated
to heterodimeric peptide and control reduced viability to
47.5% and 62.0% at 75 kBg/ml, respectively. Furthermore,
Majkowska-Pilip et al. [25], Ma et al. [42] and Liu et [43]
demonstrated significant cell cycle arrest in the G2/M phase
in treated cell lines compared to control, with treated cells
in G2/M phase ranging from 62.1% to 80% and control cells
at 11.9% to 36.6% (cells are more radiosensitive in these
phases).

The therapeutic effectiveness of TAT compared to other
treatment modalities was explored in several studies. Carlin
et al. [38, 40] and Zalutsky et al. [39] highlighted that the
2 Gy survival fraction (SF2) for At-211 was significantly
lower than that of Iodine-131 (I-131) and EBRT, meaning
that At-211 is much more effective in killing cancer cells
when exposed to a 2 Gy dose compared to I-131 and EBRT
(i.e., more cytotoxic at this radiation dose). Additionally,
Barazznol et al. [48] reported that the RBE of alpha parti-
cles compared to x-rays and protons was higher, with RBE
(calculated at 10% survival) and RBE;, (survival level after
3 Gy) being 1.17 and 1.35 for protons and 1.84 and 3.79
for alpha particles, respectively. The RBE is a measure of
how effective a particular type of radiation is at causing bio-
logical damage, relative to x-rays, although both alpha and
protons have a higher RBE than X-rays, alpha particles had
the highest RBE, indicating that they are more effective in
causing biological damage.

Overall, the pre-clinical in vitro studies on TAT have
shown its potential as an effective therapeutic approach for
GB treatment. The high binding affinity to targeted cells,
dose-dependent reduction in cell viability, and cell cycle
arrest and enhanced cytotoxicity compared to other treat-
ments collectively highlight the promising aspects of TAT.
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Toxicities

Tumour response

Median survival

Biodistribution

TAT agent/cell line

Table 2 (continued)

Study ID

>
>
(="
=
»

Tumour suppression effect: iRGD-C6-lys(211At-ATE)-C6-DA7R

Median survival:

Biodistribution:

iRGD-C6-lys(211At-ATE)-C6-

Liu 2022 [43]

exhibited high kidney uptake and no
detachment in thyroid and stomach

Dose-dependent tumour effect

Treated: 30 days; Control: 15

Tumour uptake at 1.0,

DA7R

days 180, 370 and 740 kBq reduced
volume by 48, 61 and 77%

3.0, 6.0 h:
Intravenously: 4.0, 3.48,

during circulation. Histological analysis
showed a larger necrotic area in treated

1.14 %ID/g
Kidney uptake: 9.67,

groups, but iRGD-C6-lys(211At-ATE)-

C6-DA7TR demonstrated minimal

8.81,4.75 %ID/g

radiation damage in hepatic, gastric, and
renal tissues compared to free At-211,

which caused gastric mucosal necrosis

Mean lethal dose without

Viability assay: Combined

1.5

Survival fraction

RBE,,

Ra-2244+TMZ

Nishi 2022 [52]

TMZ = 1.2 Gy

TMZ + alpha particles nearly

doubled the cytotoxicity rela-
tive to each treatment alone

decreased by 40-50%

with TMZ

GB glioblastoma, TMZ temozolomide, EBRT External Beam Radiation Therapy, %ID/g percent of the injected dose per gram, EMRT engineered modular recombinant transporters, /C50 half

maximal inhibitory concentration, DSB double strand break, yH2A.X phosphorylated that forms when DSB appear, Ki67 proliferation marker, RBE, values calculated at 10 % survival, REB,, ini-

tial slope of the survival curve (o test radiation/ « reference radiation), RBE Relative Biological Effectiveness, RBE g, survival level after 3 Gy, BCH 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic
acid, LAT1-IN-1 is an inhibitor of system L amino acid transporter, PADPR poly-ADP-ribosylation (plays a role in detecting and repairing DNA damage in cells), WAF1 gene that is localised to

chromosome 6p21.2, and its sequence, structure, and activation by p53 (a lower fold induction of WAF1 indicates that the cells are more sensitive to that particular type of irradiation)

Building on the existing in vitro studies that detail the
binding affinity of TAT, cell viability, cell cycle arrest, and
other cellular responses in GB treatment, further research is
suggested in the following areas to address existing knowl-
edge gaps. This recommendation aligns with the Interna-
tional Atomic Energy Agency (IAEA) [49] guidance for
pre-clinical studies with radiopharmaceuticals. Below is an
outline of studies that are covered by the included literature
and those requiring further investigation:

TAEA Recommended Studies—Covered in Included
Literature:

ii.

iii.

iv.

Binding affinity and specificity: Several studies have
examined the binding affinity and specificity of radi-
opharmaceuticals like At-211 conjugated with mono-
clonal antibodies and peptides. For example, Zalut-
skys and Larsen's [35, 39] studies show significant
differences in binding to target versus non-target cells,
which aligns with the TAEA's emphasis on under-
standing binding characteristics.

Cell viability and clonogenic survival: Studies
(Table 1) have provided detailed clonogenic survival
curves, showing how different doses affect survival
rates of GB cells, addressing the ITAEA's recommenda-
tion for cell viability studies.

Cellular response to radiation: The cellular response
to radiation was also explored, including dose-depend-
ent effects and RBE, contributing to understanding
the efficacy of different types of radiation as recom-
mended by IAEA.

Therapeutic efficacy: Carlin's [38, 40] studies dem-
onstrated higher cytotoxicity and absorbed dose effec-
tiveness of At-211 compared to I-131 and external
beam radiation, providing crucial data on the thera-
peutic potential of radiopharmaceuticals.

IAEA Recommended Studies—Require Further
Investigation:

ii.

Internalisation and intracellular/subcellular distri-
bution: Despite detailed binding and viability studies,
the internalisation dynamics and subcellular localisa-
tion of tracers post-binding are not clearly addressed
in the summarised studies. These are crucial for
understanding how tracers behave inside cells after
binding to their targets.

Blocking studies: Although high binding specificity
is demonstrated, there is no clear mention of block-
ing studies to assess the saturability and specificity of
binding beyond competitive interactions. Such studies
would help confirm the selectivity and potential off-
target effects.
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iii. Efflux pump assays and blood-brain barrier perme-
ability: There is a lack of explicit studies on how these
radiopharmaceuticals interact with the blood-brain
barrier or efflux pumps, which is critical for CNS-
targeted therapies like those for GB.

iv. Metabolite analysis: It is important to understand
the metabolic pathways and by-products after tracer
uptake, which has not been detailed in the summary.
This could affect both efficacy and toxicity profiles of
the radiopharmaceuticals.

v. Functional/efficacy assays beyond viability: Addi-
tional functional assays to evaluate the biochemical
pathways affected post-binding could provide deeper
insights into the mechanistic effects of TAT agents on
GB cells.

By addressing these gaps, further research can enhance
the understanding of the comprehensive therapeutic profile of
TAT, particularly focusing on areas like tracer internalisation
and metabolic processing, which are pivotal for ensuring the
safety and effectiveness of treatment strategies for GB.

3.2.2 InVivo Studies

In vivo studies primarily focused on three aspects: biodis-
tribution of targeted agents, median survival in treated ani-
mals versus control groups, and tumour growth/size reduc-
tion. Figure 4 provides a summary of the biodistribution of
various targeting agents. It reveals that intravenous delivery
of targeted agents resulted in tumour uptake ranging from
0.13% to 20.0% of the total injected dose per gram (%1D/g),
while intratumoral delivery demonstrated a significantly
higher tumour accumulation of 132.5%ID/g [20, 21, 39,
41-43]. Furthermore, intravenous injection groups displayed
higher tumour-to-organ ratios, with the most significant
uptake observed in the liver, spleen and kidneys (Fig. 4B)
[20, 41-43]. Ma et al. [42] reported more favourable results
concerning the tumour-to-organ ratio with intratumoral
injection, including tumour-to-liver, tumour-to-kidney, and
tumour-to-blood ratios of 11.13, 6.39, and 14.17, respec-
tively, post-injection.

The studies revealed promising results in terms of the
median overall survival (OS) of mice treated with TAT.
Treated groups demonstrated OS ranging from 14.6 to 41
days, while untreated/control groups ranged from 9 to 23
days [20, 21, 24, 42—44]. TAT also exhibited a dose-depend-
ent tumour suppression effect, with doses between 180 and
740 kBq resulting in reduced tumour volume ranging from
48% to 77% [12, 37, 42, 43, 45]. Additionally, Watabe
et al. [45] reported that TAT effectively suppressed tumour
growth, with tumour size ratios of 0.6, 0.4 and 0.25 post-
injection at 100, 500 and 1,000 kBq, respectively.

Overall, the in vivo studies underscore the potential of
TAT in improving overall survival and reducing tumour
growth in animal models. The findings suggest that intra-
tumoral delivery may offer more favourable outcomes in
terms of biodistribution and tumour-to-organ ratio. Further
research is needed to optimise dosing and administration
methods to maximise the therapeutic benefits of these tar-
geted agents.

3.3 Clinical Studies

Despite many recent advances in anti-cancer treatment
modalities, (surgery, external beam radiotherapy and chem-
otherapy) over the last decade, the overall median survival
(OS) for newly diagnosed primary GB remains extremely
low, ranging from 12 to 18 months [53-58]. There are cur-
rently limited clinical data, with only six phase I clinical
studies identified, four of which were conducted by the same
research group. A summary of these phase I studies is pre-
sented in Table 3, where different alpha-emitting radionu-
clides, such as At-211, Bi-213 and Ac-225, conjugated to
various targeting agents, were investigated. The primary aim
of these clinical studies is to assess the viability of TAT as a
treatment option for recurrent glioblastoma (rGB).

In a clinical trial by Zalutsky et al. [34], At-211 was
employed alongside Ch81C6, targeting Tenascin C, in
14 rGB patients. The treatment plan involved doses rang-
ing from 71 MBq to 347 MBq, all conjugated to 10 mg
of Ch81C6 within the surgical cavity. The study reported a
median OS of 12 months, with observed variations in surgi-
cal cavity resection site volumes, highlighting the need for
further evaluation of multiple dose administration schedules
to optimise treatment efficacy.

Cordier et al. [28] delved into the use of Bi-213 in com-
bination with Substance P/NK-1, focusing on two critically
located GB patients. Patient 1 (P1) received one cycle of
1.07 GBq, and Patient 2 (P2) received one cycle of 1.92
GBgq, involving intratumoral injection via two to three cath-
eters with three to five injections per cycle. The findings
from this investigation revealed a median OS-t (overall sur-
vival from the start of treatment (first cycle of TAT) to death
from any cause) of 16 months for P1 and 19 months for
P2, and no acute local or systemic toxicity were reported.
However, both patients eventually experienced tumour
recurrence, with the recurrence period spanning from 2 to
11 months post-treatment. Notably, the study showed that
smaller tumours displayed a comprehensive radionecrotic
transformation, while larger tumours primarily exhibited
necrosis in the proximity of the catheters used for injection.
This discrepancy in response is likely attributable to the rela-
tively short T, of Bi-213 (T, of 0.77 h), potentially result-
ing in inadequate intratumoral distribution before radioac-
tive decay occurs. These results have raised valid concerns
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Fig.4 Biodistribution of the A
targeting agent. (A) The tumour

accumulation (red arrow indi- 130 N qu—
cates the intratumoral injection

result). (B) The intravenous 95

injection distribution in tumour

and healthy organs 60
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Tumour Uptake

regarding the suitability of Bi-213 for the treatment of larger
tumour volumes. It suggests that Ac-225 (T,;, of 238.10 h)
may be a more appropriate choice for addressing such cases,
potentially offering improved outcomes.

The studies conducted by Krolicki et al. [26, 30-32] have
contributed to advancing our understanding of TAT for GB.
Their clinical trials began in 2018 when they investigated
the use of Bi-213 conjugated with Substance P/NK-1 in
nine patients with secondary GB. This results showed a
diverse spectrum of outcomes, with a median OS of 16.4
months. In 2019, Krolicki et al. [32] expanded their scope
to include 20 rGB patients, categorised into NIHO, NIH1
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and NIH2 groups based on the National Institutes of Health
(NIH) clinical grading scale for GB. This scale ranges from
0 to 5, reflecting various levels of neurological function,
with higher grades indicating worse neurological function.
Notably, the study observed longer OS and PFS in patients
with lower-grade NIH scores, highlighting the significance
of patient stratification.

Their exploration of TAT continued with studies involv-
ing 21 and 29 patients with primary and secondary rGB,
employing Ac-225 and Bi-213 conjugated with Substance
P/NK-1, respectively. Surprisingly, the treatment effect
appeared independent of the radioisotope injected activity
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within the range of 10-30 MBq. This could be attributed
to the limited diffusion of the treatment into the tumour,
predominantly influencing the peripheral regions near the
cavity. Furthermore, the study noted the potential influence
of tumour heterogeneity, exemplified by a diverse range of
apparent diffusion coefficient (ADC) values observed in
MRI scans, partly explaining the varied responses to treat-
ment. The data from these trials showed that the OS time
in primary GB increased to 23.6 months with Bi-213 and
21 months with Ac-225, and OS in rGB increased to 10.9
months with Bi-213 and 12 months with Ac-225 when com-
pared to the OS with standard treatment [53—58]. Notably,
the analysis showed a statistically significant longer OS-d
and OS-r/c time for patients with secondary glioblastoma
compared to those with primary glioblastoma. However,
when comparing PFS and OS-t (the two most treatment-
related parameters), both groups of patients demonstrated
similar outcomes. This implies that local treatment admin-
istration of radionuclides effectively targets tumours in both
patient groups, regardless of the genetic attributes of their
tumours.

3.3.1 Delivered Dose

The published clinical studies touch upon factors influenc-
ing the radiation dose delivered by TAT, such as the total
injected activity and the diffusion rate of the radiopharma-
ceutical into the tumour. However, specific numerical values
for the actual radiation doses delivered to the tumour/target
volume are not provided. The biodistributions of the radi-
opharmaceutical were assessed using PET/CT post-injec-
tion, and similar to the in vivo studies, the clinical studies
reported on the %ID retaining in the blood pool. All clinical
studies consistently reported a high retention of the radiop-
harmaceutical at the target site, a finding further confirmed
by the low percentage values of the injected dose in the
blood pool (maximum values in all studies were < 4-6 %ID)
[26, 28, 30-32, 34]. The absence of detailed information
on the translated dose to the target volume complicates the
ability to establish definitive correlations between adminis-
tered activities; a dose-response relationship and therapeutic
outcomes becomes challenging.

Understanding the actual radiation dose delivered to the
tumour is essential for optimising treatment protocols, ensur-
ing adequate tumour coverage, and minimising treatment
associated side effects. This highlights the critical need for
further dosimetry studies that take into account the unique
characteristics of the radiopharmaceutical, diffusion rates,
and potential variations in individual tumour structures.

Additionally, while reports consistently detail the
amount of activity administered, they lack quantification of
how effectively this activity translates into energy deposi-
tion at the targeted volume. To bridge this gap, multiple

imaging sessions are needed to estimate the activity within
normal tissues and tumours. These imaging data allow for
the reconstruction of a detailed spatial dosimetry based on
time-activity curves. It is essential to ascertain whether the
radiopharmaceutical accumulates uniformly, achieves suf-
ficient intensity, and reaches the peripheries of the tumour
where residual cells may exist. This dual challenge of deliv-
ery and dosimetry underscores the need for advanced imag-
ing techniques and precise dosimetric calculations to ensure
that the radiation dose is accurately distributed throughout
the tumour volume.

3.3.2 Toxicities

Toxicity assessments across the studies by Zalutsky et al.
[34], Cordier et al. [28] and Krolicki et al. [26, 30-32]
revealed that TAT is a generally well tolerated treatment
with minimal side effects (Table 3). Notably, toxicity pro-
files were similar between Ac-225 and Bi-213 when doses
were equivalent, suggesting that adverse effects may be more
related to dosing than the specific radionuclide used [30].
These findings underscore the importance of precise dosing
considerations and careful dose-escalation protocols to mini-
mise potential risks associated with targeted radionuclide
therapies, particularly for Ac-225. Continued research and
clinical monitoring are essential to refine treatment protocols
and ensure patient safety.

Overall, these studies contribute to understanding TAT
for GB, emphasising patient stratification and dosimetry
considerations. Despite variations in outcomes, local admin-
istration of radionuclides demonstrated effective tumour tar-
geting, impacting both primary and secondary GB. Further
exploration is crucial for optimising treatment schedules and
improving overall survival and progression-free survival for
GB patients.

4 Delivery Methods

The blood-brain barrier (BBB) is a semi-permeable mem-
brane, comprised of specialised endothelial cells supported
by pericytes and astrocytes, that tightly regulates the pas-
sage of molecules into the brain [59]. The BBB's selective
physical barrier, which restricts the entry of molecules
larger than 400 Daltons, poses a challenge for delivering
therapeutic agents to treat brain tumours [59]. Furthermore,
brain tumours compromise the BBB, resulting in the forma-
tion of the blood-tumour barrier (BTB), characterised by
heterogeneous permeability and active efflux mechanisms
[60]. This creates a challenging scenario for drug delivery,
as the efficacy of therapies is impeded by the expression of
transport proteins and efflux transporters in both the BBB
and the BTB [60].
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To overcome these barriers, various strategies have been
explored. One avenue is the use of peptide-drug conju-
gates, where peptides facilitate targeted drug delivery [61].
Peptide-drug conjugates exploit specific receptors on target
tissues for selective drug transport; this is used for intrave-
nous delivery. However, challenges persist, requiring stable
conjugates with strong binding affinity, and the need to avoid
modifying the drug's stability or binding affinity during
delivery [61]. In vivo studies [21, 42, 43] demonstrate that
only a few targeting agents can effectively cross the BBB
to reach brain tissue, and systemic delivery often results in
undesirable side effects in non-targeted tissues.

Particularly in GB treatment, the localised nature of the
disease and the absence of distal metastases underscore the
inherent risks of systemic radionuclide administration, such
as off-target radiation exposure. Clinical evidence increas-
ingly supports localised delivery methods like intratumoral
or post-surgical cavity administration. These methods not
only bypass the BBB but also target microscopic disease
directly, overcoming the dilution effect typical of systemic
administration. This approach aligns with the fact that GB
does not typically metastasise, making localised delivery
especially suitable. Clinical trials consistently utilise intra-
tumoral and intracavitary delivery to maximise the efficacy
of TAT agents and minimise systemic exposure.

Intratumoral and intracavitary methods involve direct
injection, which provides localised TAT agent release,
minimising systemic exposure. In the clinical studies, intra-
tumoral and intracavitary delivery was implemented, and
the biodistribution of the radiopharmaceutical was assessed
using PET/CT [26, 30-32]. The local delivery of the TAT
agents for the treatment of GB faces intricate challenges
associated with the increased tissue pressure within tumours
and adjacent tissues [26, 28, 30-32]. This elevated pressure
diminishes the gradient that drives the diffusion process,
resulting in a notable reduction in the absorbed dose by
the peripheral areas of the treatment volume [30]. Tumour
structural differences further complicate matters, highlight-
ing the need for an understanding of tissue heterogeneity
and variations in radiopharmaceutical diffusion. Appar-
ent diffusion coefficient measurements derived from MRI
examinations offer insights into diffusion variations within
tumours, potentially influencing treatment responses [30].
Factors affecting successful locoregional therapy include
molecular weight, physicochemical properties, extracellular
space density, and the impact of repetitive injections on glial
scarring [30]. The slow diffusion rate into swollen brain tis-
sue poses a significant challenge, prompting exploration into
convection-enhanced diffusion (CED) techniques [30, 62].
CED utilises a small hydraulic pressure that results in bulk/
convection flow, enabling a homogeneous drug distribution
directly into the adjacent brain [62].

A\ Adis

Despite the progress, challenges persist in achieving
effective drug delivery to the brain and overcoming the bar-
riers imposed by the BBB and BTB. The complex interplay
of biological processes necessitates further exploration and
understanding for the successful implementation of local
TAT in the treatment of GB, emphasising the importance
of ongoing dosimetry studies and a nuanced approach to
treatment protocols.

5 Limitations and Gaps in Literature

While the current literature on TAT for GB shows promise,
several gaps and limitations necessitate further investigation
and the optimisation of future clinical trials . Here are the
limitations and gaps we identified:

i. Radiation dose to susceptible organs: Systemically
administered radionuclides pose a limitation due to the
radiation dose reaching susceptible organs, including
the liver, spleen, stomach and kidneys as seen in [20,
41-43]. Pre-clinical in vivo studies have indicated that
intratumoral or local injection of the radionuclide is
likely more effective and less toxic to healthy tissues
[21, 42, 43].

ii. Limited number of patients sampled: The clinical
studies have been conducted on a very limited number
of patients and have not been randomised to alterna-
tive available conventional therapies. Expanding the
scope of studies to include a larger and more diverse
patient population will provide a more comprehen-
sive understanding of the therapy's efficacy and safety.
These studies should also consider optimising patient
inclusion criteria for further research and thus enable
randomised studies.

iii. Dosimetry studies: Additional dosimetry/radiobio-
logical modelling studies are needed to better com-
prehend the complex biological processes involved in
local radioisotope treatment of GB. These studies can
give quantifiable evidence of TAT’s effectiveness in
tumour cell kill, help refine treatment protocols, and
optimise radiation dosages. Further dosimetry studies
that quantify the radiation doses at the target site are
crucial, considering factors such as the unique char-
acteristics of the radiopharmaceutical, diffusion rates,
and potential variations in individual tumour struc-
tures. Moreover, there is a significant need for cellular
dosimetry studies to understand and predict the bio-
logical effects of alpha-particle radiopharmaceuticals.
Dosimetry at the micro- or multi-cellular scale level
can inform treatment optimisation and efficacy assess-
ment by elucidating the radiation effects at the cellular
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level, which are critical for tailoring therapy to achieve
maximum therapeutic benefit while minimising harm.

iv. Microdosimetry models: The limited application of
microdosimetric models highlights the importance of
future studies in this area. Understanding radiation
effects at the cellular level is critical for optimising
treatment strategies.

v. Intratumoral distribution: The challenge of achiev-
ing effective intratumoral distribution of alpha emit-
ters, especially in larger tumours/volumes, needs
further exploration. Using radioisotopes with longer
half-lives such as Ac-225 may have an impact on this
distribution issue and should be investigated in greater
detail.

vi. Mechanisms of action for TAT: Further research
could delve into the mechanistic differences between
TAT and other treatment modalities in terms of GB
treatment. This would provide insights into the unique
benefits and challenges associated with alpha-particle
irradiation. Also, exploring its synergy with other
treatment modalities such as external beam radiother-
apy and chemotherapy could hold promise.

vii. Delivery methods/diffusion of alpha-emitting
agents: Innovative delivery methods for alpha-parti-
cle-emitting agents, especially considering their lim-
ited range, need to be explored. Additionally, looking
at how to quantify the distribution of the agents after
injection and predicate its path within treatment vol-
ume are important. Finding ways to ensure effective
distribution within tumours is crucial.

viii. Recoil effect of radionuclides: None of the reviewed
studies have addressed the recoil effect, which is
challenging to measure as it requires tracking daugh-
ter nuclides independently. This gap is critical as it
could impact the stability and efficacy of radionuclide
therapies. Recent simulation studies, such as those by
Tronchin et al. [63], begin to address this by examin-
ing dosimetry from recoil daughter nuclides.

ix. Factors affecting cytotoxicity: It is essential to
explore the factors affecting the cytotoxicity of avail-
able alpha-emitting agents, comparing different radio-
isotopes and their potential clinical applications. This
could lead to a more nuanced understanding of their
therapeutic potential.

Overall, while TAT shows promise as a treatment for GB,
addressing these identified gaps and optimising treatment
protocols underpinned by further well designed preclinical
and clinical studies are imperative for its successful applica-
tion. TAT has significant potential to improve outcomes in
a patient group with no material survival improvement over
the last two decades and persistently remaining extremely
low survival rates.

6 Review Limitations

It is important to recognise the limitations of this review.
The search strategy was executed across diverse data-
bases (MEDLINE, Embase and Scopus, supplemented by
Google Scholar for grey literature), with papers published
in non-English language and conference abstracts, posters
and review articles excluded during the full-text review.
Although the search strategy (Appendix A, Online Supple-
mental Material) was developed with aid of a UniSA librar-
ian, it is acknowledged that these exclusions and limitations
may have led to the oversight of some relevant articles.

7 Conclusion

TAT offers a promising avenue for treating GB, but its full
potential hinges on overcoming significant challenges. Sys-
temic administration of radionuclides raises concerns about
radiation exposure to vulnerable adjacent normal tissues,
advocating for localised delivery methods. Small patient
samples in current studies necessitate larger and more
diverse clinical trials to establish real-world effectiveness.
Dosimetry studies and the investigation of local distribution
methods are vital for refining dosing and enhancing treat-
ment outcomes. Additionally, exploring the synergy of TAT
with other novel therapies could hold promise.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11523-024-01071-y.
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