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Abstract

Background Extensive glioblastoma infiltration justifies a 15-mm margin around the gross tumor volume (GTV) to
define the radiotherapy clinical target volume (CTV). Amide proton transfer (APT)-weighted imaging could enable
visualization of tumor infiltration, allowing more accurate GTV delineation. We quantified the impact of integrating
APT-weighted imaging into GTV delineation of glioblastoma and compared two APT-weighted quantification
methods—magnetization transfer ratio asymmetry (MTRasym) and Lorentzian difference (LD) analysis—for target
delineation.

Methods Nine glioblastoma patients underwent an extended imaging protocol prior to radiotherapy, yielding APT-
weighted MTRasym and LD maps. From both maps, biological tumor volumes were generated (BTVMTRasym and BTVLD)
and added to the conventional GTV to generate biological GTVs (GTVbio,MTRasym and GTVbio,LD). Wilcoxon signed-rank
tests were performed for comparisons.

Results The GTVbio,MTRasym and GTVbio,LD were significantly larger than the conventional GTV (p ≤ 0.022), with a
median volume increase of 9.3% and 2.1%, respectively. The GTVbio,MTRasym and GTVbio,LD were significantly smaller
than the CTV (p= 0.004), with a median volume reduction of 72.1% and 70.9%, respectively. There was no significant
volume difference between the BTVMTRasym and BTVLD (p= 0.074). In three patients, BTVMTRasym delineation was
affected by elevated signals at the brain periphery due to residual motion artifacts; this elevation was absent on the
APT-weighted LD maps.

Conclusion Larger biological GTVs compared to the conventional GTV highlight the potential of APT-weighted
imaging for radiotherapy target delineation of glioblastoma. APT-weighted LD mapping may be advantageous for
target delineation as it may be more robust against motion artifacts.

Relevance statement The introduction of APT-weighted imaging may, ultimately, enhance visualization of tumor
infiltration and eliminate the need for the substantial 15-mm safety margin for target delineation of glioblastoma. This
could reduce the risk of radiation toxicity while still effectively irradiating the tumor.

Trial registration NCT05970757 (ClinicalTrials.gov).
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Key Points
● Integration of APT-weighted imaging into target delineation for radiotherapy is feasible.
● The integration of APT-weighted imaging yields larger GTVs in glioblastoma.
● APT-weighted LD mapping may be more robust against motion artifacts than APT-weighted MTRasym.

Keywords Glioblastoma, Magnetic resonance imaging, Neuroimaging, Radiotherapy, Radiotherapy (image-guided)

Graphical Abstract

• Integrating APT-w. imaging into target 
delineation is feasible and yields larger gross 
tumor volume (GTV) in glioblastoma.

• APT-w. Lorentzian difference (LD) mapping 
may be more robust against motion artifacts 
than APT-w. magnetization transfer ratio 
asymmetry (MTRasym) mapping.

APT-weighted CEST MRI may allow
more accurate target delineation

in glioblastoma
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CEST MRI for radiotherapy target
delineation of glioblastoma: a
prospective pilot study
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a, b, c GTV (pink contour) and routinely-applied 15-mm safety margin 
(orange contour) on structural MRI. d Segmentation of residual contrast-
enhanced and peritumoral abnormal nonenhancing tissue (green 
overlay); within this segmentation APT-w. signals were added to GTV to 
get the biological GTV. d, e APT-w. MTRasym and LD maps and 
corresponding biological GTV (red contours).  
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Background
Glioblastoma is the most common type of primary brain
cancer and is generally associated with a poor prognosis
[1, 2]. One of the pillars of glioblastoma treatment is
radiotherapy, where ionizing radiation is aimed toward a
specific target area within the brain to kill tumor cells and
slow further tumor growth. To define this target area, a
gross tumor volume (GTV) is first delineated on a com-
bination of structural magnetic resonance imaging (MRI)
scans, comprising contrast-enhanced T1-weighted, T2-
weighted, and T2-weighted fluid-attenuated inversion
recovery (FLAIR) sequences [3]. In glioblastoma, the GTV
is routinely defined by the resection cavity plus residual
enhancing tumor on contrast-enhanced T1-weighted
MRI, without the inclusion of peritumoral nonenhancing
tissue abnormalities [3]. The exclusion of this area, typi-
cally hyperintense on T2-weighted and T2-weighted
FLAIR MRI, remains a subject of controversy, given the
understanding that these regions may partially reflect

tumor infiltration together with edema [4]. After deli-
neation of GTV, the clinical target volume (CTV) is
generated by adding a safety margin to the GTV, adjusted
for anatomical barriers. This safety margin serves the
purpose of accounting for tumor infiltration which is not
fully visible on structural MRI. As glioblastomas are
notorious for extensive tumor infiltration, the CTV mar-
gin is typically 15 mm in every direction [3]. This 15-mm
margin effectively covers tumor infiltration in the vast
majority of cases, but can also result in large target areas
that include a considerable amount of healthy tissue
[5–8]. This can, in turn, lead to (severe) radiation-induced
side effects, like cognitive impairment, headache, nausea,
and fatigue, and substantially decrease the quality of life of
a patient [9].
An opportunity to indirectly visualize tumor infiltration

emerges with amide proton transfer (APT) weighted ima-
ging, a recently introduced MRI technique that probes
local levels of endogenous mobile proteins and peptides
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through chemical exchange saturation transfer (CEST)
[10]. Elevated APT-weighted signal is correlated with
increased Ki-67 expression and cell density in human
gliomas, highlighting the potential to identify regions with
active tumor proliferation [11–13]. Hence, the inclusion of
biological information from APT-weighted imaging could
enhance the accuracy of GTV delineation of glioblastoma
and may obviate the need for the substantial 15-mm CTV
margin [14]. This proposition could reduce the risk of
radiation-induced side effects while still adequately tar-
geting viable tumor infiltration. Quantification of the APT-
weighted CEST effects is commonly determined through
the APT-weighted magnetization transfer ratio asymmetry
(MTRasym) [15]. This approach is valued for its relative
simplicity, and only necessitates the acquisition of the
CEST effect at two off-resonance frequency shifts (3.5 ppm
and -3.5 ppm), and few offsets for B0 correction. In con-
trast, APT-weighted Lorentzian difference (LD) analysis
quantifies the APT-weighted CEST effects through the
Lorentzian fitting of the signal in a full Z-spectrum [16].
This method requires measurements at multiple off-
resonance frequencies, inherently increasing acquisition
times, but is presumed to provide a more accurate repre-
sentation of the signal contributions originating from
amides in mobile proteins and peptides [17–19]. This
research aims to quantify the volumetric impact of inte-
grating APT-weighted imaging into GTV delineation of
glioblastoma, and to compare the use of APT-weighted
MTRasym and LD maps for target delineation.

Methods
Study participants
This study was approved by the Medical Ethics Review
Committee of the Erasmus MC, Rotterdam, The Nether-
lands, and was performed in accordance with the
Declaration of Helsinki. Adult patients diagnosed with
glioblastoma and scheduled for radiotherapy with a total
dose of 60 Gy or 40.05 Gy were eligible for inclusion. The
diagnosis of glioblastoma was confirmed through pathol-
ogy and molecular analysis following resection or biopsy,
and made in accordance with the 2021 WHO classification
of tumors of the central nervous system [20]. Patients who
were referred for reirradiation or who had prior irradiation
of the head-and-neck region were excluded. After provid-
ing written informed consent, recruited patients underwent
an extended treatment planning MRI scan prior to radio-
therapy. Radiation treatment adhered to clinical standards,
relying exclusively on the structural MRI scans, and
employing a 15-mm CTV-margin.

MRI acquisition
Image acquisition prior to radiotherapy was performed on
a 3-T hybrid positron emission tomography—PET/MRI

scanner with a 40-channel head coil (SIGNA, GE
Healthcare, Chicago, ILL, USA). As part of the clinical
brain tumor imaging protocol, patients were imaged with
the following sequences:

● unenhanced T1-weighted (three-dimensional fast
spoiled gradient-echo, repetition time 6.3 ms, echo
time 2.1 ms, voxel size 1 × 1 × 1mm3);

● T2-weighted FLAIR (repetition time 7,600 ms, echo
time 130ms, voxel size 1.2 × 1.2 × 1.6 mm3);

● T2-weighted (repetition time 4,490 ms, echo time
145.7 ms, voxel size 0.6 × 0.6 × 3.0 mm3); and

● Contrast-enhanced T1-weighted (three-dimensional
fast spoiled gradient-echo, repetition time 5.6 ms,
echo time 2.3 ms, voxel size 0.9 × 0.9 × 1.6 mm3)
after intravenous injection of Gadovist (solution
1mmol/mL, dose 7.5 mL, and flow rate 5 mL/s).

For this research, the treatment planning MRI protocol
was extended with a three-dimensional snapshot CEST
sequence [21], acquired before administration of
gadolinium-based contrast agent, with the following
parameters: root mean square B1 power 1.5 µT; repetition
time 6.6 ms; echo time 1.1 ms; the number of slices ≥ 16;
voxel size 1.7 × 1.7 × 3 mm3; matrix 128 × 128; accelera-
tion factor 3; flip angle 6°; frequency offsets ± 100, ± 50,
± 10, ± 8, ± 6, ± 5, ± 4, ± 3.5, ± 3, ± 2.5, ± 2, ± 1.5, ± 1.2, ± 1,
± 0.8, ± 0.5, and ± 0.25, 0 ppm. In addition, a reference
image was acquired with saturation pulses at 300 ppm,
capturing the equilibrium magnetization. For each
patient, the field of view was manually adjusted by
adapting the number of slices to cover the entire GTV at a
minimum. The acquisition time of the CEST image series
ranged between 4:38 min:s and 5:07 min:s; consequently,
the duration of the standard clinical protocol plus
the CEST sequence ranged between 20:45 min:s and
21:14 min:s.

Image processing
For each patient, the CEST image series was motion
corrected by linearly registering each image within the
series to the 6 ppm image (mcflirt [22], FMRIB Software
Library (FSL) v6.0.7, Oxford, UK). Thereafter, a brain
mask was created from the 6 ppm image (HD-BET [23]),
and applied to the motion-corrected CEST image series to
perform brain extraction. Noise reduction was performed
via non-linear filtering (SUSAN [24], FSL v6.0.7, Oxford,
UK) and multilinear singular value decomposition (Ten-
sorlab v3.0 toolbox [25]). To calculate the Z-spectra, the
total image series was divided by the equilibrium mag-
netization image. Lorentzian fitting and voxel-wise B0
correction were done according to the post-processing
methods described by Wu et al [19]. APT-weighted
MTRasym maps were calculated using the B0-corrected Z
(3.5 ppm) and Z (-3.5 ppm) [15]. To correct spillover
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dilution, fluid suppression was integrated according to
methods proposed by Schrüre et al [26]. The LD was
computed by subtracting the Z-spectra from the fitted
Lorentzian function; thereafter, the LD at 3.5 ppm was
extracted to generate the APT-weighted LD map. To
register the APT-weighted scans to the computed tomo-
graphy scan, on which the conventional target delinea-
tions were delineated, the motion-corrected brain
extracted 6 ppm CEST image was registered to the
contrast-enhanced T1-weighted MRI scan (flirt [22, 27],
FSL v6.0.7, Oxford, UK). The resulting transformation
matrix was applied to the APT-weighted MTRasym and LD
maps to register these scans to the contrast-enhanced T1-
weighted MRI scan. Thereafter, the transformation matrix
derived from registering the contrast-enhanced T1-
weighted MRI to the computed tomography scan for the
clinical radiotherapy plan was utilized to register the
APT-weighted MTRasym and LD maps to the computed
tomography scan.

Target volume delineation
Delineation of the GTV and CTV adhered to the 2023
ESTRO-EANO guideline on target delineation and radio-
therapy details for glioblastoma [3]. Generally, the GTV
encompasses the resection cavity and residual contrast
enhancement on contrast-enhanced T1-weighted images.
The CTV expands the GTV with a 15-mm margin, which
is adjusted for anatomical barriers like the falx cerebri or
the tentorium cerebelli. To integrate APT-weighted ima-
ging into target delineation, a biological tumor volume
(BTV) was introduced that encompassed presumed tumor
based on information derived from APT-weighted imaging.
The BTV was defined by regions with hyperintense APT-
weighted signal within residual contrast enhancement on
contrast-enhanced T1-weighted MRI or peritumoral par-
enchymal hyperintensity on T2-weighted or T2-weighted
FLAIR MRI. For each patient, the BTV was computed on
the APT-weighted MTRasym map (BTVMTRasym) and the
APT-weighted LD map (BTVLD). Automatic segmenta-
tions of residual contrast enhancement and peritumoral
parenchymal T2-weighted and T2-weighted FLAIR
hyperintensities were created with HD-GLIO v2.0 [28, 29].
Regions with hyperintense APT-weighted MTRasym or LD
signal were identified in two steps: First, the white matter
was automatically segmented on unenhanced T1-weighted
MRI (fast [30], FSL v6.0.7, Oxford, UK) and registered to
the contrast-enhanced T1-weighted MRI (flirt [22, 27], FSL
v6.0.7, Oxford, UK) and computed tomography scan. By
taking the white matter segmentation of the hemisphere
without the primary tumor site, a segmentation of the
contralateral normal-appearing white matter (cNAWM)
was derived. Second, patient-specific thresholds were cal-
culated for both the APT-weighted MTRasym and LD maps

via the Eq. 1 [18]:

SAPT;thr � μAPT;cNAWM þ 2 ´ σAPT;cNAWM ð1Þ

where SAPT,thr is the patient-specific threshold to identify
hyperintense APT-weighted signal, µAPT,cNAWM is the
average APT-weighted signal intensity in the cNAWM,
and σAPT,cNAWM is the standard deviation of the APT-
weighted signal intensities in the cNAWM. As imperfect
motion correction for APT-weighted MTRasym may yield
erroneously high signal intensities in certain voxels, these
particular voxels, defined as outliers, were intentionally
excluded from the patient-specific threshold calculation to
safeguard its validity. Outliers were identified via the Eq. 2:

SMTRasym;out � Q3MTRasym þ 1:5 ´ IQRMTRasym ð2Þ

where SMTRasym,out is the signal intensity cutoff for
outliers, Q3MTRasym is the upper quartile of the signal
intensities in the brain segmentation on the APT-
weighted MTRasym map, and IQRMTRasym is the inter-
quartile range of the signal intensities in the brain
segmentation on the APT-weighted MTRasym map.
Initial delineations of the BTVMTRasym and BTVLD were

constructed by thresholding voxels with hyperintense
APT-weighted MTRasym and LD signal, respectively, within
contrast-enhancing tumor and peritumoral parenchymal
hyperintensity on T2-weighted and T2-weighted FLAIR
images. Thereafter, components smaller than 1mL were
removed and smoothing was performed to generate the
final BTVs. The final BTVMTRasym and BTVLD were added
to the conventional GTV to define a biological GTV
(GTVbio) based on APT-weighted MTRasym (GTVbio,M-

TRasym) and LD (GTVbio,LD), respectively. Hence the GTVbio

comprises both anatomical information derived from
structural MRI and biological information derived from
APT-weighted imaging. Figure 1 shows a schematic over-
view of the target volumes generated in this study.

Fig. 1 Target volume definition. Based on the APT-weighted MTRasym and
LD map, semi-automatically contoured, threshold-based BTVMTRasym and
BTVLD were delineated. Thereafter, the fusion of the BTVs with the GTV
defined the GTVbio,MTRasym and GTVbio,LD. For abbreviations, see the
“Abbreviations” section
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Statistical analysis
The volumes of the conventional GTV, GTVbio,MTRasym,
GTVbio,LD, and CTV were compared through a Wilcoxon
signed-rank test. The difference between the use of APT-
weighted MTRasym and LD maps for target delineation
was explored through a comparison of the BTVMTRasym

and BTVLD: A Wilcoxon signed-rank test was performed
to evaluate the volume disparity between the BTVs.
Additionally, the spatial similarity was explored by com-
puting the Dice similarity coefficient.

Results
Study participants
Between June 2023 and December 2023, ten patients with
glioblastoma were included in this pilot study. One
patient was post-hoc excluded from analysis as the patient
did not proceed with radiation treatment due to rapid
clinical deterioration. The demographic and tumor char-
acteristics of the patients included in the analysis are
shown in Table 1.

Volumetric analysis of the GTV, GTVbio, and CTV
The median patient-specific thresholds to define hyper-
intense APT-weighted signal for MTRasym and LD were
0.48% (IQR: 0.15–0.58%) and 8.17% (IQR: 8.10–8.33%),
respectively. Figure 2 shows a box plot of the conventional
and APT-weighted target volumes. The comparative
analysis revealed that both the GTVbio,MTRasym and
GTVbio,LD were significantly larger than the conventional
GTV, with a median increase in volume of 9.3%
(p= 0.004) and 2.1% (p= 0.022), respectively. Addition-
ally, the GTVbio,MTRasym and GTVbio,LD were significantly
smaller than the CTV, with a median reduction in volume
of 72.1% (p= 0.004) and 70.9% (p= 0.004), respectively.
There was no significant difference in volume between the
GTVbio,MTRasym and the GTVbio,LD (p= 0.164). The MRI
scans and target delineations of an exemplary patient are
presented in Fig. 3.

Comparative analysis of the BTVMTRasym and BTVLD

The median volumes of the BTVMTRasym and BTVLD were
26.2mL (IQR: 6.0–38.9mL) and 7.1mL (IQR: 4.3–32.6mL),
respectively. Statistical analysis revealed no significant dif-
ference between the two BTVs (p= 0.074). The median
Dice similarity coefficient between the two volumes was 0.59
(IQR: 0.17–0.71). In the APT-weighted MTRasym maps,
residual motion artifacts in the images acquired at 3.5 and
-3.5 ppm resulted in relatively high signal intensities at the
periphery of the brain; these elevated signal intensities were
not visible on the APT-weighted LD maps. Consequently, in
three of the nine patients, the BTVMTRasym encompassed
some of these voxels, while the BTVLD did not. An example
of this occurrence is shown in Fig. 4. The volumes of the
GTVs, CTV, and BTVs of each individual patient are pro-
vided in Supplementary Table S1.

Discussion
In this study, the potential of APT-weighted imaging for
target delineation of glioblastoma is implied by the increase
in volume of the GTVbio,MTRasym and GTVbio,LD in relation
to the conventional GTV. The inability to reliably distin-
guish tumor infiltration from peritumoral edema on T2-
weighted and T2-weighted FLAIR MRI is a major crux for
target delineation of glioblastoma [3]. The introduction of

Table 1 Patient and tumor characteristics

Patient Sex Age (years) Tumor location Extent of resection MGMT promotor methylation status Radiation treatment

#1 Male 52 Right Partial Methylated 30 × 2 Gy

#2 Male 51 Left Partial Unmethylated 30 × 2 Gy

#3 Male 64 Left Partial Unmethylated 30 × 2 Gy

#4 Male 63 Right Partial Methylated 30 × 2 Gy

#5 Male 66 Right Gross total Methylated 30 × 2 Gy

#6 Male 49 Left Gross total Unmethylated 30 × 2 Gy

#7 Male 57 Left Gross total Methylated 30 × 2 Gy

#8 Female 60 Right Partial Unmethylated 15 × 2.67 Gy

#9 Female 63 Bilateral Partial Unmethylated 15 × 2.67 Gy

MGMT O6-methylguanine-DNA-methyltransferase

Fig. 2 Box plot of the target delineation volumes. ns, not significant;
*p < 0.05; **p < 0.01. For abbreviations, see the “Abbreviations” section
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APT-weighted imaging and the concept of a BTV may
facilitate indirect visualization of tumor infiltration,
enabling a reduction of the 15-mm CTV margin.
Notably, not all patients displayed a pronounced

increase of the GTV after the integration of APT-
weighted imaging. This observation may indicate the
absence of tumor infiltration or tumor infiltration
extending beyond the boundaries of contrast enhance-
ment and T2-weighted or T2-weighted FLAIR hyper-
intensity. The latter scenario could occur, given that this
study exclusively focused on elevated APT-weighted sig-
nals in these regions for defining the BTV. Alternatively,
this observation may suggest that APT-weighted imaging
by itself does not always adequately visualize tumor
infiltration. It is important to note that this work does not

yet determine if the BTV and GTVbio truly encompass
tumor infiltration. The rationale that T2-weighted and
T2-weighted FLAIR hyperintense regions may partially
reflect tumor infiltration, and that elevated APT-weighted
signals may indicate tumor tissue in gliomas, is supported
by previous studies [4, 11–13]. However, validation of the
BTV and GTVbio is an important next step that has yet to
be undertaken. This step could be achieved through
recurrence pattern analysis, which examines the coverage
of future tumor recurrence by the GTVbio. The site of
tumor recurrence, in hindsight, provides information on
the location of tumor infiltration, thereby offering insights
into the potential of a GTVbio to include tumor infiltra-
tion. In addition, recurrence pattern analysis may shed
light on the appropriate magnitude of the CTV margin

Fig. 3 Target delineations of patient #2. The top row shows the conventional GTV (pink contour) and CTV (orange contour) on structural MRI (a–c). The
automatic segmentation of residual contrast enhancement and peritumoral T2-weighted and T2-weighted FLAIR hyperintensities is shown as a green
overlay on T2-weighted FLAIR MRI (d). Note that the resection cavity is not included in this segmentation. The conventional GTV (pink contour) and CTV
(orange contour), as well as the GTVbio,MTRasym, and GTVbio,LD (red contours), can be seen on the APT-weighted MTRasym (e) and LD (f) map. Compared to
the conventional GTV, the GTVbio,MTRasym, and GTVbio,LD demonstrate an increase in volume of 81.2% and 52.4%, respectively. For abbreviations, see the
“Abbreviations” section
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around the GTVbio. We acknowledge that, to some extent,
the comparison between the GTVbio and conventional
CTV in this work is premature. The significantly smaller
GTVbio, however, adds strength to the hypothesis that the
15-mm CTV margin includes large amounts of pre-
sumably healthy tissue. While validation of the APT-
weighted signal through recurrence pattern analysis is
essential for evaluating the potential of APT-weighted
imaging for improved target delineation, the results in our
pilot study demonstrate the feasibility and volumetric
impact of integrating APT-weighted imaging into target
delineation of glioblastoma.
The volumetric similarity between the BTVMTRasym and

BTVLD implies that utilizing LD analysis rather than the
traditional MTRasym metrics for APT-weighted imaging
does not offer an evident benefit for target delineation of
glioblastoma. Nevertheless, from a theoretical perspective,
quantification through APT-weighted LD mapping may
be advantageous for the semi-automatic, threshold-based
approach presented in this study: APT-weighted LD
analysis may more accurately reflect the authentic signal
contributions originating from amides in mobile proteins
and peptides, as this metric is not affected by the nuclear
Overhauser enhancement effect [17–19]. The APT-
weighted signal in MTRasym metrics, on the other hand,
is inherently contaminated by this effect [31]. Moreover,
MTRasym may be more sensitive to residual motion arti-
facts after motion correction: The required subtraction of
the images acquired at 3.5 ppm and -3.5 ppm gave rise to
erroneously high signal intensities at the periphery of the
brain. In our results, the fitting procedure for LD seemed
more robust against these residual motion artifacts.
Although there was no significant volume difference in
our data, the larger BTVMTRasym compared to the BTVLD

and moderate dice similarity between the volumes may be

partially explained by an unintentional overestimation of
the BTV, which was caused by elevated APT-weighted
signal intensities originating from residual motion arti-
facts rather than tumor physiology. This concern is par-
ticularly relevant for tumors located close to the cortex, as
can be seen in the exemplary patient in Fig. 4. The APT-
weighted MTRasym map of this patient shows voxels with
high signal intensities at the rim of the brain; however,
these same voxels do not exhibit proportionally elevated
signal intensities on the APT-weighted LD map, resulting
in a disparity between the BTVMTRasym and BTVLD.
There were some limitations in this study. First, the

analyses in this study were performed on a small sample
size. The primary aim of this pilot study, however, was to
explore the impact on the GTV delineation in glio-
blastoma after the integration of APT-weighted MTRasym

and LD maps. Enhanced visualization of glioma infiltra-
tion through APT-weighted image acquisition at 7 T has
already been demonstrated [32]. This study extends these
findings by showcasing its feasibility at clinical field
strength, and warrants further investigation of APT-
weighted imaging for target delineation of glioblastoma
through recurrence pattern analysis in a larger sample
size. Second, the BTV was restricted to regions with
contrast enhancement, which is typically included in the
conventional GTV, and peritumoral nonenhancing par-
enchymal abnormalities, presumed to be a mixture of
edema and tumor infiltration [3, 33]. In this study, we did
not include hyperintense APT-weighted signals beyond
contrast-enhancing tumor and T2-weighted or T2-
weighted FLAIR hyperintense regions in the BTV. It is
crucial to acknowledge that this approach might overlook
tumor infiltration in normal-appearing brain tissue and
necessitates future recurrence pattern analyses to assess
elevated APT-weighted signals outside these regions.
Finally, the field of view on APT-weighted imaging did
not cover the entire brain in the craniocaudal direction,
potentially resulting in an underestimation of the BTVs
and GTVsbio. APT-weighted imaging of the entire brain is
feasible at 3 T: acquisition of a full Z-spectrum, which
enables both APT-weighted LD and MTRasym mapping,
requires approximately 6:30 min:s to 7:00 min:s on our
system. Future work on recurrence pattern analysis
should utilize APT-weighted imaging of the entire brain
to minimize the risk of recurrences occurring outside
the field of view of the APT-weighted map. Nevertheless,
the significantly larger GTVsbio in this study highlights the
potential of APT-weighted imaging for target delineation
of glioblastoma.
To summarize, in this study, the introduction of APT-

weighted imaging yielded larger GTVs, suggesting visuali-
zation of tumor infiltration beyond the contrast-enhancing
region and highlighting its potential for GTV delineation of

Fig. 4 The APT-weighted MTRasym and LD map and corresponding BTVs
(green contour) of patient #4. The APT-weighted MTRasym map shows
voxels with relatively high signal intensities (> 5%) at the rim of the brain;
these voxels did not exhibit proportionally high signal intensities in the
APT-weighted LD map. For abbreviations, see the “Abbreviations” section
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glioblastoma. While there was no significant volumetric
difference between the use of MTRasym or LD to generate
APT-weighted images, LD analysis might be preferred for
target delineation due to its robustness against artifacts in
the peripheral rim of the brain. Ultimately, the integration
of APT-weighted imaging into radiotherapy planning may
pave the way toward reducing the substantial 15-mm CTV
margin, thus minimizing damage to healthy tissue while
effectively irradiating the tumor. Our work provides the
necessary foundation for the next step forward, which
involves validating the GTVbio through recurrence pattern
analysis to assess its reliability and investigate if hyper-
intense APT-weighted signal beyond the boundaries of
peritumoral nonenhancing parenchymal abnormalities
should be included.

Abbreviations
APT Amide proton transfer
BTV Biological tumor volume
BTVLD Biological tumor volume based on the amide proton transfer-

weighted Lorentzian difference map
BTVMTRasym Biological tumor volume based on the amide proton transfer-

weighted magnetization transfer ratio asymmetry map
CEST Chemical exchange saturation transfer
cNAWM Contralateral normal-appearing white matter
CTV Clinical target volume
FLAIR Fluid-attenuated inversion recovery
FSL FMRIB software library
GTV Gross tumor volume
GTVbio Biological gross tumor volume
GTVbio,LD Biological gross tumor volume based on the amide proton

transfer-weighted Lorentzian difference map
GTVbio,MTRa-

sym

Biological gross tumor volume based on the amide proton
transfer-weighted magnetization transfer ratio asymmetry map

IQR Interquartile range
IQRMTRasym Interquartile range of the signal intensities in the brain

segmentation on the amide proton transfer-weighted magne-
tization transfer ratio asymmetry map

LD Lorentzian difference
MRI Magnetic resonance imaging
MTRasym Magnetization transfer ratio asymmetry
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