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Abstract: This case report delves into the case of a 56-year-old female patient presenting with
progressive cephalalgia syndrome, nausea, vomiting, and gait disorders, diagnosed with a high-
grade thalamic glioma. Glioma is the most common form of central nervous system (CNS) neoplasm
that originates from glial cells. Gliomas are diffusely infiltrative tumors that affect the surrounding
brain tissue. Glioblastoma is the most malignant type, while pilocytic astrocytomas are the least
malignant brain tumors. In the past, these diffuse gliomas were classified into different subtypes
and grades based on histopathologies such as a diffuse astrocytoma, oligodendrogliomas, or mixed
gliomas/oligoastrocytomas. Currently, gliomas are classified based on molecular and genetic markers.
After the gross total resection, a postoperative brain CT scan was conducted, which confirmed the
quasi-complete resection of the tumor. The successful gross total resection of the tumor in this case,
coupled with significant neurological improvement postoperatively, illustrates the potential benefits
of aggressive surgical management for thalamic gliomas. This report advocates for further research
to assess the efficacy of such interventions in malignant cases and to establish standardized treatment
protocols, considering the heterogeneity in prognostic outcomes and the advancements in molecular
diagnostics that offer deeper insights into glioma oncogenesis and progression.

Keywords: prognostic factors; microsurgical excision; high-grade gliomas; neurosurgical interven-
tions; thalamic gliomas

1. Introduction

Thalamic neoplasms account for about 1% of all brain tumors [1]. Their deep location
near critical brain areas has made surgery challenging.

A particular study reported a male-to-female ratio of approximately 1.3:1 for adult
thalamic gliomas, indicating a moderate prevalence in males [2].

However, improvements in neurosurgical techniques and tools have significantly
reduced the risks and complications of surgery for thalamic gliomas [3]. Yet, survival
outcomes after surgery vary widely, highlighting the need to identify key prognostic factors
for patients, especially those with high-grade thalamic gliomas [4]. Thalamic gliomas
predominantly affect pediatric and adolescent populations, though they are not confined to
these age groups. Astrocytomas constitute around 88% of primary thalamic neoplasms [5].
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Pediatric cases of thalamic glioma generally exhibit a more favorable histology in contrast
to the predominantly malignant histological profile observed in adult cases. The thera-
peutic approach to thalamic glioma has evolved significantly over the past two to three
decades, transitioning from initial radiation therapy without a preceding tissue diagnosis
to more refined techniques such as open biopsy or partial resection, stereotactic biopsy,
and ultimately, microsurgical excision [6]. This evolution in surgical strategy, particularly
the shift towards more aggressive resections, has been reported to enhance survival rates,
especially in patients with low-grade gliomas. However, the efficacy of aggressive surgical
interventions in cases of malignant thalamic gliomas remains to be fully assessed [7,8]. Rel-
ative to non-thalamic gliomas, thalamic gliomas are markedly less common. Traditionally,
due to the challenges posed by the thalamic location, radical resection of these tumors
has been deemed problematic, with diagnostic biopsies often preferred. Consequently, a
standardized treatment protocol for thalamic gliomas remains elusive, and the subject has
not been extensively researched [9]. The complexity of treating thalamic gliomas arises from
several factors: primarily, the thalamus is situated in a deeply embedded region within
the supratentorial brain, characterized by intricate anatomical structures, complicating
surgical access and intervention. Furthermore, thalamic gliomas typically exhibit height-
ened malignancy and are associated with severe postoperative complications [10]. Over
the past two decades, significant advancements in the diagnosis and treatment of gliomas
have been achieved. It has been established that molecular diagnostics for gliomas offer
more substantial insights compared to sole reliance on histological evaluations, enhancing
diagnostic accuracy and prognostic predictions. The IDH1 gene, responsible for encoding
isocitrate dehydrogenase 1, plays a crucial role in the oxidative carboxylation of isocitrate,
leading to the production of α-ketoglutarate. Mutations in IDH1 result in the elevated
synthesis of R-2-hydroxyglutarate (R-2-HG), a metabolite implicated in the oncogenesis
and progression of gliomas. R-2-HG is also gaining recognition as a potent predictive
biomarker for gliomas, signifying a unique subclass of these tumors characterized by
specific oncogenic mechanisms [11].

Regarding the IDH status in thalamic tumors, current studies indicate that mutations
in the IDH1 and IDH2 genes are relatively uncommon in thalamic gliomas compared to
their prevalence in gliomas located in other regions, such as the frontal lobe. Thalamic
gliomas with IDH mutations are rare and may demonstrate distinct clinical and biological
characteristics when compared to their IDH wild-type counterparts [12].

Additionally, other genetic mutations are known to be present in thalamic tumors. No-
tably, the H3F3A K27M mutation is frequently identified in thalamic gliomas, particularly
in pediatric patients [13].

This mutation characterizes a unique subset of high-grade gliomas associated with
a more aggressive clinical course. Other genetic alterations, including mutations in TP53,
ATRX, and EGFR, are also implicated in the pathogenesis of thalamic tumors, contributing
to their distinctive molecular profile compared to gliomas in other areas of the brain [14].

These findings highlight the genetic diversity within thalamic gliomas and underscore
the need for further molecular characterization to better understand their behavior and
potential therapeutic targets.

2. Case Presentation

56-year-old female patient presented in our clinic with persistent cephalalgia, nausea,
vomiting, and gait disorders (gait apraxia) occurring for approximately 2 months with
progressive intensification of symptoms. Neurological examination revealed a syndrome
of intracranial hypertension, right central type facial paresis, and right hemiparesis pre-
dominantly brachial. On objective examination, the patient showed clinically normal lungs
and cardiovascular assessment showed an arterial hypertension grade II and hypertensive
retinal angiopathy stage II. A cranial computed tomography (CT) scan was conducted,
which disclosed the presence of a neoplasm located in the right thalamus, measuring 5.5 by
6 cm. This lesion exhibited a hypodensity relative to the surrounding cerebral tissue in the
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pre-contrast phase and demonstrated moderate inhomogeneous enhancement following
the administration of an iodinated contrast agent. There was a significant mass effect on the
third ventricle, accompanied by a notable midline shift of approximately 1 cm, indicative of
subfalcine herniation. Apart from the described pathology, the cerebroventricular system
presented a normal tomodensitometric appearance. Native brain MRI with paramagnetic
substance highlighted the previously described tumor formation, hypointense in T1 and
hyperintense in T2 with discrete and inhomogeneous intake after administration of gadolin-
ium DTPA and infiltrative character suggestive of a high-grade glioma. Otherwise, the
normal appearance of the brain was highlighted in the T1 and T2 weighted sequences and
after administration of paramagnetic substance (Figures 1–3). The cystic component of the
lesion was characterized by a cyst containing fluid of a yellowish hue and oily consistency,
exhibiting a density exceeding that of cerebrospinal fluid, indicative of its hematogenous
origin (absorbed blood). The solid portion is highly vascularized, presenting a reddish
coloration and possessing a soft texture amenable to aspiration.
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Figure 1. Preoperative MRI T1 and T1 Gd sequence, axial and coronal section. MRI T1 Gd-sequence
axial section (A) and MRI T1 coronal section (B) both depict a thalamic glioma (red arrows), with
a diameter of 4.5 cm in figure (A) and 4.8 cm in figure (B). Moreover, an important displacement
of about 1 cm of the midline, with signs of subfalcine engagement (blue arrows) and infiltrative
character suggestive of a high-grade glioma (green arrows) is present in both images.
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with marked mass effect on the third ventricle (blue arrow). The hyperintensity on T2-weighted images
with heterogeneous and subtle enhancement following the administration of gadolinium DTPA exhibits
an infiltrative nature suggestive of a high-grade glioma. The glioma measured 5.5 × 6 cm, associated
with a significant midline shift of around 1 cm.
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Figure 3. Preoperative MRI T2-FLAIR sequence, sagital section. MRI T2-FLAIR sequence sagital
section depict a thalamic glioma (red arrow), with an infiltrative character suggestive of a high-grade
glioma (green arrow). The glioma has a diameter of 6 cm.

Surgery was performed on the tumor, and gross total tumor resection was achieved,
utilizing a parieto-occipital surgical approach on the designated side. The transcortical
access was used to approach the neoplasm, subsequently followed by stepwise ablation
under magnification with microsurgical tools. Efforts were made to preserve the vascular
structures at the specific level, including the thalamostriate veins along with their tributaries,
and the perforating branches emanating from the posterior cerebral artery that penetrate the
tumor. A postoperative brain CT scan was conducted, which confirmed the quasi-complete
resection of the tumor and an area of right thalamic hypodensity and right deep parietal
of sequelae aspect. Otherwise, there was a normal cerebroventricular tomodensitometric
aspect. There were no signs of bleeding in the tumor bed (Figure 4).
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operative CT scan that confirmed the gross total resection of the tumor, an area of right thalamic
hypodensity and right deep parietal of sequelae aspect (red arrows).
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Postoperatively, the patient presented without significant neurological impairments,
exhibiting only minimal sensory deficits on the left side, absent paresis, and left-sided
hemihypesthesia. A treatment regimen comprising whole-brain radiotherapy alongside
chemotherapy with temozolomide was initiated. During the initial treatment cycle, both
modalities were employed concurrently, as radiotherapy is known to enhance the per-
meability of the blood–brain barrier to temozolomide, thereby facilitating its therapeutic
efficacy.

Histopathological examination revealed the dense cellularity, nuclear pleomorphism,
and areas of necrosis were consistent with aggressive tumor behavior, often seen in high-
grade astrocytomas. These necrotic regions are frequently surrounded by pseudopalisading
cells, a key histopathological feature of glioblastomas (Figure 5) [15].
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Figure 5. These images obtained after anatomic pathologic examination provide a comprehensive
morphological and molecular overview of high-grade gliomas, supporting their classification and
potential molecular pathogenesis. Section (A): Hematoxylin and Eosin stained section of a high-
grade glioma with necrosis and cellular pleomorphism. Section (B): ATRX expression in high-
grade glioma. Section (C): IDH1 mutation expression in high-grade glioma. Section (D): Negative
Vimentin expression in oligodendroglioma-like cells within a high-grade glioma. Section (E): The
positive nuclear staining is indicated by the brown coloration within the cell nuclei, suggesting
active proliferation. The intensity of the staining is moderate, and there appears to be a moderate
density of stained nuclei. Section (F): The image shows higher nuclear positivity compared to the
left, indicating a higher proliferation rate, typical of more aggressive tumors. The homogeneous
distribution of positive nuclei suggests high tumor cellularity and malignancy, which is characteristic
of high-grade gliomas. Section (G): The brown cytoplasmic staining indicates vimentin-positive cells,
which are more typical of astrocytic differentiation. The presence of vimentin in this image may
suggest a mesenchymal or astrocytic component of the tumor, often associated with more invasive or
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aggressive behavior in gliomas. Section (H): This absence of staining might indicate the presence of
an oligodendroglioma, which typically lacks vimentin expression, supporting differentiation toward
the oligodendroglial lineage.

Loss of ATRX expression, often coupled with IDH1 mutations, is common in gliomas
and is associated with specific subtypes such as astrocytomas. ATRX loss correlates with
chromosomal instability, contributing to tumor progression [16].

IDH1 mutations are frequently associated with secondary glioblastomas and confer
a better prognosis compared to IDH1 wild-type gliomas. These mutations are critical for
determining the molecular classification of gliomas, influencing treatment strategies [17].

The lack of vimentin staining in this oligodendroglioma-like cell population may
indicate a shift towards oligodendroglial differentiation. Vimentin, typically a marker for
mesenchymal cells, is commonly found in astrocytic tumors but may be absent or less
prominent in tumors exhibiting oligodendroglial characteristics [18].

3. Discussion

The WHO 2021 Classification of Central Nervous System Tumors delineates gliomas
based on their predominant occurrence in either adults (termed “adult-type”) or children
(“pediatric type”), acknowledging that pediatric tumors can manifest in adults, particu-
larly young adults, and adult tumors may infrequently be observed in children. In this
updated classification, adult-type diffuse gliomas are categorized into three distinct groups:
astrocytoma with IDH mutation, oligodendroglioma characterized by IDH mutation and
1p/19q co-deletion, and glioblastoma with IDH wild-type status. Pediatric-type diffuse
gliomas are less common, with circumscribed gliomas and glioneuronal tumors such as
pilocytic astrocytoma and ganglioglioma being more prevalent in this group [19]. Low-
grade diffuse astrocytomas are distinguished by IDH mutations, and as per the WHO
CNS5, their prognosis is anticipated to be more favorable compared to the classification
under WHO 2016. Given the similar prognostic outlook for IDH-mutant grade 2 and 3
astrocytomas, the recent literature tends to classify these together as “diffuse low-grade
astrocytomas.” Conversely, the practice of aggregating “high-grade astrocytomas” (grades
3 and 4) is now advised against due to the distinct molecular profiles and clinical trajectories
of IDH-mutant grade 3 astrocytomas compared to IDH-wild-type grade 4 astrocytomas,
such as glioblastoma [19,20]. Astrocytoma IDH-mutant is now recognized as a singular
tumor entity, graded as CNS WHO 2, 3, or 4, with the term “anaplastic” being omitted.
Accordingly, astrocytoma IDH-mutant CNS WHO grade 3 is the designated nomenclature
for this classification [21,22]. Glioblastoma IDH-wild-type CNS WHO grade 4 is charac-
terized by the presence of necrosis and/or microvascular proliferation. It has been noted
that IDH-wild-type astrocytomas, classified histopathologically as grades 2 or 3 due to
the absence of necrosis or microvascular proliferation, exhibit clinical behaviors akin to
glioblastomas [23].

Extensive research indicates that glioblastoma multiforme may contain cells derived
from astrocyte-like neural stem cells located within the SVZ (Subventricular Zone), situated
just beneath the ependymal layer of the brain ventricles [24,25]. Lim et al. have observed
that GBMs in contact with the SVZ are more likely to present as multifocal at the time
of diagnosis [26]. The literature outlines that the choice of surgical approach for tumor
resection is influenced by the tumor’s epicenter and its proximity to the corticospinal
tract (CST) [27,28]. The most direct route from the cortex to the tumor is selected, taking
into account the tumor’s spread pattern and CST location [27]. A transcortical approach
is utilized for tumors located in the antero- or posterolateral thalamus that extend in a
superior lateral direction. Tumors in the posterolateral thalamus warrant a transcortical–
transventricular approach. For tumors situated in the medial and posterior superior
thalamus, an interhemispheric transcallosal approach is preferred [29]. Lateral thalamic
lesions are addressed with a trans-sylvian–transinsular approach, while posterior inferior
and medial posterior inferior thalamic lesions are approached via an occipital transtentorial
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method [30]. Anterior thalamic tumors are treated using a modified lateral supraorbital
(MLSO) approach [31].

Thalamic astrocytomas have the potential to cause epilepsy, although this is less fre-
quent compared to astrocytomas in regions such as the temporal or frontal lobes. Nonethe-
less, seizures may still occur due to the involvement of the thalamus in regulating neural
activity [32].

Seizures associated with thalamic tumors may arise due to the tumor’s impact on
adjacent brain structures or its involvement in thalamocortical circuits, which are crucial
for maintaining cortical excitability [33].

Thalamic astrocytomas are often associated with a poorer prognosis due to their deep
location, which poses challenges for complete surgical resection. Their proximity to vital
structures makes them more challenging to treat surgically, and they may exhibit a different
pattern of growth compared to astrocytomas in more accessible areas of the brain [5].

This unique localization also influences the types of symptoms experienced by patients
and may require tailored therapeutic approaches.

The established treatment for glioblastoma multiforme (GBM) encompasses surgical
intervention, concurrent temozolomide chemotherapy with radiotherapy, followed by six
cycles of adjuvant temozolomide. Data from the EORTC trial EORTC-26981/CAN-NCIC-
CE3 revealed that GBM patients exhibited a 6-month progression-free survival (PFS) rate of
53%, a median survival of 14.6 months, and a 2-year survival rate of 26.5% [34]. However,
the optimal duration of adjuvant chemotherapy in GBM patients remains undetermined,
leading to an increasing number of clinicians extending temozolomide therapy beyond
the initial six cycles. Balañá et al. reported that in Spain, 80.5% of neuro-oncologists
continued temozolomide therapy for more than six cycles [35]. Currently, several long-
term temozolomide treatments are employed, including the standard ‘5/28’ protocol (150 to
200 mg/m2 on days 1 to 5 of a 28-day cycle), the ‘1 week on-1 week off’ protocol (150 mg/m2

on days 1 to 7 and 15 to 21 of a 28-day cycle), and the dose-dense regimen (75 to 100 mg/m2

on days 1 to 21 of a 28-day cycle) [36–38]. In cases of recurrent glioblastoma multiforme
where surgery is not viable, alternative treatments such as stereotactic radiosurgery (SRS) and
supplementary chemotherapy are considered. The effectiveness and safety of SRS have been
variably reported, though it seems to offer potential benefits to specific patient subgroups,
particularly those with limited focal recurrences [39]. Within the recurrent GBM popula-
tion, Friedman et al. reported an overall survival of 9.2 months following bevacizumab
treatment [40], while Desjardins et al. documented an OS of 9.3 months with a combination
of bevacizumab and temozolomide [40]. Other research has consistently presented similar
or reduced survival durations following various chemotherapeutic approaches for GBM
recurrence.

Recent genomic studies have identified unique genetic alterations that delineate dis-
tinct subsets of glial tumors, influenced by factors such as tumor classification, patient
age, and tumor origin. Notably, novel histone mutations have been identified in thalamic
tumors, predominantly in pediatric and young adult populations [41,42]. Although diffuse
midline gliomas harboring the histone H3-K27M mutation are characterized by aggressive
clinical manifestations and unfavorable outcomes, recent investigations suggest that this
mutation in thalamic gliomas of adult patients may not necessarily correlate with a poorer
prognosis compared to those without the mutation [13,43,44]. This indicates a degree of
molecular heterogeneity within this group, underscoring the need for further extensive
studies to assess the therapeutic potential of targeting histone-modifying enzymes in adult
thalamic glioblastoma cases [27,45]. While studying the literature on thalamic gliomas, we
have delved into studies that presented significant contributions to the field, some of them
being listed in Table 1.
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Table 1. Studies emphasizing microsurgical treatment of thalamic gliomas. No = number of patients; F/M = female/male patients; GTR = gross total resection;
STR = subtotal resection; PR = partial resection; NA = Not available.

First Author and Year Age
(Median) Sex, No of Patients

Tumor
Volume

(Median)
Extent of Resection Neurological Complications Surgical Complications

M F GTR STR PR Motor
Deficits

Sensory
Deficits

Visual
Deficit Hemorrhage Hydrocephalus

Sai Kiran NA et al.,
2013 [27] 29 15 7 NA 9 13 16 16 NA NA 0 9

Lim J et al., 2021 [29] 42 19 patients 26 cm3 11 7 6 6 3 3 5 3

Esquenazi et al.,
2018 [46] 53 31 26 13 cm3 0 57 35 35 14 14 5 27

Niu X et al., 2020 [47] 41 56 46 4 cm3 46 50 NA NA NA NA 4 11

Nishio S et al.,
1997 [48] 24 11 9 NA 1 0 5 2 3 3 NA NA
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Multiple studies examine the complexities involved in the surgical management of
thalamic gliomas, consistently highlighting the challenges of achieving complete resection
due to their difficult anatomical location. The research collectively indicates that, even with
the use of advanced surgical techniques, these tumors are frequently associated with high
morbidity and poor prognosis [6].

Several studies have examined the surgical outcomes of thalamic gliomas, empha-
sizing that limited access to these deep-seated tumors and the high risk of postoperative
complications are key factors contributing to their generally poor prognosis [49].

4. Conclusions

In wrapping up our debate about this patient’s case, this study highlighted various
significant aspects of the pathology of high-grade thalamic gliomas. Preoperative neu-
rological deficits were important factors that guided the neurosurgeon to an adequate
prognosis. The special location, considerable size, and histopathological type of glioma
make this case a real challenge for a neurosurgeon. Moreover, after gross tumoral resection,
the patient experienced a favorable postoperative outcome with no significant neurological
impairments. The individual displayed only minimal sensory deficits on the left side
without paresis and experienced left-sided hemihypesthesia. The treatment regimen was
initiated, incorporating whole-brain radiotherapy combined with chemotherapy using
temozolomide. This approach was particularly chosen because radiotherapy has been
shown to increase the permeability of the blood–brain barrier to temozolomide, enhancing
the drug’s efficacy. This case illustrates the effectiveness of integrating surgical intervention
with a targeted postoperative treatment plan to manage brain-tumor-related conditions,
emphasizing the importance of tailored therapeutic strategies to optimize patient outcomes.
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