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Abstract: Using microRNAs (miRNAs) as potential circulating biomarkers in diagnosing and treating
glioblastoma (GBM) has garnered a lot of scientific and clinical impetus in the past decade. As an
aggressive primary brain tumor, GBM poses challenges in early detection and effective treatment with
significant current diagnostic constraints and limited therapeutic strategies. MiRNA dysregulation is
present in GBM. The intricate involvement of miRNAs in altering cell proliferation, invasion, and im-
mune escape makes them prospective candidates for identifying and monitoring GBM diagnosis and
response to treatment. These miRNAs could play a dual role, acting as both potential diagnostic mark-
ers and targets for therapy. By modulating the activity of various oncogenic and tumor-suppressive
proteins, miRNAs create opportunities for precision medicine and targeted therapies in GBM. This
review centers on the critical role and function of circulating miRNA biomarkers in GBM diagnosis
and treatment. It highlights their significance in providing insights into disease progression, aiding
in early diagnosis, and potential use as targets for novel therapeutic interventions. Ultimately, the
study of miRNA would contribute to improving patient outcomes in the challenging landscape of
GBM management.

Keywords: glioblastoma; miRNA; early detection; liquid biopsy; circulating biomarkers; precision
medicine

1. Introduction

Glioblastomas (GBMs) are the most common and devastating primary malignant
tumors of the central nervous system (CNS) in adults and represent 14.2% of all CNS
tumors and 50.1% of all malignant brain tumors [1]. The annual incidence rate of GBM is
3.26 cases per 100,000 population, with a median overall survival of 15 months and a 5-year
survival rate of 6.9% [1].

GBM is diagnosed through magnetic resonance imaging (MRI) and tissue biopsy [2].
The gold standard for GBM diagnosis is the histopathological analysis and molecular profil-
ing of the biopsied or resected tissue [2]. Both methods for diagnosis and monitoring have
significant limitations. For instance, MRI has limitations in its ability to differentiate GBM
from other pathological processes (e.g., low-grade gliomas, primary CNS lymphoma, brain
abscess, etc.), and it can be challenging to distinguish tumor progression from treatment-
related lesions (e.g., pseudoprogression). This is largely attributed to multiple variables
affecting the resolution of the image, such as magnetic field distribution inhomogeneity, the
spectral resolution of clinical scanners, limited imaging representation of tumor metabolism,
and changes in signal intensity based on the location of the tumors [3,4]. Similarly, tissue
biopsy is associated with relatively high risks of brain surgery, the known limited represen-
tation of tumor heterogeneity, and the inability of real-time tumor evaluation [5]. Moreover,
the financial, emotional, and physical toll of repeating highly invasive surgical procedures
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on patients and the healthcare system also poses a challenge to patients’ overall health and
well-being.

Importance of Liquid Biopsies for GBM Detection

Maximal safe resection is considered a cornerstone of GBM management [6,7]. This
improves patient prognosis and facilitates histopathological and molecular analysis [7,8].
Nevertheless, surgical resection is often precluded by the patient’s general condition, tumor
location, or multifocality of the lesion [9]. In those cases, a needle biopsy may be an
alternative [10]. Although brain tissue biopsy, either through a craniotomy or a needle
biopsy, is considered a safe procedure, it carries the potential risk of severe complications
that sometimes have to be addressed surgically or may be life-threatening. Moreover, these
complications can not only make diagnosis difficult but also complicate patient admissions,
lengthen follow-up times, and delay or preclude adjuvant therapy [11]. For example, the
potential complication rate for stereotactic biopsy ranges from 7.36% to 28%, with reported
mortality ranging from 0% to 3.3% in the literature [10,12–16]. In a retrospective analysis
of 1500 brain biopsies, Riche et al. reported that symptomatic complications increased the
length of hospitalization and the costs of care in 86.7% of patients to an average extra cost
of $35,702 [12].

Given these constraints, liquid biopsy is an emerging diagnostic method capable of
detecting brain tumors in cerebrospinal fluid (CSF) or plasma/serum [17]. Circulating
biomarkers can be used as a diagnostic tool, decreasing the need for risky brain biopsies
and enabling clinicians to diagnose and monitor tumor progression [17].

These span a spectrum of molecules such as circulating tumor DNA (ctDNA), miRNAs,
circulating tumor cells (CTCs), and extracellular vesicles (EVs), offering quantitative and
qualitative insights into tumor dynamics [18]. Liquid biopsies have demonstrated their
utility in providing prognostic information and treatment guidance for various solid malig-
nancies other than GBM [19–22]. Recent studies have shown that ctDNA was detectable in
>75% of patients with advanced pancreatic, ovarian, gastroesophageal, colorectal, bladder
breast, melanoma, hepatocellular, and head and neck cancers [22]. Liquid biopsy has
also been studied in nervous system sarcomas, such as malignant peripheral nerve sheath
tumors or chordomas [23,24]. In gliomas, liquid biopsy’s specificity for biomarker detection
in blood is noteworthy, but its sensitivity remains limited [25]. For example, in a recent
study, less than 10% of patients with gliomas harbored detectable ctDNA in plasma [22].
While this approach has shown promise, the inherent nature of the blood–brain barrier
(BBB) poses significant challenges in detecting ctDNA in circulating blood. For instance,
the BBB comprises tightly locked cells that are highly impermeable to foreign substances,
essentially shielding the brain from harmful germs, foreign agents, and toxins that could
potentially cause damage to the brain. This impermeable nature of the BBB also creates
an isolation between the tumor contents and the bloodstream, thus making detection of
circulating biomarkers challenging. Theoretically, GBM’s pro-angiogenic and inflammatory
microenvironment disrupts the BBB by decreasing tight junctions, leading to tumoral com-
ponents being shed into the CSF and the bloodstream [17]. While this approach has shown
promise, the inherent nature of the BBB poses significant challenges in the detection of these
valuable biomarkers in circulating blood. To overcome these challenges, more sensitive
detection methods are being explored coupled with techniques such as Magnetic Resonance
Imaging-Guided Focused Ultrasound (MRgFUS), which allows temporary, reversible open-
ing of the BBB, allowing more tumor contents to shed into circulating blood. The use of such
reversible BBB opening using MRgFUS may increase circulating biomarkers to clinically
detectable concentrations, allowing clinical translation of liquid biopsy approaches [26].
Alternatively, the study of biomarkers in CSF instead of blood and plasma may increase
the yield of liquid biopsy for brain tumors [22,27,28], especially with novel sequencing
strategies based on aneuploidy and the copy number variation being developed [25,29].

Currently, there are no effective interventions for screening CNS tumors apart from
imaging techniques such as MRI, CT, PET/SPECT, or surgical biopsies [30]. These methods
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have limitations in terms of specificity, cost, and invasiveness. Therefore, a significant
unmet need exists for developing safer and less-invasive screening methods for CNS
tumors. The detection of GBM circulating biomarkers holds promise for improving clinical
decision-making, early diagnosis, precise disease progression monitoring, and timely
treatment response evaluation [31]. Figure 1 depicts the rationale of the liquid biopsy
approach to facilitate the detection of circulating biomarkers through CSF and blood.

Life 2024, 14, x FOR PEER REVIEW 3 of 19 
 

 

Currently, there are no effective interventions for screening CNS tumors apart from 
imaging techniques such as MRI, CT, PET/SPECT, or surgical biopsies [30]. These meth-
ods have limitations in terms of specificity, cost, and invasiveness. Therefore, a significant 
unmet need exists for developing safer and less-invasive screening methods for CNS tu-
mors. The detection of GBM circulating biomarkers holds promise for improving clinical 
decision-making, early diagnosis, precise disease progression monitoring, and timely 
treatment response evaluation [31]. Figure 1 depicts the rationale of the liquid biopsy ap-
proach to facilitate the detection of circulating biomarkers through CSF and blood. 

 
Figure 1. Liquid biopsies present a new diagnostic paradigm enabling less-invasive detection of 
circulating tumor biomarkers in blood and CSF of patients. 

2. Circulating miRNAs: Definition and Their Role as Biomarkers in  
Neurological Diseases 

miRNAs are small noncoding RNA molecules of ~22 bp average size that regulate 
gene expression post-transcriptionally by interacting with messenger RNA targets [32]. 
They are crucial in controlling cellular processes like proliferation, differentiation, and 
apoptosis. Over the last decade, circulating miRNA found in patients’ CSF, blood, and 
serum have emerged as promising biomarkers for diagnosing many neurological dis-
eases. For example, some studies have noticed differences in specific miRNAs in the se-
rum of individuals with mild cognitive impairment and Alzheimer’s disease (AD) as com-
pared to control groups. Similarly, the potential diagnostic utility of circulating miRNAs 
in CSF or the circulation for multiple sclerosis (MS) has been the subject of reports by 
numerous research groups [33–36]. 

2.1. Circulating miRNAs and Their Role in Gliomas 
These miRNAs have been implicated in both tumor promotion and suppression in 

gliomas. For instance, miR-155 may stimulate cell growth and suppress cell senescence in 
gliomas [37]. Conversely, miR-181 and miR-410 have exhibited tumor suppressive roles 
in gliomas by reducing tumor growth and invasion [38]. These miRNAs can be found 
circulating in bodily fluids like blood, urine, and CSF, offering potential as diagnostic bi-
omarkers for high-grade gliomas [38]. The critical differences between ctDNA and 

Figure 1. Liquid biopsies present a new diagnostic paradigm enabling less-invasive detection of
circulating tumor biomarkers in blood and CSF of patients.

2. Circulating miRNAs: Definition and Their Role as Biomarkers in Neurological Diseases

miRNAs are small noncoding RNA molecules of ~22 bp average size that regulate
gene expression post-transcriptionally by interacting with messenger RNA targets [32].
They are crucial in controlling cellular processes like proliferation, differentiation, and
apoptosis. Over the last decade, circulating miRNA found in patients’ CSF, blood, and
serum have emerged as promising biomarkers for diagnosing many neurological diseases.
For example, some studies have noticed differences in specific miRNAs in the serum of
individuals with mild cognitive impairment and Alzheimer’s disease (AD) as compared
to control groups. Similarly, the potential diagnostic utility of circulating miRNAs in CSF
or the circulation for multiple sclerosis (MS) has been the subject of reports by numerous
research groups [33–36].

2.1. Circulating miRNAs and Their Role in Gliomas

These miRNAs have been implicated in both tumor promotion and suppression in
gliomas. For instance, miR-155 may stimulate cell growth and suppress cell senescence in
gliomas [37]. Conversely, miR-181 and miR-410 have exhibited tumor suppressive roles
in gliomas by reducing tumor growth and invasion [38]. These miRNAs can be found
circulating in bodily fluids like blood, urine, and CSF, offering potential as diagnostic
biomarkers for high-grade gliomas [38]. The critical differences between ctDNA and



Life 2024, 14, 1312 4 of 19

miRNA as biomarkers lie in their origin. ctDNA is believed to be released passively by
dying tumor cells, while miRNA may be actively released by the cancer cells depending on
differential cellular activities or status. Therefore, although ctDNA may be a more stable
biomarker for early detection and less influenced by biological processes, miRNA may be
more effective in depicting the biological makeup of the cancer, including functional state,
aggressiveness, or response to therapy [39,40].

Specific miRNAs play pivotal roles in the pathogenesis of GBM, impacting tumor
behavior and treatment response. Several miRNAs act as tumor suppressors in GBM. miR-
181a and miR-181b, when reduced in expression, correlate with increased tumor malignancy.
These molecules inhibit cell proliferation and induce apoptosis, representing potential
therapeutic targets. Likewise, reduced miR-34a levels, attributed to epigenetic factors
and mutations, affect various oncogenes, hindering cancer progression and invasiveness.
When underexpressed, miR-146b-5p, miR-7, miR-124, miR-137, and miR-101 contribute
to unregulated mitosis and tumor growth. On the other hand, certain miRNAs, like
miR-21, miR-10b, miR-93, miR-196, miR-221, miR-222, and miR-182, act as oncogenic
drivers in GBM [41,42]. They facilitate cell proliferation, migration, invasion, and treatment
resistance, directly impacting cancer behavior. For instance, miR-21 suppresses genes
crucial for apoptosis, such as TIMP3 and RECK genes, while miR-93 influences autophagic
activity and regulates neo-angiogenesis [43–45].

Understanding the roles of these miRNAs in GBM is crucial for diagnostic and thera-
peutic advancements.

2.2. Role of miRNA in Tumor Suppression

The suppressor miRNAs, particularly miR-181a, miR-181b, miR-34a, miR-146b-5p,
miR-7, miR-124, miR-137, miR-101, and miR-128, have been associated with significant
roles in glioma development [46,47].

The reduced activity of miR-181a and miR-181b correlates with increased malignancy
in glioma cells because they promote increased cell proliferation while suppressing apopto-
sis. Conversely, overexpression of these miRNAs inhibits proliferation, induces apoptosis,
and limits cell invasion, making them potential suppressors in glioma [47,48].

Research has also shown that reduced levels of miR-34a regulate oncogenes like C-
MET and NOTCH [49]. While the precise mechanism causing the dysregulation of miR-34a
in human cancer remains incompletely understood, substantial evidence indicates the
involvement of an epigenetic process. Transcriptional silencing through CpG methylation
emerges as a significant mechanism leading to the deactivation of tumor suppressor genes.
Comparable to genomic loss, inactivation due to CpG methylation can facilitate clonal
growth, providing an advantage in disease progression. Hypermethylation occurring in
the CpG islands within the miR-34a gene promoter region has been observed across a
spectrum of solid neoplasms [50]. This hypermethylation blocks cell cycle progression,
survival, and invasiveness. miR-34a inhibits Notch signaling, hindering angiogenesis and
proliferation [49,51,52].

Similarly, lower expression of miR-146b-5p in gliomas inhibits EGFR and the Pi3K/AKT
pathway, which is potentially valuable for treating invasive cancers. Its regulation impacts
MMP16, affecting tumor invasion, migration, and blood vessel formation [9,53,54].

With respect to miR-7, miR-124, miR-137, miR-101, and miR-128, each of these miRNAs
is associated with inhibiting proliferation, inducing apoptosis, and regulating genes associ-
ated with glioma cell growth and invasion [55,56]. For instance, miR-124 and miR-137 lower
CDK6 expression, thereby limiting GBM cell proliferation, while miR-101 downregulates
EZH2, impacting cell migration and vascularization [57].

These miRNAs, functioning as suppressors, may impact crucial glioma development
and progression pathways.
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2.3. Oncogenic miRNAs in Glioma: A Synopsis of Key Regulators

Several studies report the specific role of some miRNAs that are overexpressed or are
found to contribute significantly to the control of the tumor’s metabolism and oncogenic
properties. A study by Labib et al. from 2022 revealed that miR-21, highly expressed in
various cancers, including glioma, targets crucial genes like PDCD4, MTAP, and SOX5.
qPCR analysis was performed on ctDNA isolated from blood samples collected from
patients diagnosed with GBM and healthy patients [58]. The results revealed that the
average levels of miR-21 were considerably elevated in the GBM group compared to
healthy controls. Conversely, the average expression of miR-181 was reversed. A substantial
increase in expression was observed in the control group as opposed to participants with
GBM. Notably, miR-21 overexpression is inversely correlated with PDCD4 expression,
hindering apoptosis in glioma cells [9,58].

Another study by Sun L. et al. from 2011 reported that miR-10b is highly oncogenic in
GBM and influences targets like RhoC, uPAR, and HOXD10 [59]. Inhibition of miR-10b curbs
cell growth, invasion, angiogenesis, and boosts apoptosis by regulating BCL2L11, TFAP2C,
CDKN1A, and CDKN2A. A series of tests were conducted on GBM cell lines U87, LN229,
and U251, such as transwell cell invasion analysis, TaqMan® MicroRNA assay-based real-
time RT–PCR (Thermofischer Scientific, Carlsbad, CA, USA), and cell apoptosis rate and
cell cycle, which were analyzed on FACScan by flow cytometry. The results collectively
confirmed that miR-10b played an essential function in GBM cell metabolism, growth,
apoptosis, and invasion, indicating that miR-10b could be a potential miRNA biomarker
for GBM [9,59].

In a comprehensive study by Huang T. et al. from 2019, elevated miR-93 levels in
GBM were found to control cellular functions through targeting P21 [60]. A large panel
of GBM cell lines were analyzed in vitro and in vivo with qRT-PCR, immunoblotting,
immunofluorescence staining, glioma sphere formation assay, cell growth, and luciferase
reporter assays. This study highlighted the role of miR-93 in regulating the self-renewal of
GBM stem cells (GSCs) and the formation of GBM tumors. This was achieved by targeting
many important autophagy regulators, namely BECN1, ATG5, ATG4B, and SQSTM1 [60].
By reducing autophagic activity via ectopic expression of miR-93 or utilizing neural stem
cell (NSC) autophagy inhibitors or Chloroquine (CQ), the effectiveness of the commonly
used cytotoxic treatments temozolomide (TMZ) and IR radiation in suppressing tumors
was increased. The findings of this study indicated that the modulation of these genes
not only impacted autophagy but also influenced cell proliferation and the self-renewal
of GSCs. These experiments also revealed that the upregulation of miR-196 in GBM cells
correlates with reduced overall survival [9,60]. The role of miR-93 in autophagy regulation
highlights the potential for a combined treatment approach, wherein autophagy inhibition
is coupled with cytotoxic therapy administration [9,60].

Similarly, miR-221 and miR-222 are also increased in glioma. These regulate cell cycle,
proliferation, and apoptosis by targeting p27, p57, and the PUMA gene. Their increased
expression may hinder programmed cell death [9,61].

miR-182 overexpression escalates with the degree of tumor malignancy in glioma cells,
showing a substantial increase in GBM compared to normal brain tissues. This miRNA is
coded in the chromosome 7q32.1 region within the FRA7H site, and the MET gene is often
amplified in GBM cells [9,62].

Figure 2 summarizes the reported role played by miRNAs in GBM tumorigenesis and
treatment resistance.
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for GBM patients.

2.4. Circulating miRNA as Biomarkers for Diagnosis and Treatment of GBM

Circulating miRNAs are relatively stable and can be easily extracted, detected, and
quantified, making them valuable biomarkers. They can be susceptible to shedding in the
blood, plasma, or CSF when released from tumors via apoptosis, secretions, exocytosis,
or extracellular vesicles [63]. Detection of miRNA in blood, plasma, and CSF has gained
significant scientific interest due to its potential diagnostic value. While blood/plasma and
CSF contain circulating miRNAs, their concentration largely varies in the blood compared
to CSF [64]. In addition, systemic factors such as inflammation and other malignancies can
skew the miRNA profiles detectable in circulating blood.

On the contrary, CSF may harbor higher concentrations of miRNA due to lower dilu-
tion and localized secretion of miRNAs directly in CSF compared to circulating blood [63].
CSF sampling necessitates slightly more invasive techniques for collection via lumbar
puncture. However, this is a safe standard procedure employed in the work-up of many
neurological diseases. The utilization of miRNA panels from both CSF and blood presents
a promising alternative to tissue biopsies, obviating the need for surgical resection of tumor
samples solely for diagnostic purposes. Table 1 displays various studies that have discov-
ered possible biomarker miRNAs in the bloodstream and CSF of individuals with GBM.

Every miRNA has one or several known functions in epigenetics, cancer, or regulating
progression. miRNAs facilitate cellular adaptation to environmental conditions, enhancing
survival during hypoxia and cancer therapies like chemotherapy and radiation [65]. For
example, miR-21, typically elevated in GBM patients, may promote tumor development,
microvascular proliferation, and resistance to cell death [66–68].
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Table 1. Consolidated table showing circulating miRNAs in blood, plasma, and CSF, their respective
expression levels, specific roles in GBM pathogenesis, and their involvement in various cellular
processes and pathways associated with GBM progression [9,69,70].

miRNA Sample Type Expression in GBM Role in GBM Process/Pathway

miR-182 Blood Upregulated oncomiR
Pleiotropic effects on tumor cell
growth, invasion, self-renewal,

and angiogenesis [71]

miR-21 Blood Upregulated oncomiR Cell cycle, proliferation, and
apoptosis [66,67]

miR-146a Blood Downregulated Tumor
suppressor

Regulating cell proliferation and
differentiation by targeting

Notch1 [41]

miR-93
CSF, serum, and tissue

biopsy
Tissue biopsy

Upregulated oncomiR

Neo-angiogenesis,
anti-inflammatory, controls

cellular migration, proliferation,
invasion, cell cycle arrest, and
chemoresistance by targeting

P21 [60]

miR-10b CSF Upregulated oncomiR Growth and differentiation of
CSCs [59]

miR-196a Blood and plasma Upregulated oncomiR Proliferation and apoptosis [9]

miR-221/222 Blood and plasma upregulated oncomiR Cell cycle, proliferation, and
apoptosis [72]

miR-7 CSF, plasma,
and serum Downregulated Tumor

suppressor
Growth and differentiation of

CSCs [55]

miR-128 CSF, plasma, and
serum Downregulated Tumor

suppressor Proliferation and apoptosis [73]

miR-124/137 CSF, plasma, and
serum Downregulated Tumor

suppressor
Growth and differentiation of

CSCs [74]

miR-101 CSF, plasma, and
serum Downregulated Tumor

suppressor

Downregulates
invasion/proliferation,

apoptosis, and migration, by
targeting the transcription factor
Kruppel-like factor 6 (KLF6) [75]

miR-181 Blood Downregulated Tumor
suppressor Proliferation and apoptosis [47]

miR15b Blood and CSF Upregulated Tumor
suppressor Inducing cell cycle arrest [9]

miR-137 Serum Downregulated Tumor
suppressor

Growth and differentiation of
CSCs [76]

miR-34a Blood and plasma Downregulated Tumor
suppressor

Cell cycle, Proliferation, and
apoptosis [50]

Several additional miRNAs, including miR-10b, miR-106a-5p, miR-185, and miR-210,
are elevated in the sera of GBM patients and may be involved in tumor progression [25,65].
Within GBM, the expression levels of miRNAs miR-29, miR-127, miR-137, miR-197, miR-205
are reduced, and these miRNAs act as tumor suppressors [25,65]. miR-221, miR-222, miR-
223, and miR-125b-2 influence TMZ responsiveness, whereas miR-128 and miR-301a are
involved in GBM’s response to radiotherapy [65,72,77]. Compared to DNA, miRNAs exhibit
exceptional stability in blood due to their resistance to RNase degradation and can endure
a wide range of storage conditions, including intense pH levels and repeated freezing and
thawing [78,79]. miRNAs are found either as free molecules in serum or CSF or enclosed
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within lipid membranes called exosomes. Exosomes are extracellular membrane vesicles
(EVs) with a diameter between 30 and 150 nanometers. They transport specific molecules,
including DNA, RNA including miRNA, and proteins, to the recipient cell. Exosomal
miRNA loading occurs via lipid-mediated pathways due to the hydrophobic interactions
between the miRNA and the lipid membrane of the exosomes [80]. Exosomal miRNAs have
become potential biomarkers due to their stability under diverse conditions, such as storage
at varying temperatures and excellent cellular permeability [81]. Plasma is rich in EVs, at a
density of around 1010 EVs per milliliter [82]. Exosomes have been found to potentially
influence tumor development [25,83,84]. They carry a rich combination of RNA, miRNA,
proteins, and lipids that reflect their parent cell, remain stable in circulation, and preserve
their contents from enzyme breakdown. Moreover, they may traverse the BBB better than
other elements [25,85]. Osti et al. showed that glioma patients had higher total circulating
exosome concentrations than healthy controls [25,86]. Skog et al. demonstrated that glioma-
derived exosomes carried EGFRvIII mRNA in 7 of 25 GBM patients but were absent in
healthy individuals [25,87]. Patients had no detectable EGFRvIII two weeks after resection,
indicating a direct correlation with tumor burden. Exosomal-derived mRNA has also been
proposed to provide a more detailed definition of the genomic features of aggressive cancers
such as GBM [25] by mediating O6-methylguanine-DNA methyltransferase (MGMT) and
alkylpurine-DNA-N-glycosylase (APNG) which repair DNA damage leading to TMZ
resistance [88]. Other exosome components, such as noncoding RNA and proteins, could
also assist in diagnosis or prognosis [25].

Several reports have revealed the diagnostic importance of different miRNAs. Zhang
and colleagues discovered that serum miR-145-5p levels were markedly reduced in par-
ticipants with GBM compared to controls [89]. miR-145-5p has potential as a prospective
diagnostic marker for GBM, with an AUC of 0.89, sensitivity of 84.6%, and specificity of
78.0% in their report [89]. Roth et al. conducted a study that quantitatively examined
1158 mature miRNAs in 20 blood samples from GBM patients [90]. They observed that
miR-128 and miR-342-3p were significantly dysregulated in patients with GBM compared
to controls. Researchers utilized artificial intelligence algorithms to develop a miRNA
profile that achieved 79% sensitivity and 81% specificity in distinguishing blood samples
from patients with GBM and healthy participants [90].

When analyzing miRNAs in CSF, miR-15b, miR-21, and miR-1246 can potentially
become CSF biomarkers of gliomas. For instance, Baraniskin and colleagues found elevated
levels of miR-15b and miR-21 in the CSF of glioma patients when compared to healthy
controls [91]. Patients with glioma could be distinguished from both healthy participants
and those with primary central nervous system lymphoma with a 90% sensitivity and 100%
specificity [91]. Furthermore, a new study found that miR-1246 levels in the CSF of GBM
patients are higher than those of low-grade glioma patients [92]. Notably, the concentration
of miR-1246 in the CSF of GBM patients decreased after resection [92].

Several exosomal miRNAs may be prognostic biomarkers. A 2013 study found that
EVs from CSF in GBM patients had a much higher miR-21 level than healthy controls, with
an 87%, sensitivity, 93% specificity, and an AUC of 0.89 [93]. Santangelo et al. found an
AUC of 0.80 for a serum panel of exosomal/encapsulated miR-21, miR-222, and miR-124-3p
for GBM diagnosis [94]. In addition, patients with high-grade gliomas had significantly
lower miRNA expression after tumor excision. A separate study found that exosomes
from 75 GBM patients had higher miR-320 and miR-574-3p related to GBM diagnosis when
compared to healthy patients in the control group [95].

Histopathological classifications of gliomas may be linked to miRNA signatures. Only
three of nine cell-free miRNAs in plasma from 50 GBM patients and healthy controls were
significantly dysregulated, as reported in a study by Wang et al. In this study, Wang and
colleagues reported that abnormal plasma concentrations of miR-21, miR-128, and miR-
342-3p successfully identified biopsy-confirmed GBM individuals compared to healthy
controls [96]. For instance, miR-21 was substantially increased in GBM relative to the
control group, with an AUC value of 0.93, 90% sensitivity, and 100% specificity. miR-128
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and miR-342-3p were substantially reduced with an AUC of 1.00, 90% sensitivity, and 100%
specificity in the blood of GBM patients. These researchers also demonstrated an association
between miR-342-3p expression levels and the histopathologic classifications of gliomas.
Their PCR data showed a noteworthy distinction in the concentration of miR-342-3p among
grades 2, 3, and 4 (p < 0.008) as the plasma concentration of miR-342-3p demonstrated
a discernible decrease in patients with gliomas as tumor grades ascend [96]. In another
study, Yue et al. found that glioma patients’ serum miR-205 expression decreased with
pathological grade. Expression levels rose after tumor excision and fell after recurrence [97].
Lan et al. found that exosomal miR-301a was elevated in patients with high-grade glioma,
while tumor excision decreased it [98]. A 2019 meta-analysis of 47 papers from 20 journals,
totaling 2262 glioma patients and 1986 controls, found that cell-free miRNAs accurately
identified patients with histologically confirmed glioma in contrast to non-oncologic cohorts
with an AUC of 0.91, 83% sensitivity, and 87% specificity. Their sample collection occurred
either before or during the surgery. The cell-free miR-21 had the highest pooled AUC of
0.88. MiR-125 and miR-222 were thereafter less effective [99]. They showed again that if
the tumor returned, miR-21 expression rose. These findings suggest these miRNAs may be
used as non-invasive liquid biopsy biomarkers.

Treatment response surveillance could involve miRNAs. Seigal et al. discovered
higher miR-10b and miR-21 levels in bevacizumab-treated GBM patients’ serum [100].
These researchers also found that bevacizumab-treated patients’ tumor sizes were inversely
linked with miRNA expression. Monitoring circulating miRNAs may predict therapeutic
success because some miRNAs may be dysregulated and reflect the anticancer effect of
therapy [100].

GBM prognosis is connected to miRNA dysregulation. Xiao et al. reported that
plasma miR-182 expression decreases survival [71]. Zhang and colleagues observed that
miR-145-5p correlated with Karnofsky Performance Scale (KPS) scores, IDH1 mutation
status, radiation status, and tumor resection [89]. Wang et al. linked low serum miR-
485-3p levels to poor prognosis [101]. Lan et al. found a connection between exosomal
miR-301a and KPS [98]. Zhang et al. found dysregulated miRNAs in a patient’s serum
that may be predictive of survival: increases in miR-20a-5p, miR-106a-5p, and miR-222-
3p and decreases in miR-182 and miR-145-5p were substantially associated with shorter
2-year overall survival [102]. Likewise, they found a link between miR-20a-5p and miR-
17-5p levels and mortality [102]. Srinivasan et al. constructed a 10-miRNA profile pattern
to anticipate GBM survival and found that individuals with shorter or median survival
expressed more miR-17-5p, miR-20a, and miR-106 [103]. Contradictory reports may occur
from survival term definitions [104]. Yue et al. found that low miR-205 levels correlated
with lower KPS [97]. Higher serum miR-205 levels were associated with longer overall
survival [87,97]. These findings suggest that specific elevated or decreased miRNA levels
may predict GBM prognosis.

Pediatric high-grade gliomas (pHGGs) emit exosomes containing miRNA-1246 and
miRNA-1290, which may sustain stemness, cell proliferation, invasion, and chemoresis-
tance in various cancers [105]. Lopez-Aguilar et al. examined serum miRNA levels as
non-invasive indicators for pediatric low- and high-grade astrocytoma [106]. They found
overexpression of miR-130a and miR-145 relative to controls, which were associated with
higher chemotherapeutic response and cell migration and invasion. In blood serum sam-
ples, miR-335, a tumor promoter in adult human glioma, was downregulated, suggesting
molecular distinctions between adult and pediatric astrocytomas [97].

3. Challenges and Research Directions in miRNA-Based Diagnosis and Therapy for GBM

While preliminary results show promise, numerous crucial measures need to be
implemented before miRNA can be included in clinical practice. A significant obstacle
is the lack of defined methodologies for isolating miRNA, analyzing it, and developing
strategies for loading and modification [18,55]. Comprehending the specific function
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and process of miRNA in cell-to-cell signaling is crucial for investigating their utility for
diagnosis and treatment.

The majority of data available to support the role of miRNA as a biomarker are con-
strained by limited cohort sizes [65]. Thus, further research is necessary to ascertain the
sensitivity and specificity of specific miRNAs as biomarkers. Because of the molecular
complexity of high-grade gliomas, it will be challenging to detect GBM with one miRNA.
A complex molecular signature, including genetic, epigenetic, and miRNA changes, will
likely be the key to making liquid biopsy for GBM a reality. In addition, miRNA also ex-
hibits overlap with distinct pathological disorders, and its use will be hindered by sampling
differences among different specimens [65]. For instance, miR-21 expression levels have
been demonstrated to be elevated in the brain, serum samples, and EVs of individuals di-
agnosed with GBM but also in various other malignancies, including breast, hepatocellular,
colorectal, and ovarian cancers [65]. This discovery implies that, as an example, miR-21 is
not exclusive to a particular form of cancer, indicating that a panel of miRNAs may enhance
the accuracy of GBM detection and prognosis [65]. This idea has been experimentally
validated in studies, wherein simultaneous assessment of miR-15b and miR-21 in CSF
demonstrated a robust ability to differentiate between glioma and healthy cohorts and
those with CNS lymphomas, achieving 90% sensitivity and 100% specificity [107]. In an-
other study, miR-141, touted as a GBM and prostate cancer differentiator, has demonstrated
abnormal expression in other malignancies and even in noncancerous processes [108]. The
widely studied miR-21, viewed as a potential indicator of GBM, shows elevated expression
in various other cancers, raising concerns about its specificity [108]. Concurrently, assessing
the expression levels of miR-15b and miR-21 in CSF enables distinguishing between GBM
patients, healthy volunteers, and CNS lymphoma patients with a detection rate of 90%
sensitivity and a true negative rate of 100% specificity [108].

Circulating miRNAs possess characteristics that make them potential biomarkers for
diverse diseases. Their stability in bodily fluids, whether as ribonucleoprotein complexes or
within vesicles, enhances their utility. The ease of detection, facilitated by widely available
nucleic acid detection techniques, adds to their clinical potential. The development of new
techniques for circulating nucleic acid detection is generally more time and cost-effective
than discovering new antibodies for protein biomarkers for several reasons. First, nucleic
acids (DNA, RNA) can be detected using relatively straightforward and well-established
techniques like PCR and next-generation sequencing, while proteins require complex an-
tibody creation and validation. Second, nucleic acid detection methods are standardized
and widely available, whereas developing specific antibodies involves extensive testing to
ensure proper specificity and sensitivity. Third, designing primers or probes for nucleic
acids can be achieved quickly once the target sequence is known, but antibody discovery
involves lengthy processes like immunizing animals and hybridoma creation. Fourth,
the costs associated with PCR and sequencing have decreased significantly, making these
methods slowly more affordable, whereas antibody development involves higher expenses
related to animal care and hybridoma technology. Lastly, high-throughput sequencing
technologies allow for the simultaneous analysis of thousands of nucleic acid molecules,
whereas high-throughput methods for proteins are generally less efficient and more expen-
sive. However, diagnostic specificity and reproducibility challenges persist, which warrant
a more thorough investigation [108].

Ensuring reproducibility is crucial for validating tumor biomarkers. Inconsistent
findings, particularly evident in studies on miR-200c and miR-145, highlight challenges in
establishing reliable expression patterns. For miR-200c, one study associates its enhanced
expression with poor progression and overall survival in gastric cancer patients, while
others link it to progression-free survival [109,110]. Similarly, miR-145 is reported to be
highly overexpressed in early-stage cancer patients’ plasma compared to healthy individ-
uals across various ethnic groups [111]. However, other studies indicate that miR-145 is
downregulated in tissue and plasma samples of breast cancer patients compared to con-
trols, highlighting the variability in its expression [74]. Factors such as limited sample size,
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poor statistical validity, detection method specificity, and miRNA degradation contribute
to result discrepancies. Methodological variations in miRNA extraction techniques and
the minimal concentration of circulating miRNAs further complicate reliable quantitation
and detection. Therefore, the need for verification in large populations before integrating
circulating miRNA profiles into tumor progression and clinical outcomes is emphasized.

Integrating specific miRNAs with traditional tumor markers offers a promising strat-
egy to achieve increased sensitivity and specificity. Additionally, machine learning algo-
rithms, such as support vector machines, highlight the potential of a combination of seven
miRNAs (miR-10b, -21, -141, -200a, -200b, -200c, and -125b) in CSF to accurately distinguish
GBM and metastatic brain cancer, achieving high accuracy rates ranging from 91% to
99%. Screening such panels of miRNA simultaneously has been shown to offer better
insight into miRNA signatures for particular grades of gliomas, which is a prominent line
of investigation for improved preclinical and clinical miRNA-based diagnostics [91,112].
Machine learning algorithms could be highly beneficial in detecting prospective miRNA
signatures within different bodily fluids from patients with GBM.

Several positive traits have made researchers consider miRNA as a therapeutic for
GBM. Their natural capacity to traverse the BBB, biocompatibility, low immunogenic re-
sponse, and advanced surface-engineering capabilities have made them a prime subject
for investigation as vehicles for chemotherapy and nucleotide medications targeting the
suppression of gliomas. However, when discussing the use of miRNA as a potential
therapeutic against GBM, challenges exist in effectively delivering miRNAs to this type
of cancer. Various delivery systems, including nanoparticles, have shown potential suc-
cess, yet concerns about toxicity and side effects of these approaches, such as immune
system activation and off-target effects persist [113]. Polymer and lipid nanoparticles have
been extensively used for delivery, with demonstrated success in enhancing sensitivity to
chemotherapy [113]. Specifically, passing the highly selective BBB remains a significant
challenge that must be addressed to deliver GBM therapeutics effectively [113]. Table 2
summarizes the most pertinent challenges in miRNA-based diagnostics and therapies for
treatment of GBM.

It is encouraging that miRNAs have already been used in clinical trials for other
pathologies. A clinical trial is investigating MRX34, a liposome-formulated miR-34 mimic,
for treating patients with advanced solid tumors including liver cancer. The trial aims to
assess the safety and efficacy of this miRNA-based therapeutic [114]. In another clinical
trial, TargomiRs, which are miR-16-based microRNA mimics, were used to treat patients
with malignant pleural mesothelioma. This trial aimed to assess the safety, dosage, and
preliminary efficacy of this miRNA therapy [114,115]. The role of miRNA in evaluating
cancer pathologies was also studied in a clinical trial evaluating the safety and therapeu-
tic potential of miR-29b for patients with hematologic malignancies like acute myeloid
leukemia (AML) and myelodysplastic syndrome (MDS). miR-29b is known to target multi-
ple oncogenes involved in these cancers [116]. Another example of such a trial involves
the use of Miravirsen, an antisense oligonucleotide targeting miR-122, for the treatment of
chronic hepatitis C virus (HCV) infection, which can lead to liver cancer. The trial aimed to
evaluate the safety and efficacy of Miravirsen in reducing HCV RNA levels [117].

Overall, further research is needed to address the challenges of miRNA delivery in
GBM, enhance the specificity and sensitivity, and unravel the complex interplay between
miRNAs, cancer cells, and treatment resistance [69,70].
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Table 2. Challenges and research directions in miRNA-based diagnosis and therapy for GBM.

Challenges Description Research
Directions Approach

Heterogeneity of GBM

Genetic, epigenetic, and phenotypic
variability complicates the

identification of universal miRNA
biomarkers and therapeutic targets

Biomarker Discovery

Advancing high-throughput
sequencing and bioinformatics
approaches for reliable miRNA

biomarker discovery [118]

Delivery
Mechanisms

Efficiently delivering miRNA-based
therapeutics across the blood–brain
barrier (BBB) remains a challenge

Improved Delivery Systems

Developing novel delivery
platforms (e.g., exosomes,

targeted nanoparticles,
advanced viral vectors) to

enhance delivery [119]

Off-target Effects

miRNAs can target multiple
mRNAs, leading to potential

off-target effects and unintended
consequences

Therapeutic Specificity
Ensuring specificity in

miRNA-based therapies to
minimize adverse effects [120]

Stability and
Degradation

miRNAs are prone to degradation
by nucleases in the bloodstream Stable Therapeutic Agents

Developing stable miRNA
mimics or inhibitors that retain

functionality [57]

Tumor
Microenvironment

The complex GBM
microenvironment can influence the
efficacy of miRNA-based therapies

Microenvironment
Interaction

Understanding and
manipulating interactions

within the tumor
microenvironment to optimize

therapeutic outcomes [121]

Resistance
Mechanisms

GBM cells can develop resistance to
miRNA-based therapies through

various mechanisms
Overcoming Resistance

Identifying and overcoming
resistance mechanisms for

long-term therapeutic success
[121]

Combination
Therapy Needs

Combining different therapeutic
approaches can enhance efficacy

and reduce resistance
Combination Therapies

Exploring synergistic effects of
combining miRNA-based

therapies with chemotherapy,
radiotherapy, and

immunotherapy [122]

Understanding miRNA
Functions

Comprehensive understanding of
miRNA roles in GBM biology

is needed
Functional Studies

Conducting studies to elucidate
specific miRNA roles in tumor

growth, invasion, and
microenvironment interactions

[9]

Clinical
Validation

Ensuring the safety and efficacy of
miRNA-based diagnostics and
therapeutics in clinical settings

Clinical
Trials

Designing and conducting trials
to evaluate miRNA-based

diagnostics and therapies in
GBM patients [9]

Personalized
Treatment

Tailoring treatments to the unique
genetic and molecular landscape of

each patient’s tumor
Personalized Medicine

Leveraging miRNA profiling for
individualized treatment

strategies [9]

Regulatory
Compliance

Establishing standards for safety,
efficacy, and reproducibility in

miRNA-based applications
Regulatory Frameworks

Developing clear guidelines and
standardization protocols for

miRNA-based diagnostics and
therapies [69]

4. Conclusions and Future Directions

Investigating circulating miRNAs as potential diagnostic and therapeutic biomarkers
for GBM holds promise. Prior studies reveal their significance in understanding glioma
genesis, offering insights into tumor progression, and perhaps in the future, aiding in
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clinical decision-making [41,91]. Circulating miRNAs, particularly those present in CSF,
show potential as valuable early detection biomarkers.

Efforts are underway to develop comprehensive miRNA panels to improve sensitivity
and specificity in screening and diagnosis. For example, the identification of specific
miRNA expression patterns has exhibited high sensitivity and specificity in differentiating
patients with GBM from noncancer individuals, offering a potential diagnostic model
with promising accuracy [55]. Technologies such as MRgFUS, which enhance blood–brain
barrier permeability, could also aid in the detection efficacy and concentrations of these
miRNAs in blood, thus further advancing the diagnostic and therapeutic potential of these
miRNA panels [123].

Despite the promising prospects of miRNA-based approaches, several challenges need
to be addressed to translate these findings into clinical practice. One major obstacle is
the standardization of miRNA detection methods. Variability in miRNA quantification
can impact the reproducibility of results, which is essential for their reliable application in
diagnostics [120]. Furthermore, the heterogeneity of GBM complicates the identification
of universal miRNA biomarkers, as expression profiles can vary significantly between
individual tumors and patient populations [124]. To overcome these issues, refined profiling
techniques and standardized protocols for miRNA isolation and quantification are needed.

Advancements in high-throughput sequencing and quantitative PCR have enhanced
the sensitivity and specificity of miRNA detection, paving the way for more accurate
diagnostics [98]. Bioinformatics tools are also playing a crucial role in analyzing miRNA
expression patterns and identifying potential biomarkers with high diagnostic and thera-
peutic value.

Therapeutic strategies involving miRNAs are also evolving. The use of miRNA mimics
to restore the function of downregulated tumor-suppressive miRNAs, such as miR-34a,
has shown promise in preclinical models by enhancing tumor suppression and improving
responses to conventional therapies [49]. Conversely, targeting oncogenic miRNAs like miR-
21 with antagomirs or locked nucleic acid (LNA) technology has demonstrated potential
to reduce tumor malignancy and improve treatment outcomes [125]. Furthermore, the
development of novel delivery systems for miRNA-based therapeutics is addressing the
challenge of effective and targeted delivery. Nanoparticle-based delivery systems, for
instance, offer the potential to enhance the stability, bioavailability, and targeted delivery of
miRNA mimics and inhibitors while minimizing off-target effects [89].

By combining MRgFUS with MRI-guided delivery systems, one could visualize and
track the distribution and effectiveness of miRNA mimics or inhibitors in real time, opti-
mizing the dosing and delivery strategies [123].

In summary, the integration of miRNAs into GBM diagnostics and therapeutics could
represent an advancement in personalized medicine. Addressing current challenges, such
as standardization of detection methods, validation in diverse patient cohorts, and de-
velopment of effective delivery systems, will be crucial for realizing the full potential of
miRNA-based strategies.
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