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Diffusion-weighted MR image analysis based 
on gamma distribution model for differentiating 
benign and malignant brain tumors
Zeinab Soleimani, MSca , Masih Saboori, MDb, Iraj Abedi, PhDa,*, Maziar Irannejad, PhDc, Saeid Khanbabapour, MDd

Abstract 
Background: Considering the invasiveness of the biopsy method, we attempted to evaluate the ability of the gamma distribution 
model using magnetic resonance imaging images to stage and grade benign and malignant brain tumors.

Methods: A total of 42 patients with malignant brain tumors (including glioma, lymphoma, and choroid plexus papilloma) and 
24 patients with benign brain tumors (meningioma) underwent diffusion-weighted imaging using five b-values ranging from 0 to 
2000 s/mm2 with a 1.5 T scanner. The gamma distribution model is expected to demonstrate the probability of water molecule 
distribution based on the apparent diffusion coefficient. For all tumors, the apparent diffusion coefficient, shape parameter (κ), and 
scale parameter (θ) were calculated for each b-value. In the staging step, the fractions (ƒ1, ƒ2, ƒ3) expected to reflect the intracellular, 
and extracellular diffusion and perfusion were investigated. Diffusion <1 × 10‐4 mm2/s (ƒ1), 1 × 10‐4 mm2/s < Diffusion > 3 × 10‐4 
mm2/s (ƒ2), and Diffusion >3 × 10‐4 mm2/s (ƒ3); in the grading step, fractions were determined to check heavily restricted diffusion. 
Diffusion lower than 0.3 × 10‐4 mm2/s (ƒ11). Diffusion lower than 0.5 × 10‐4 mm2/s (ƒ12). Diffusion lower than 0.8 × 10‐4 mm2/s (ƒ13).

Results: The findings were analyzed using nonparametric statistics and receiver operating characteristic curve diagnostic 
performance. Gamma model parameters (κ, ƒ1, ƒ2, ƒ3) showed a satisfactory difference in differentiating meningioma from glioma. 
For b value = 2000 s/mm2, ƒ1 had a better diagnostic performance than κ and apparent diffusion coefficient (sensitivity, 88%; 
specificity, 68%; P < .001). The best diagnostic performance was related to ƒ3 in b = 2000 s/mm2 (area under the curve = 0.891, 
sensitivity = 83%, specificity = 80%, P < .001). In the grading step, ƒ12 (area under the curve = 0.870, sensitivity = 92%, 
specificity = 72%, P < .001) had the best diagnostic performance in differentiating high-grade from low-grade gliomas with 
b = 2000 s/mm2.

Conclusion: The findings of our study highlight the potential of using a gamma distribution model with diffusion-weighted 
imaging based on multiple b-values for grading and staging brain tumors. Its potential integration into routine clinical practice 
could advance neurooncology and improve patient outcomes through more accurate diagnosis and treatment planning.

Abbreviations: ADC = apparent diffusion coefficient, AUC = area under the curve, DWI = diffusion weighted image, GD = gamma 
distribution, MRI = magnetic resonance imaging, PDF = probability density function, ROC = receiver operating characteristic, ROI 
= region of interest.

Keywords: apparent diffusion coefficient, gamma diffusion model, glioma, magnetic resonance imaging, meningioma

1. Introduction
Definitive diagnosis of benign versus malignant brain tumors is 
typically performed through biopsy for histological confirma-
tion.[1] However, biopsies are generally not performed before 
surgery because of associated risks. Diffusion-weighted magnetic 
resonance imaging (MRI) (DWI) is a valuable tool for distinguish-
ing between different brain tumors, reducing the need for invasive 

biopsies. DWI is a noninvasive technique that measures water 
diffusion in tissues and provides essential information about the 
tissue microstructures that play a crucial role in tumor grading.[2]

Various histological tumor types exhibit different cellular-
ity’s, leading to variations in DWI intensity. Multiple math-
ematical models have been proposed to analyze DWI MR 
images. A commonly used model is the mono-exponential 
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model, which calculates the apparent diffusion coefficient 
(ADC) based on the assumption of Gaussian distribution 
of diffusion displacement.[3] Although this model has shown 
some utility in differentiating tumors, it has some inherent 
limitations. In reality, diffusion behavior in heterogeneous 
biological tissues cannot be accurately represented by a simple 
Gaussian distribution.

Several approaches have been proposed to address the limita-
tions of the mono-exponential model and characterize non-mono- 
exponential diffusion behavior.[4] In recent years, statistical models 
based on gamma distribution have been proven to be suitable for 
diffusion MRI analyses. The gamma distribution (GD) model is a 
two-parameter continuous probability distribution parameterized 
by the shape parameters kappa (κ) and scale parameter theta (θ). 
This model assumes that the diffusion coefficient (D) is continu-
ously distributed within a voxel, thereby enabling the estimation 
of fractions representing different tissue types. Specifically, the area 
fractions for D < 1.0 × 10−3 mm2/s, D = 1.0 × 10−3 to 3.0 × 10−3 
mm2/s, and D > 3.0 × 10−3 mm2/s are attributed to intracellular, 
extracellular extravascular, and intravascular spaces, respectively. 
By using these fractions, it is possible to estimate the histopatho-
logical conditions of neoplasms or organs.

The gamma model introduces the concept of area fractions for 
diffusion coefficients D < 1.0 × 10−3 mm2/s and D > 3.0 × 10−3 
mm2/s as parameters representing restricted diffusion and perfu-
sion, respectively. With the GD model’s continuous distribution 
of diffusion coefficients within the imaging voxel, the histologi-
cal interpretation of diffusion data becomes feasible.[5] Although 
the GD model has been successfully applied in assessing prostate 
cancers,[6] breast cancers,[5] and renal function,[7] its application 
to brain tumors remains unexplored. Hence, the primary aim of 
this study was to investigate the potential of the GD model to 
differentiate between benign and malignant brain tumors. Our 
research comprises 2 main parts: first, we examine the diagnosis 
of benign and malignant tumors based on the probability density 
function (PDF) of the gamma model, and second, we investigate 
the classification of malignant tumors by altering their fractions.

Through this study, we strive to provide valuable insights into 
the potential application of the GD model in brain tumor anal-
ysis, potentially enhancing the diagnostic accuracy and reducing 
the need for invasive procedures in clinical practice.

2. Materials and methods

2.1. Patients

A total of 73 patients with brain tumors, referred for MRI 
examination between May 2021 and February 2023, partic-
ipated in this fundamental and prospective study. The study 
protocol was approved by the Institutional Review Board of 
Isfahan University of Medical Sciences (number: 1400.641), 
and informed consent was obtained from all the patients. The 
inclusion criteria required confirmation of brain tumors by a 
neurologist, and patients were excluded if they had contraindi-
cations for MRI imaging, such as cardiac pacemakers, aneurysm 
clips, artificial heart valves, or body prostheses. Patients with 
foreign objects such as splinters or pleats were also excluded to 
prevent potential artifacts. Patients who had undergone prior 
surgery or biopsy were excluded from the study. Patients with 
low-quality diffusion MRI images were excluded. After MRI 
examination, the patients underwent surgery, and tissue sam-
ples were sent to the pathology laboratory for tumor staging 
and grading.

2.2. Image acquisition

MR images were obtained using a 1.5T MRI scanner (Aera, 
Siemens Medical Systems, Germany) equipped with an 8- 
channel head coil in Milad Hospital. The DWI sequence was 

acquired in the axial plane with 3 orthogonal diffusion gra-
dient directions at 5 b value (0, 500, 1000, 1500, and 2000 s/
mm2). The imaging parameters were as follows: repetition 
time = 3000 ms; echo time 102 ms; slice thickness, 5 mm; field 
of view 250 × 250 mm²; fat suppression, SPIR; water-fat shift/ 
BW, 9.2 pixels/23.6 Hz; BW in EPI-frequency direction. 1680.3 
Hz; acquisition time, 1 minutes and 12 seconds; and matrix 
size, 256 × 256. Each b-value was calculated as the average of 
3 measurements.

In addition to DWI, routine MRI protocols were performed 
for all patients, which included T1-weighted sequences with and 
without contrast, T2-weighted sequences in the axial, sagittal, 
and coronal planes, and fluid-attenuated inversion recovery 
sequence in the axial plane. B-values were selected according to 
previous studies[8] and internal guidelines of our department for 
brain tumor patients.

2.3. Regions of interest placement

All MR images were meticulously analyzed by an experienced 
neuro-radiologist with 10 years of MRI expertise. The radiolo-
gist was blinded to the patients’ medical history and pathology 
results. To match the geometric information of the DWI images, 
the matrix sizes of the post-contrast T1-weighted images were 
adjusted using the Image J function.

Regions of interest (ROI) were defined to include the conspic-
uous core of the lesion, enclosing the limits of the viable hyper-
intense regions of the lesions and avoiding peritumoral edema, 
hemorrhage, and cystic lesions (Fig. 1).

For the grading step, ROIs were carefully placed to delineate 
the enhancing lesion on the single slice with the maximum area 
in T1w post-contrast, utilizing a 3D-slicer (v5.4.0 × 64). ROIs 
were excluded from areas with necrosis, cystic lesions, hemor-
rhage, or obvious artifacts (Fig. 2).

To ensure consistency, these ROIs were copied and pasted 
onto the images corresponding to the other b value. Fine 
manual adjustments were performed to address any loca-
tional mismatches caused by image distortion or patient 
motion, thereby ensuring accurate ROI placement. ROIs 
were strategically selected to encompass the core of the 
tumor while avoiding regions of edema, hemorrhage, or 
normal tissue. The mean signal intensity of each ROI was 
measured at the desired b value using in-house software 
(MATLAB-R2016b).

2.4. DWI imaging analysis

ADC maps were derived from the acquired diffusion-weighted 
images using MATLAB-R2016b, a software widely used for 
image analysis. ADC maps were generated by summing multi-b-
value images. Subsequently, ROIs were drawn independently on 
the ADC maps and the ADC values for all slices were calculated 
using the following formula:

 
ADC = −1

b
× ln

Å
SDWI

Sb=0

ã
mm2/s

(1)

where SDWI is the signal intensity of isotropic DWI, Sb=0 is 
the signal intensity of b = 0, and ADC is the apparent diffusion 
coefficient.

The GD model is denoted by P(D) and is defined as follows:

 
P(D) =

1
Γ (k)θk

DK−1 exp
−D
θ

(2)

where:

	 •	 P(D) represents the PDF of the gamma distribution.
	 •	 κ is the shape parameter of the distribution.
	 •	 θ is the scale parameter of the distribution.
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	 •	 Γ denotes the gamma function.
	 •	 D is the diffusion coefficient.

This statistical model enables us to estimate the fractions of 
tissue types based on specific ranges of diffusion coefficients, 
providing valuable information for distinguishing between 
benign and malignant brain tumors.

The following formula was used to calculate the parameters 
of the gamma model (θ/k) based on signal intensity:

 
S (b) = S0

1

(1+ θb)k (3)

The study was conducted in 2 parts to investigate the poten-
tial of the gamma distribution model for staging and grading 
brain tumors.

2.5. Staging step

First, the diagnosis of benign and malignant tumors was explored 
based on the PDF of the gamma model. Diffusion-weighted 

MR images were analyzed using the gamma distribution 
model to identify 3 distinct areas in the function curve: dif-
fusion lower than 1 × 10‐4 mm2/s (Frac < 1 × 10‐4 mm2/s): 
which is expected to represent small intracellular diffusion. 
Diffusion between 1 × 10‐4 mm2/s and 3 × 10‐4 mm2/s (1 × 10‐4 
mm2/s < Frac > 3 × 10‐4 mm2/s): this region corresponds to 
the extracellular diffusion of the tissue. Diffusion higher than 
3 × 10‐4 mm2/s (Frac > 3 × 10‐4 mm2/s): This region was expected 
to indicate the perfusion component.

2.6. Grading step

The second part of the study focused on grading malignant 
brain tumors using the fractions obtained from the gamma 
distribution model. Specifically, the fractions were considered 
for diffusion lower than 1 × 10‐4 mm2/s, and 3 grading thresh-
olds were applied: Diffusion lower than 0.3 × 10‐4 mm2/s (ƒ11). 
Diffusion lower than 0.5 × 10‐4 mm2/s (ƒ12). Diffusion lower 
than 0.8 × 10‐4 mm2/s (ƒ13).

Figure 1.  Region of interest (ROI) at b_value = 2000, (A) meningioma in a 51 years-old woman, (B) glioma grade I in a 46 years-old woman, (C) glioma grade II 
in a 27 years-old man, (D) glioma high-grade in a 58 years-old man.

Figure 2.  Region of interest (ROI). (A) Glioma grade II in 33 years old male. (B) Glioma grade IV in 45 years old female. (C) Glioma grade IV in 65 years old male. 
(D) Glioma grade III in 40 years old female.

D
ow

nloaded from
 http://journals.lw

w
.com

/m
d-journal by B

hD
M

f5eP
H

K
av1zE

oum
1tQ

fN
4a+

kJLhE
Z

gbsIH
o4X

M
i0hC

y
w

C
X

1A
W

nY
Q

p/IlQ
rH

D
3i3D

0O
dR

yi7T
vS

F
l4C

f3V
C

1y0abggQ
Z

X
dgG

j2M
w

lZ
LeI=

 on 09/12/2024



4

Soleimani et al.  •  Medicine (2024) 103:36� Medicine

2.7. Statistical analysis

In this study, comprehensive and rigorous statistical analysis 
was performed to evaluate the data. First, the normality of 
the data was assessed using the Kolmogorov–Smirnov and 
Shapiro–Wilk tests to ensure that the assumptions of normal-
ity were met. Statistical analysis was carried out using IBM 
SPSS Statistics version 27.0.1 (×64), a widely used and pow-
erful software in the field of data analysis. To compare dif-
ferent groups, the nonparametric Mann–Whitney U-test was 
employed, which is suitable for non-normally distributed data. 
This robustness test allowed us to determine the significant 
differences between the groups. Furthermore, to provide a 
comprehensive understanding of the model’s performance in 
differentiating between benign and malignant brain tumors, a 
receiver operating characteristic (ROC) analysis was utilized. 
The ROC analysis involved evaluating essential metrics, such 
as the area under the curve (AUC), sensitivity (%), specific-
ity (%), and cutoff point values. The cutoff point values were 
computed by minimizing the differences between sensitivity 
and specificity, leading to optimal discrimination between the 
2 groups. By employing these advanced statistical methods, 
we were able to thoroughly evaluate the data and gain valu-
able insights into the discriminative capability of the proposed 
model. Statistical analysis played a critical role in interpret-
ing the results and drawing meaningful conclusions from this 
study.

3. Results

3.1. Staging

In the staging phase, a total of 73 patients (23–70 years old) par-
ticipated, but 7 patients were excluded from the analysis due to 
poor quality of MRI images. Among the remaining participants, 
24 were diagnosed with benign meningioma, comprising 10 
females and 14 males. In addition, 42 patients were diagnosed 
with gliomas of different grades, including 16 females and 26 
males. Regarding the grading phase, 18 of the glioma patients 
were classified as low-grade (grades I and II). Specifically, 9 
patients had low-grade glioma, one had large B-cell lymphoma, 
4 had astrocytoma (WHO Grade II), and 4 had choroid plexus 
papilloma (WHO Grade I). On the other hand, 24 patients were 
classified as having high-grade glioma, including 3 patients with 
glioblastoma (WHO Grade IV), 9 patients with glioblastoma, 2 
patients with high-grade glioma with anaplastic astrocytoma, 
and 10 patients with anaplastic astrocytoma (WHO Grade III). 
These findings provide valuable insights into the distribution of 
different tumor types and grades among participants, establish-
ing a strong foundation for further analysis and interpretation 
of the data.

The ADC and gamma distribution model parameters are 
listed in Table 1. As anticipated, the ADC values for benign 
tumors were higher than those for malignant tumors across all b 
values. Additionally, parameters κ, ƒ2, and ƒ3 were found to be 

higher in meningioma’s compared to gliomas, while parameter 
ƒ1 was higher in gliomas than in meningiomas.

ROC curve analysis was performed to further assess the per-
formance of the model in differentiating between gliomas and 
meningiomas. The results, shown in Table 2, revealed that at 
b value of 1500 and 2000, the ADC values were significantly 
lower in gliomas than in meningiomas (P < .001), and the κ 
parameter was also significantly lower in gliomas with b value 
of 2000 (P < .001). Moreover, at b value of 1500 and 2000, 
fraction ƒ1 was significantly higher in gliomas (P < .001), while 
fraction ƒ2 showed significantly higher values in meningiomas 
(P < .001) at b value of 1500 and 2000. Furthermore, fraction 
ƒ3 exhibited higher values in meningiomas at b value of 1500 
and 2000 (P < .001).

The AUC values obtained from ROC curve analysis provided 
insights into the discriminative power of the model. At a b-value 
of 2000, AUC values of 0.895, 0.812, 0.891, 0.876, and 0.845 
were achieved for ƒ1, ƒ2, ADC, and κ, respectively, for differ-
entiating gliomas from meningiomas. At a b-value of 2000, the 
AUC was 0.891 for fraction ƒ3. Notably, the Ɵ parameter did 
not show significant differences across all b value and had con-
sistent values (P > .1).

3.2. Grading

The results of the grading analysis considering different b values 
are presented in Table 3. For all b value, fractions ƒ11, were 
found to be higher in low-grade glioma, while parameters κ and 
ADC, were ƒ12, and ƒ13 higher in high-grade glioma.

The ROC curve analysis, summarized in Table 4, demon-
strated the effectiveness of using b value 1500 and 2000 in dis-
tinguishing between high-grade and low-grade tumors based 
on fractions ƒ11 < 0.3, ƒ12 < 0.5, and ƒ13 < 0.8 (P < .001). 
Additionally, in the ROC analysis using b-value 1500, the AUC 
was 0.840 for ƒ11 < 0.3 (P < .001) and 0.825 for ƒ13 < 0.8 
(P < .001). Moreover, the AUC was significantly higher at 
b-value 2000 for ƒ12 < 0.5 (0.870), P < .001.

4. Discussion
The primary objective of this study was to assess the effective-
ness of the gamma distribution model for grading and staging 
brain tumors. Our results demonstrated the model’s ability to 
distinguish between benign and malignant tumors. Furthermore, 
it exhibited a satisfactory performance in grading malignant 
tumors based on their malignancy levels. Our findings revealed a 
decrease in the average signal intensity with increasing b-values, 
accompanied by a reduction in the average κ and ADC parame-
ters. It is noteworthy that meningioma tumors consistently dis-
played higher averages of ADC, κ, ƒ2, and ƒ3 across all b-value 
than glioma tumors. In line with Svolos et al’s findings, glioma 
tumors exhibited lower ADC values, with a stronger association 
between tumor cellularity and ADC, than meningioma tumors.[9] 
These findings align with previous studies, such as You et al’s 

Table 1

Statistical results for the gamma model parameters and ADC by different b_value in meningioma and glioma (staging step).

Parameters

b = 500(s/mm2) b = 1000(s/mm2) b = 1500(s/mm2) b = 2000(s/mm2)

Meningioma Glioma Meningioma Glioma Meningioma Glioma Meningioma Glioma

ADC (×10‐4 mm2/s) 6.2 ± 2.8 4.3 ± 2.6 7.4 ± 2.7 5.1 ± 2.6 6.3 ± 2.4 4.2 ± 2.5 6.2 ± 2.3 3.1 ± 3.0
Κ .0503 ± .021 .0379 ± .019 .0575 ± .024 .0400 ± .04 .0558 ± .024 .0397 ± .022 .0623 ± .021 .0394 ± .038
Θ
(P > .1)

74.55 ± 6.2 74.54 ± 5.1 74.55 ± 5.3 74.54 ± 5.4 74.55 ± 6.1 74.54 ± 4.8 74.55 ± 5.5 74.54 ± 6.1

ƒ
1
 (%) 82.79 ± 3.4 84.54 ± 3.06 81.15 ± 6.5 85.98 ± 2.8 83.39 ± 2.3 85.68 ± 1.9 82.38 ± 6.1 87.91 ± 3.5

ƒ
2
 (%) 8.25 ± 1.8 7.16 ± 1.8 9.39 ± .9 6.81 ± 1.7 10.21 ± 1.9 7.73 ± 1.4 10.79 ± 2.5 8.72 ± .9

ƒ
3
 (%) 9.15 ± 1.7 8.19 ± 1.2 6.4 ± 2.1 6.56 ± 1.9 6.37 ± 0.9 5.03 ± 1.2 6.34 ± 1.3 4.26 ± 1.2
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report, which also observed decreased signal intensity and aver-
age values of κ and ADC parameters with higher b values.[2] 
Meyer et al similarly noted that ADC values can reflect tumor 

cellularity and microstructure, particularly in meningiomas and 
malignant tumors, where higher cellularity and larger nuclei lead 
to increased diffusion restriction and lower ADC values.[10]

Table 2

ROC curve analysis of gamma distribution model parameters with different b values for meningioma and glioma.

ROC curve analysis AUC Standard error P-value Cutoff value Sensitivity (%) Specificity (%)

b_value, 500
s/mm2

ADC 0.728 0.063 .002 0.000470143 70% 62%
κ 0.672 0.068 .02 0.0412 62% 63%
ƒ

1
0.733 0.072 .02 82.9 75% 63%

ƒ
2

0.671 0.071 .002 8.19 63% 63%
ƒ

3
0.699 0.074 .007 8.21 75% 61%

b_value, 1000
s/mm2

ADC 0.706 0.065 .004 0.000523615 69% 62%
κ 0.724 0.074 .003 0.537 72% 77%
ƒ

1
0.817 0.073 .001 83.11 79% 72%

ƒ
2

0.750 0.037 .001 8.24 79% 63%
ƒ

3
0.720 0.069 .003 7.3 62% 56%

b_value, 1500
s/mm2

ADC 0.782 0.066 <.001 0.000469 75% 82%
κ 0.713 0.065 .004 0.046 66% 70%
ƒ

1
0.864 0.063 .002 83.96 83% 68%

ƒ
2

0.777 0.043 <.001 8.76 88% 67%
ƒ

3
0.810 0.054 <.001 5.96 75% 83%

b_value, 2000
s/mm2

ADC 0.876 0.046 <.001 0.000362 75% 73%
κ 0.845 0.051 <.001 0.0504 75% 89%
ƒ

1
0.895 0.059 <.001 85.81 95% 70%

ƒ
2

0.812 0.056 <.001 9.14 89% 76%
ƒ

3
0.891 0.042 <.001 4.85 83% 80%

Table 3

Statistical analysis of gamma distribution model and ADC with different b_value to differentiate between high-grade and low-grade 
glioma.

Types fractions & parameters

b = 500 b = 1000 b = 1500 b = 2000

Low grade High grade Low grade High grade Low grade High grade Low grade High grade

ADC
(×10-4 mm2/s)

3.7 ± 2.8 5.2 ± 3.2 1.3 ± 4.7 5.3 ± 2.4 3.1 ± 2.8 5.4 ± 2.9 2.3 ± 3.0 4.2 ± 3.1

κ 0.010 ± 0.009 0.018 ± 0.01 0.03 ± 0.01 0.04 ± 0.02 0.03 ± 0.03 0.06 ± 0.04 0.04 ± 0.05 0.08 ± 0.05
ƒ

11
 (%) 89.43 ± 0.8 87.98 ± 1.4 88.62 ± 0.9 86.56 ± 1.05 88.0 ± 1.4 85.0 ± 1.6 87.61 ± 2.3 84.76 ± 2.3

ƒ
12

 (%) 93.57 ± 0.5 94.03 ± 0.4 93.09 ± 0.7 93.81 ± 0.06 92.16 ± 1.3 93.68 ± 1.04 91.56 ± 1.9 93.4 ± 1.6
ƒ

13
 (%) 98.13 ± 0.5 97.71 ± 0.6 97.35 ± 0.7 98.01 ± 0.6 97.14 ± 0.7 98.01 ± 0.4 96.79 ± 1.04 98.91 ± 0.7

Table 4

Roc curve analysis of gamma distribution model parameters with different values of b to detect high-grade and low-grade tumors.

ROC curve analysis AUC Standard error P-value Cutoff value Sensitivity (%) Specificity (%)

b_value, 500
s/mm2

ADC (×10‐4 mm2/s) 0.685 0.08 .04 0.425 61% 68%
κ 0.682 0.08 .04 0.053 89% 46%

ƒ
11

 (%) 0.738 0.08 .009 89.16% 75% 67%
ƒ

12
 (%) 0.729 0.07 .01 93.85% 62% 67%

ƒ
13

 (%) 0.712 0.08 .02 98.03% 66% 61%
b_value, 1000
s/mm2

ADC (×10-4mm2/s) 0.713 0.08 .02 0.4018 67% 75%
κ 0.727 0.08 .01 0.0339 67% 63%

ƒ
11

 (%) 0.780 0.07 .002 88.39% 70% 78%
ƒ

12
 (%) 0.748 0.08 .007 93.38% 83% 63%

ƒ
13

 (%) 0.745 0.07 .007 97.60% 75% 50%
b_value, 1500
s/mm2

ADC (×10-4mm2/s) 0.727 0.08 .01 0.3541 72% 83%
κ 0.786 0.07 .002 0.0343 72% 67%

ƒ
11

 (%) 0.840 0.06 <.001 87.37% 83% 72%
ƒ

12
 (%) 0.859 0.06 <.001 93.21% 87% 78%

ƒ
13

 (%) 0.825 0.06 <.001 97.73% 72% 73%
b_value, 2000
s/mm2

ADC (×10‐4 mm2/s) 0.833 0.06 <.001 0.2138 83% 75%
κ 0.829 0.06 <.001 0.0427 78% 75%

ƒ
11

 (%) 0.815 0.06 <.001 87.19% 83% 73%
ƒ

12
 (%) 0.870 0.06 <.001 93.17% 92% 72%

ƒ
13

 (%) 0.812 0.06 <.001 97.73% 71% 73%
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The κ parameter serves as an index for assessing microstruc-
tural complexities in restricted water diffusion, indicating devi-
ations from a normal distribution.[11] In our study, the mean κ 
parameter values were consistently higher in meningiomas than 
in gliomas at all b-value (P < .001). This discrepancy may be 
attributed to the less restricted mobility of water molecules in 
meningioma tumors, resulting in higher ADC values and aver-
age κ values. Conversely, glioma tumors exhibit greater water 
molecule limitations, leading to lower ADC values and κ param-
eter averages.

The frequencies of ƒ1 and ƒ2 in gliomas and meningiomas 
vary according to the histological structure of the different 
tumors. Typically, gliomas have higher ƒ1 and lower ƒ2, whereas 
meningiomas exhibit lower ƒ1 and higher ƒ2. This distinction 
can be attributed to the benign nature of meningiomas, which 
are characterized by higher tissue cell density but rare necrotic 
areas.[12] Reciprocally, glioma tumors not only display higher 
cell density than normal brain tissue but also contain necrotic 
regions with pronounced diffusion limitations. Our study cor-
roborates these findings, indicating that, considering the κ and 
ADC parameters, ƒ1 is significantly higher in gliomas (P < .001). 
Ƒ1 was found to be the most effective parameter for distinguish-
ing between meningioma and glioma using b = 2000 s/mm2 for 
diagnostic purposes (P < .001).

In biological tissues, water diffusion is influenced by the ratio 
of extracellular to intracellular space, reflected by ƒ2. Owing 
to increased extracellular diffusion, meningiomas tend to have 
higher ƒ2 values. Conversely, gliomas primarily encompassed 
hypercellularity areas, resulting in reduced extracellular space 
and lower water diffusion (P < .001). When evaluating tissue 
perfusion using the ƒ3 parameter (Frac > 0.3 × 10‐4 mm2/s), 
tumors resembling meningiomas exhibited superior tissue per-
fusion and consequently higher ƒ3 values. Contrarily, gliomas 

demonstrate reduced perfusion because of their tissue structure. 
Our study confirmed this hypothesis, with gliomas displaying 
lower ƒ3 values than meningiomas. As the b value increased 
from 0 to 2000 s to mm2, the differentiation between meningi-
oma and glioma became more pronounced (P < .001), consis-
tent with the findings of Huang et al, highlighting the highly 
vascular nature of meningiomas and their lack of a blood–brain 
barrier, resulting in enhanced perfusion compared to gliomas.[13]

The Ɵ parameter in the gamma distribution model can sig-
nify tissue heterogeneity.[8] Although our hypothesis anticipated 
higher Ɵ parameter values in glioma tumors owing to their 
necrotic areas and increased heterogeneity compared to menin-
giomas, no significant difference was observed in utilizing this 
parameter to distinguish between the 2 tumor types. The val-
ues remained consistent across nearly all b-values (P > .1). This 
aligns with the findings of Tagao et al, indicating that the Ɵ 
parameter is ineffective in distinguishing between lymphomas 
and gliomas, potentially requiring a larger sample size for more 
conclusive results.[8]

As shown in Figure 3, when distinguishing between meningi-
oma and glioma, ROC curve analysis revealed that the optimal 
performance was achieved at b = 2000 s/mm2. Both ADC and 
κ demonstrated comparable sensitivity at this level and effec-
tively differentiated between the 2 tumor types. No preference 
was observed between ADC and κ. However, the ƒ1 fraction 
exhibited the best performance, boasting the highest sensitiv-
ity among all parameters. This underscores its reliability as a 
distinguishing parameter for meningioma and glioma. The  
second-best performance was attributed to ƒ2 and ƒ3, suggesting 
that these parameters, along with ƒ1, may provide more accu-
rate differentiation between glioma and meningioma (P < .001).

In the context of glioma grading, it is essential to consider 
factors such as cellularity and vascularity, which significantly 

Figure 3.  Receiver operating characteristic (ROC) curves for detection between meningioma and glioma with different b value. (A) ƒ1, (B) ƒ2, and (C) ƒ3.
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affect tumor characterization. High-grade gliomas are charac-
terized by restricted diffusion areas on DWI images, primar-
ily attributed to hypercellularity and prominent angiogenesis. 
Contrariwise, low-grade gliomas exhibit moderate hypercel-
lularity and a slower growth rate, typically lacking necrotic 
regions, mitosis, and pronounced hypervascularity.[14] In this 
phase of our study, we meticulously selected ROIs encom-
passing all enhancing lesions present on a single slice with 
the largest area on T1w post-contrast imaging. Our findings 
consistently demonstrated that high-grade gliomas exhibited 
notably higher ADC values than their low-grade counterparts 
did. This observation is consistent with the work of Sugahara 
et al, who reported elevated ADC values in high-grade glio-
mas relative to their low-grade counterparts.[15] Server et al’s 
investigation sheds light on the potential of ADC as a differen-
tiating factor, particularly in distinguishing metastatic tumors 
from high-grade gliomas. However, it is important to note 
that ADC faces challenges in distinguishing vasogenic edema 
induced by malignant tumors from tumor infiltration, as 
exemplified by conditions such as meningioma.[16] Tropine et 
al underscored the impact of peritumoral edema and increased 
cellularity on ADC measurements, emphasizing the need for 
cautious interpretation when assessing these metrics.[17] Our 
study extended these insights by revealing a consistent ele-
vation in κ parameter within high-grade gliomas relative to 
their low-grade counterparts. The relationship between ADC 
values and tumor characteristics extends beyond gliomas and 
offers valuable insights into broader tumor biology. Togao et 
al’s research has highlighted the critical influence of the extra-
cellular space on ADC measurements. Specifically, their study 
revealed that lymphomas characterized by a smaller extracel-
lular space tend to exhibit lower ADC values due to a higher 
nucleus-to-cytoplasm ratio. In contrast, gliomas, characterized 
by prominent vasogenic edema, manifest higher ADC values, 
attributable to a larger extracellular space.[8] The κ parameter, 

which is recognized as a reliable indicator of tissue micro-
structure, is notably influenced by the presence of peritumoral 
edema surrounding the tumor.[8] Given the pronounced edem-
atous regions associated with high-grade gliomas, the obser-
vation of higher κ parameter values in this context aligns 
with our expectation. Additionally, our investigation revealed 
a distinctive pattern wherein high-grade gliomas consistently 
displayed lower ƒ11 values across all b values compared to 
low-grade gliomas (P < .001). This finding is of particular 
significance as it underscores the potential diagnostic utility 
of ƒ11. Interestingly, we found that ƒ11, particularly when 
evaluated at b = 1500 s/mm², exhibited superior diagnostic 
performance compared with conventional ADC in distinguish-
ing between high-grade and low-grade gliomas. In addition, 
in our study, a clear distinction emerged between high- and 
low-grade gliomas. High-grade glioma tumors consistently 
exhibited significantly larger values for both ƒ12 and ƒ13 
compared to their low-grade counterparts (P < .001). These 
findings align seamlessly with prior research, providing further 
validation for the utility of these parameters in glioma charac-
terization.[8] Among the evaluated parameters, ƒ12 emerged as 
the most promising diagnostic indicator. Its diagnostic power 
surpassed that of ADC and κ, as evidenced by the consistently 
higher AUC across all examined b values. This indicates ƒ12’s 
potential to serve as a reliable discriminator between high- and 
low-grade gliomas. However, it is noteworthy that at a higher 
b value, no statistically significant diagnostic disparity was 
observed between ADC and κ. This was substantiated by the 
comparable AUC values at b = 2000 s/mm². In contrast, ƒ12 
demonstrated exceptional diagnostic potential at this specific 
b-value, with the highest AUC among all the examined param-
eters. Additionally, ƒ13 exhibited its highest diagnostic efficacy 
at b = 1500 s/mm² compared to other b value (Fig. 4).

These observations collectively emphasize the nuanced 
interplay between diffusion-related parameters and their 

Figure 4.  Receiver operating characteristic (ROC) curves for detection between meningioma and glioma with different b_value. (A) ƒ11, (B) ƒ12, (C) ƒ13.
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diagnostic utility for differentiating glioma grades. While ƒ12 
shows remarkable promise, it is important to acknowledge the 
complementary roles that ADC, κ, ƒ11, and ƒ13 play in provid-
ing a comprehensive assessment of glioma characteristics.

However, our study, although informative, is not without 
limitations that warrant consideration. First, our patient selec-
tion criteria focused on individuals who had not undergone any 
prior diagnostic or treatment interventions for brain tumors. 
This stringent criterion, while ensuring a specific patient pop-
ulation, limits access to a larger and potentially more diverse 
cohort. Future studies may benefit from broader patient inclu-
sion criteria to enhance the generalizability of the findings. 
Second, the inability to repeat the imaging protocol in cases of 
errors or suboptimal image quality introduced inherent variabil-
ity into our data collection process. This limitation may have 
influenced the precision and reliability of our results. In future 
studies, implementing mechanisms for protocol repetition or 
refining imaging procedures could mitigate this issue. Third, we 
did not explore normal brain tissue characteristics or fit the nor-
mal tissue data to the gamma distribution model. Incorporating 
an analysis of normal brain tissue and comparing it with data 
derived from benign and malignant brain tumors could provide 
valuable insights into the distinctive features of tumor tissues. 
Future investigations should consider this aspect to enhance our 
understanding of brain tumor imaging. Moreover, the relatively 
low b value used in our MRI protocol represents another lim-
itation. Increasing the range of b values in future studies could 
lead to more accurate and nuanced results and further enhance 
the diagnostic potential of diffusion-based parameters. Finally, 
our study employed an MRI scanner with a lower magnetic 
field strength. The utilization of a 3T MRI or a higher-powered 
scanner could offer more accurate and comprehensive imaging, 
potentially improving the study’s overall robustness and the 
quality of the obtained data.

5. Conclusion
The findings of our study highlight the potential of using a 
gamma distribution model with DWI based on multiple b-values 
for grading and staging brain tumors. Its potential integration 
into routine clinical practice could advance neurooncology and 
improve patient outcomes through more accurate diagnosis and 
treatment planning.
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