
Article https://doi.org/10.1038/s41467-024-55243-5

Turning attention to tumor–host interface
and focus on the peritumoral heterogeneity
of glioblastoma

Fang Wang1,2,7, Jiawei Dong1,3,7, Yuyun Xu4, Jiaqi Jin1, Yan Xu1, Xiuwei Yan1,
Zhihui Liu1, Hongtao Zhao1, Jiheng Zhang1, Nan Wang1, Xueyan Hu1, Xin Gao1,
Lei Xu1, Chengyun Yang1, Shuai Ma1, Jianyang Du 1, Ying Hu 1,5 ,
Hang Ji1,6 & Shaoshan Hu 1

Approximately 90% of glioblastoma recurrences occur in the peritumoral
brain zone (PBZ), while the spatial heterogeneity of the PBZ is notwell studied.
In this study, two PBZ tissues and one tumor tissue sample are obtained from
each patient via preoperative imaging. We assess the microenvironment and
the characteristics of infiltrating immune/tumor cells using various techni-
ques. Our data indicate there are one or more regions with higher cerebral
blood flow in PBZ, which we collectively name the “higher cerebral blood flow
interface” (HBI). The HBI exhibited more neovascularization than the “lower
cerebral blood flow interfaces” (LBI). The HBI tend to have increased infiltra-
tion ofmacrophages and T lymphocytes infiltration comparedwith that in LBI.
There are more tumor cells in the HBI than in LBI, with substantial differences
in the gene expression profiles of these tumor cells. HBImay be the key area of
PBZ-targeting therapy after surgical resection.

Glioblastoma (GBM) is the most common primary malignant tumor of
the central nervous system in adults, with a median survival time of
~15months and a 5 year survival rate of <8%, despite multimodal
treatments involving surgery, radiation and chemotherapy1–3. Impor-
tantly, approximately 90% of recurrences occur within 2 cm of the
resection margin; however, the majority of studies have been focused
on the core tumor area and few studies have been focused on this
zone4–6.

The obvious hallmark of GBM is a high degree of intratumoral
heterogeneity7. The heterogeneity ofGBMcancer cells is characterized
by regional differences in gene expression, as well as nonuniform
representation of key gene mutations and mixed cytological
subtypes8. GBMheterogeneity is not only limited to the tumor core but
also involves the peritumoral brain zone (PBZ). The PBZ is usually

defined as the surrounding zone of the tumor, without contrast
enhancement on T1 gadolinium-enhancedMRI9,10. Several studies have
been conducted on the imaging characteristics of PBZ, and the results
suggest thatheterogeneity extendsbeyond the tumormargins into the
peritumoral brain parenchyma11,12. Histopathological studies of PBZ
have shown that some regions, such as the peritumoral edema region,
have different characteristics thanothers13. Primary cell culture studies
revealed that the infiltrating tumor cells in the PBZ differed phenoty-
pically from those isolated from the corresponding tissues14. These
studies offered further supportive evidence that the PBZ of GBM is
widely heterogeneous.

Here, we aim to explore the morphological and molecular het-
erogeneity of the PBZ in depth. In this study, we performmultiregional
sampling of the PBZ and tumors based on preoperative magnetic
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resonance imaging (MRI), intraoperative surgical navigation with
HoloLens glasses, and microscope imaging. One or more relatively
high cerebral blood flow regions in the PBZ, whichwe collectively term
the “higher cerebral blood flow” (HBI) of GBM, are identified using
various techniques, including histopathology, and single-cell RNA
sequencing (ScRNA-seq). Our results suggest that the HBI provides the
tumor blood supply and is the main region of tumor/immune cell
infiltration; thus, the HBI is a potential site of tumor growth after
surgery. We also highlight avenues for future research on the HBI of
GBM that may provide a valuable reference for optimizing surgical
resection and postoperative stereotactic radiotherapy or photo-
dynamic therapy.

Results
Overall characteristics of the study population
A total of 26 patients with IDH-wildtype GBM were included in the
study. There were 10 (38.5%) female patients and 16 (61.5%) male
patients, with a mean age of 56.5 ± 13.1 years. The detailed clinical and
pathological information listed in Supplementary Table 1was obtained
from medical records and pathology reports.

Segmentation and features of the LBI and HBI regions on MRI
The PBZs of multiparametric MR slices with visible tumors were
annotated by two senior radiologists and one neurosurgeon into the
HBI (higher CBF regions, red dashed circles) or LBI regions (details are
given in the Methods section) (Fig. 1a). A pseudo-continuous arterial
spin labeling (ASL) sequence was used to map PBZ perfusion and
generate cerebral blood flow (CBF) maps in this study, and we noted
one or more areas of relatively high perfusion in the PBZ (Fig. 1a;
Supplementary Fig. 1a). The higher CBF zone in the PBZ was high-
lighted by a three-dimensional image system (Fig. 1b; Supplementary
Fig. 1b), which was also used intraoperatively to ensure a more precise
sampling. Furthermore, wemeasured the volume of HBI and calculated
the proportion of HBI to PBZ and tumor volume. ThemeanHBI volume
is 1.68 ± 1.13 cm3, the proportion of HBI(the elevated CBF zone) was
7.09 ± 4.39% (to PBZ) and 3.66 ± 1.84%(to Tumor). The detailed data
was documented in Supplementary Table 2. The regional CBF value
(measured with ASL) and ROIs of each biopsy sample were recorded in
Supplementary Table 3. Overall, the average CBF of LBI and HBI biopsy
regions were 28.58 ± 18.12 and 52.91 ± 22.75, respectively.

Supplementary Fig. 1a shows the multimodal MRI characteristics
of the HBI regions in different brain regions of the GBM. It should be
emphasized that both HBI and LBI were located in the PBZ regions that
without contrast-enhancing on contrast enhanced T1w (T1CE) image.
To further contrast the radiographic features on T1CE, the normalized
MRI values of the three regions were statistically analyzed. The results
indicated that normalized MRI values of Tumor were significantly
higher than that of LBI(p =0.0005) and HBI(p =0.0028), and did not
report differences between the LBI and HBI(p =0.6131) (Supplemen-
tary Fig. 1d). We subsequently reconstructed the fiber tracts sur-
rounding the peripheral tumor border of some patients (n = 8) and
assessed the integrity of the fiber bundles in the PBZ using DTI-based
tractography. The nerve fiber bundles of the two areas (HBI and LBI)
were further compared. We observed a decrease in and disruption of
fiber tracts in the HBI zone, however, in the LBI region, the nerve fiber
bundles exhibited a displacement/oedematous phenomenon (6 out of
8) (Supplementary Fig. 1c). Statistical analysis of the fractional aniso-
tropy (FA) values supported the assertion of disruption of the nerve
fiber bundles (Supplementary Fig. 1e). The above results further con-
firm the existence of heterogeneity in the PBZ, and theHBImay require
more attention.

Histopathological features of the HBI and LBI
Figure 1c shows the representative morphology and structure of the
different tumor border zones by light microscopy. The boundary

between the LBI (blue triangles) and tumor (blue circles) regions is
relatively clear, and a poor blood supply to the tumor in this area can
be observed. Conversely, the HBI tissue (blue pentagram) had a blurry
boundary, a rich blood supply and a disorganized structure (Fig. 1d).

The histological characteristics of the transitional border zone
(LBI/HBI) were subsequently assessed using HE staining (Fig. 1e). The
HBI was characterized by a disorganized tissue structure, abundant
mitotic figures, widespread infiltrating neoplastic cells and numerous
newly formed vessels. There were numerous dilatations and thickened
dysmorphic vessels in the tumor core and abundant neovasculature in
the HBI area. However, the observations in the LBI regions were the
opposite, a finding that is consistent with the microscopy observa-
tions. These results confirm that the histopathological features of the
HBI and LBI regions differ markedly.

ScRNA-seq further highlights heterogeneity in the PBZ
A total of 30 tissues from 10 individuals were used for scRNA-seq
analysis. In total, 209,762 cells from 10 patients were sequenced, and
39 clusters were obtained (Fig. 2a, b). The predicted cell types were
validated using known cell type selective markers (Fig. 2c, Supple-
mentary Fig. 2). Finally, we identified 11 distinct cell types in the data-
set, and the proportions of individual cell types in each sample are
shown (Supplementary Fig. 3a). The proportions of individual cell
types in these 3 regions differedmarkedly fromone another (Fig. 2d, e
and Supplementary Fig. 3b). These preliminary scRNA-seq results
further revealed the heterogeneity of the PBZ. Therefore, we next
sought to explore the differences among these 3 regions.

Local vascular characteristics andmicroenvironment of the HBI
Next, we explored the vascular characteristics of the three regions (the
HBI, LBI and Tumor core). CD31 was used as an endothelial marker.
Consistent with the HE staining results (Fig. 1e), more neovascular-
ization was observed in the HBI than in the LBI. The vasculature in the
tumor core was characterized by hypervascularity and was irregularly
shaped, dilated and tortuous (Fig. 3a, Supplementary Fig.4a). Quanti-
tative analysis revealedmarked differences in CD31 expression among
the 3 regions (Fig. 3b). Indeed, endothelial cells in tumor regions have
been shown to have a highly unique gene expression pattern com-
pared with derived from normal tissues15,16. Moreover, we were inter-
ested in ascertaining the expression profiles of genes differentially
expressed between vascular endothelial cells in the HBI and LBI. Next,
we compared the vascular endothelial cells in these two areas. Inter-
estingly, gene expression analysis revealed 1439 genes that were dif-
ferentially expressed (P < 0.05) in the endothelial cells of the HBI
compared with those in the endothelial cells of the LBI, including 784
highly expressed genes, such as MMP9 (Fig. 3c). KEGG enrichment
analysis of the upregulated differentially expressed genes revealed
that those genes were enriched mainly in metabolic, and signal
transduction-related pathways, such as the PI3K-Akt and HIF-1 signal-
ing pathways (Fig. 3d). GO enrichment analysis revealed that the
upregulated differentially expressed genes were enriched mainly in
biological processes such as angiogenesis, cell differentiation and
protein binding (Fig. 3e, Supplementary Fig.4b). Research has fully
confirmed that MMP9 plays important roles in the infiltrative growth
of gliomas17. The results of immunohistochemistry and western blot
analysis revealed a lower expression ofMMP9 in the LBI than in theHBI
or Tumor core. However, no significant difference was found in the
expression levels between the HBI regions and Tumor core regions
(Supplementary Fig. 4c, d).

Subsequently, we evaluated the expression of three representa-
tive angiogenesis-related genes (VEGFA, EGFR and HIF-1α) in each
region. The representative immunohistochemistry images and UMAP
plot revealed significantly higher expression of VEGFA, EGFR and HIF-
1α in the HBI and Tumor core than in the LBI (Fig. 3f, g). In addition, we
explored the expression levels of these two proteins in other patients
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using WB analysis. The results showed that the protein expression of
these three genes in the HBI was significantly greater than that in the
LBI (Fig. 3h).

Oxygen deficiency in the tumor microenvironment has been
linked to rapid tumor growth and metastasis18. To compare the
hypoxic signatures across regions, we calculated hypoxic signature
scores according to methods of Pilar et al.19. The hypoxic signature is
formed by: HIF-1α, SLC2A1, VEGFA, HMOX1, BNIP3, NOS2,MMP2, SOD3,
CITED2 and LDHA. MES-like tumor cells had the highest hypoxic score
among the 11 different cell types (Supplementary Fig. 4e). Interest-
ingly, a comparison of the hypoxic score of different cell types across

the three regions revealed a gradually increasing trend (Supplemen-
tary Fig. 4f). The total hypoxic score results for different regions also
revealed that there is a marked difference between the HBI and LBI
(Fig. 3i). The above results indicate that the HBI is a specialized area of
the PBZ in terms of vascular characteristics and the oxygen
microenvironment.

The HBI and LBI exhibit different immune compositions
Microglia, macrophages, neutrophils, and T cells are the major
immune cell determinants of the brain tumor microenvironment
landscape20. Thus, we further investigated the ratios of tumor‐
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Fig. 1 | Segmentation and features of the LBI and HBI. a PBZ segmentation and
identification of sampling sites in a representative patient (n = 26 independent
subjects). The red dashed circles denote the HBI areas. The red arrows point to the
HBI sampling sites and the blue arrows point to the LBI sampling sites. b Three-
dimensional reconstruction and visualization of the PBZ (The green area) around
the tumor (The yellow area). The red area indicates the higher CBF zone in the PBZ
(n = 26 independent subjects). c Morphology and structure of different tumor
boundaries under intraoperative light microscopy. The blue circles represent the

regions of the tumor, the blue triangle represent the region of the LBI and blue
pentagrams represent the region of theHBI (This phenomenon is beingobserved in
26 independent subjects with similar results). d HE staining characteristics of the
transitional border zone (LBI/HBI) (Green scale bar, 1mm; Black scale bar, 500μm)
(This experiment was repeated in 3 independent subjects with similar results). eHE
staining images showing the histopathology characteristics of the three regions
(Scale bar, 100μm) (n = 7 independent subjects, this experiment was repeated in 7
independent subjects with similar results).
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infiltrating immune cells via scRNA-seq analysis. UMAP plots showing
the distributions of macrophages, CD3 +T cells and neutrophils in
different regions. The proportions of macrophages and T cells in the
HBI were higher than those in the LBI (8.02% vs. 4.50%, 10.08% vs.
3.30%), and statistical analysis revealed significant differences
(P = 0.0051, P =0.0061). However, the proportion ofmacrophages was
not significantly different between theHBI andTumor (P =0.7251). The
proportion of T cells in the HBI was higher than that in the Tumor
regions (10.08% vs. 4.53%), but the difference was statistically sig-
nificant (P =0.0554)(Fig. 4a). Immunofluorescence was also used to
detect macrophage, CD3 + T-cell and neutrophil infiltration in the HBI,
LBI and Tumor regions. The quantified immunofluorescence results
revealed nearly similar results (Fig. 4b). However, there were no sig-
nificant differences in the infiltration levels of neutrophils among the
three regions (Fig. 4a, b).

Similarly, we analyzed the distribution of glial cell (Oligoden-
droglia, Microglia and Astrocyte) in each region (Supplementary
Fig. 5a, b). All 3 types of glial cells were significantly different in dis-
tribution between the HBI and Tumor core. However, only the pro-
portion of microglia significantly differed between the HBI and LBI.
These results suggest that there was a large difference in case of the
landscape of immune cell infiltration between HBI and LBI.

Anti-inflammatory (M2) macrophages have long been reported to
contribute substantially to the induction of the immunosuppressive
glioma microenvironment, and their elevation stimulates the malig-
nant progression of glioma21,22. Given the differences in the propor-
tions of infiltrated macrophages in the HBI and LBI regions. Pseudo-
time analysis of infiltrated macrophages was performed based on the
scRNA-seq data. Themacrophages were stratified according to the cell
state, pseudo-time and region (Fig. 4c). The predicted pseudo-time
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trajectory begins from the left branch and advances. Supplementary
Fig. 5c shows the pseudo-time trajectory of the macrophages in each
sample, respectively. Compared with macrophages in the LBI region,
more macrophages in the HBI region were distributed on the right
branch (State 9). This phenomenon was clearly more evident in the
Tumor core region (Fig. 4d). This seems to suggest that the macro-
phages in PBZ differentiated toward to a protumorigenic phenotype.
During this conversion, the genes with the most significantly changed

expression were C1QA, C2QA, FN1,HK2, S100A10 and S100A6 (Fig. 4e).
The heatmap revealed the top 50 genes expressed across the pseudo-
time trajectory in the three clusters (Supplementary Fig. 5d). Further-
more, Supplementary Fig. 5e shows the expression transition of four
M2 macrophages signature genes (CD163, MRC1/CD206, CSF1R, and
CLEC7A) in the pseudo-time analysis. Finally, the distribution of anti-
inflammatory macrophages and activated neutrophils in different
regions were analyzed via multi-color staining. Statistical analyses
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results indicate that the distribution of anti-inflammatory macro-
phages show significant differences between different regions but
activated neutrophils (Supplementary Fig. 5f, g).

Comparison of HBI and LBI tumor cell characteristics
Glioma is an invasive and infiltrative tumor, and we also observed
tumor cell infiltration in both the HBI and LBI regions. In comparison,
the proportions of three malignant cell types (AC-like, MES-like and
NPC-like) in the HBI region were higher than those in LBI region. Sta-
tistical analysis of the scRNA-seq data from 30 tissue samples also
revealed significant differences in the proportions of infiltrated tumor
cells between the HBI and LBI regions (Fig. 5a). The top 10 upregulated
genes of all the cells in HBI region comparedwith the other regions are
listed in Fig. 5b. Then, GO and KEGG analyses were subsequently
conducted on those upregulated genes, and the results revealed that a
number of cells in the HBI were involved in tumor-associated antigen
processing and presentation (Supplementary Fig. 6a, b).

To understand the molecular features of infiltrating cells in PBZ,
we investigated whether the gene expression profiles of tumor cells at
the two sites (HBI and LBI) were similar. Notably, there were massive
differences in the gene expression profiles of tumor cells in different
PBZ regions. For example, there were 420 significantly upregulated
and 273 significantly downregulated genes in HBI tumor cells com-
paredwith LBI tumor cells (Fig. 5d). The top 30differentially expressed
genes between neoplastic cells originating from the HBI or LBI are
listed, and genes associated with metastasis, and the proliferation of
tumor cells, such as DCX and MKI67, were significantly highly expres-
sed in tumor cells in the HBI region (Fig. 5c). KEGG analysis results
revealed that these upregulated differentially expressed genes were
also enriched mainly in the cell cycle, and the PI3K-Akt and HIF-1 sig-
naling pathways (Fig. 5e), which are closely related to cancer pro-
gression. Next, we compared the gene expression profiles of tumor
cells from the HBI region and Tumor core region, via the same
approach (Supplementary Fig. 6c-e). Given the above results, Ki67 was
selected to determine the proliferation rate in different regions, and
significant differences were observed between all other pairwise
comparisons (Fig. 5f). Both the UMAP plots and the results of the
immunohistochemical analysis suggest that the HBI is a special zone
which with more powerful proliferation potential in the PBZ (Supple-
mentary Fig. 6f and Fig. 5f).

The complex interactions between human glioma cells and their
immunological environments pose fundamental challenges to
immunotherapy23. Accordingly, we next explored the expression of
genes encoding for ligands of CTLA4 (CD80 and CD86), ligands of PD1
(CD274 and PDCD1LG2) and major histocompatibility complex (MHC)
class I genes on neoplastic cells from three regions (Supplementary
Fig. 6g). MHC class I genes (B2M,HLA-A, HLA-B, andHLA-C) were more
highly expressed on neoplastic cells in the HBI (Fig. 5g). This finding
agrees with the preceding results in the Supplementary Fig. 6a and 6b
that numerous cells in the HBI are involved in tumor-associated anti-
gen processing and presentation. Interestingly, the expression of
genes encoding for ligands of CTLA4 and PD1 in the PBZ (HBI and LBI)

were highly expressed in the Tumor core (Fig. 5g and Supplementary
Fig. 6g), which suggests that combination immunotherapy targeting
immune checkpoint pathways may be a feasible way to kill PBZ infil-
trated neoplastic cells, after the tumors are removed.

Cell–cell communication network and special cluster in HBI
microenvironment
Given the particularity of the HBI in the PBZ, we explored the inter-
cellular communication and signaling network in HBI. The search
revealed the top 3 closely related to tumorcells inHBIwereAstrocytes,
Endothelial and Macrophages (Fig. 6a, b). Further multiplex immuno-
fluorescence staining provided spatial information of intercellular
interactions in HBI. White arrows labels contact neoplastic cells adja-
cent to vessel, astrocytes and myeloid cells (Fig. 6d). Using a ligand-
receptor plot, we found that two significant ligand-receptor pairs
(BSG-PPIA, PTN-PTPRZ1) play the important roles in the intercellular
communication of 3 pairs cell-cell communication (Fig. 6c).

Furthermore, we also noticed a special subset, Cluster 37, which
was previously identified as AC-like tumors. The majority of cells in
Cluster 37 were from the HBI region and a small proportion were from
the Tumor core, but no cells originated from the LBI region (Fig. 6e).
Next, we listed the top 10 upregulated genes of cells in cluster 37
compared with the other clusters. Several genes, including EGFR and
AQP4, which are correlated with malignant progression in gliomas
were significantly upregulated in cluster 37 (Fig. 6f). KEGGanalysis also
revealed that the upregulated genes weremostly enriched in pathways
related to cancer. Notably, these genes were also enriched in signaling
pathways regulating the pluripotency of stem cells (Fig. 6g). Finally, we
further analyzed the Cluster 37 via pseudo-time analysis. The results
revealed two developmental trajectories of cells from cluster 37
(Fig. 6h). A portion of the cells differentiated toward the cells from the
Tumor core (Trajectory 1), and another portion of the cells developed
in different directions (Trajectory 2). Taken together, these findings
suggest the possibility of a distinct tumor cell subpopulation in the
HBI niche.

Distribution of glioma stem-like cells (GSCs) in different regions
GSCs are considered highly relevant to glioma initiation, progression,
therapeutic resistance and recurrence after treatment24. The KEGG
results described earlier also revealed that upregulated genes asso-
ciated with the HBI were enriched in signaling pathways regulating the
pluripotency of stem cells (Fig. 6g). Therefore, we further explored the
distribution ofGSCmarker gene expression via scRNA-seq analysis and
immunofluorescence staining. A total of 15 GSC marker genes were
selected from recent literature25–28. We visualized the expression of
GSC marker genes in 10 clusters (identified as malignant cells) with a
bubble plot. These results suggested that the GSC marker genes pre-
sented relatively high expression in Cluster 13, 10 and 14 (Fig. 7a). Thus,
these clusters were considered as GSCs in this study. The proportions
of GSCs in three regions of 10 patients were calculated based on the
scRNA-seq data, and the statistical analysis results revealed that
regional differences in the proportions of GSCs were quite marked

Fig. 3 | Microvascular characteristics and expression of angiogenesis-related
genes in 3 regions. a Immunohistochemistry for CD31 was performed to evaluate
for microvascular features (Scale bar, 100μm) (n=7 biological repeats with three
technical replicates per biological repeat). b Quantitative immunohistochemical
analysis ofmicrovascular tissue (Data are presented asmean ± s.e.m.), (n = 7, tissue
samples from 7 subjects). c Volcano plot showing differential expressed genes
between the HBI vascular and LBI vascular. d, e The GO and KEGG pathway
enrichment analysis of differentially expressed vascular genes. f Representative
immunohistochemical images of VEGF, EGFR and HIF-1α in 3 regions (Scale bar,
100μm) (n = 7 biological repeats with three technical replicates per biological
repeat). g UMAP feature plots showing the expression of the indicated genes (LBI:
68,326 cells, HBI: 68,521 cells, Tumor: 72,915 cells) (n = 10/group, tissue samples

from 10 independent subjects). h Expression of VEGF, EGFR and HIF-1α proteins
and quantitative analysis of the 3 regions (Data are presented as mean ± s.e.m.),
(n = 7, tissue samples from 7 subjects). i Differences in the expression of genes
related to the hypoxic signature comparing in cells based on classic hypoxic genes
in 3 regions (LBI: 68,326 cells, HBI: 68,521 cells, Tumor: 72,915 cells) (n = 10/group,
tissue samples from 10 independent subjects). Statistical analysis was performed
using two-tailed Student’s t-test in (b, h);Wilcoxon signed rank test was performed
in (i); the bimod statistical test was used in (c); GO analysis (e) was performed using
a hypergeometric distribution test; ns no significance. Box plots in (b, i) represent
themedian (center line), the 25th and 75th percentiles (bounds of the box). Source
data are provided as a Source Data file.
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(Fig. 7b). The bubble plot of GSCmarker genes in different regions also
indicated that the HBI region presented higher expression levels than
LBI region (Fig. 7c). The trend also holds true for three core tran-
scription factors (POU3F2, OLIG2 and SOX2), which can reprogram
differentiated GBM cells into tumor-propagating stem-like cells29.

Next, immunostaining of three GSCs markers (SOX2, OLIG2 and NES-
TIN) were used to visualize the distribution of GCSs in different
regions, and the quantitative analysis result were consistent with
the previous scRNA-seq data (Fig. 7d, e). Consistent with the literature,
we also found that some cancer stem cell niches were located in the
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Fig. 4 | Analysis of the immune microenvironment signature in 3 regions.
a Proportion and quantitative analysis of immune cell infiltration in different
regions based on single-cell data (Data are presented as mean ± s.e.m.), (n = 10,
tissue samples from 10 subjects) (LBI: 68,326 cells, HBI: 68,521 cells, Tumor: 72,915
cells). b Representative images and quantitative analysis of immunofluorescence
staining of immune cells (n = 7, tissue samples from 7 subjects) (Scale bar, 100μm).
c Pseudo-time analysis of macrophages (total 13,761 cells). Cells are colored based
on the state, pseudo-time and region, respectively (n = 10, tissue samples from 10

independent subjects). d Pseudo-time trajectory of macrophages from 3 regions
(n = 3077 cells in LBI, n = 5498 cells in HBI, n = 5,186 cells in Tumor), respectively
(n = 10, tissue samples from 10 independent subjects). e Pseudo-time gene
expression changes in the top 6genesused for trajectory analysis (total 13,761 cells)
(n = 10, tissue samples from 10 independent subjects). Statistical analysis is per-
formed using two-tailed Student’s t-test in (a, b), ns no significance. All box plots
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values. Source data are provided as a Source Data file.
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perivasculature (Supplementary Fig. 7)30. The preceding immunohis-
tochemistry and sequencing results verified that more micro-
vasculature was present in the HBI and tumor regions than in the LBI
region; this finding might be one of the reasons why there were more
GSCs in the HBI and tumor regions than in the LBI region.

Discussion
The PBZ contains not only infiltrating tumor cells but also many
functional normal brain tissues, and thus cannot be surgically
removed31. As a result, the tumoral bed is the main site of GBM
recurrence. Thus, it is necessary to change the focus from the tumor
core to the tumor periphery. Further understanding and local ther-
apy with PBZ are key to controlling glioma recurrence32. It is worth
mentioning here that the definition of PBZ in many studies is not
always clear5,33. It is usually defined radiologically as the brain area
surrounding the tumor without contrast enhancement in T1
gadolinium-enhanced MRI5,34,35. Consistent with most previous stu-
dies, the PBZ in this study was defined as the tissue surrounding the
contrast-enhancing lesion at a distance of <1 cm and was considered
the interface of the tumor and brain. Conventional structuralMRI has
numerous limitations for PBZ evaluation36. Multimodal MRI has been
increasingly applied to characterize the peritumoral area. Other
presurgical MRI techniques, such as diffusion and perfusion-
weighted imaging (PWI), may be useful for evaluating tumor cell
infiltration in the PBZ37. For example, the apparent diffusion coeffi-
cient (ADC) is sensitive to the diffusion of water and can decrease
while extracellular water diffusion is restricted due to the increase in
glioma cellularity. Blasel et al. reported a stripe-like pattern of rela-
tive CBV increase in the PBZ of GBM that may represent the area of
tumor growth after surgery38. In this study, the regions with higher
CBF were identified as the HBI before surgery. Bette et al. demon-
strated that it was possible to predict local tumor recurrence in the
non-enhancing peritumoral regions of the GBM by using the FA
value, which is the most widely used parameter of DTI39. We recon-
structed the fiber tracts in the PBZ, and the results revealed a
decrease and disruption of fiber tracts in the HBI zone, which may
indicate tumor invasion and infiltration in this zone through a variety
of mechanisms including ameboid invasion, and perineural
invasion40. Currently, HoloLens glasses are increasingly used for
surgical operations, particularly oncology41. In this study, the original
MR images were also used to visualize the reconstructions in three-
dimensions (3-D). Then, samples were collected from the three pre-
operative areas with the help of radiologists and HoloLens glasses
which contained edited the 3-D reconstructions information.

The local blood supplyprovides sufficient nutrients andoxygen to
the solid tumors to maintain tumor cell vitality and ensure significant
tumor growth42,43. Angiogenesis is a hallmark of GBM, and inhibition of
the VEGF pathway via antiangiogenic agents is thought to be a pro-
mising therapeutic strategy44. The results of this study clearly revealed
a greater number ofmicrovessels with proliferative endothelial cells in
the HBI than in the LBI, and several microvascular patterns, such as
garland-like vasculature, were observed in the Tumor area. Indeed, we
found that VEGFA and EGFRwere highly expressed in theHBI region. It
has been demonstrated that VEGFA and EGFR play crucial roles in
angiogenesis45,46. Since hypoxia stimulates hypoxia-inducible factor
and VEGF secretion in both tumor cells and tumor-associated stromal
cells and VEGF is a secreted protein under the transcriptional control
of HIF-1α, this is not completely unexpected47. These results are similar
to those of previous studies, Ramon F and collaborators reported the
correlation of the rCBV with histopathologic features such as micro-
vascular hyperplasia, hypoxia, based on image-guided tissue speci-
mens from contrast enhancement regions and the non-enhancing
margin(PBZ in this study)34,35.The scRNA-seq results also revealed that
VEGFA and EGFR were expressed mainly by infiltrating cancer cells.
Overall, our results highlight that the HBI serves as a suitable niche for

the proliferation and invasion of neoplastic cells; in turn, tumor cells
are further involved in shaping the local tumor microenvironment.

The recruitment of immune cells such as macrophages and T
lymphocytes in GBM and their potential to elicit tumor-specific
immune responses have been extensively studied6. Microglia and
macrophages are mononuclear cell types characterized by consider-
able plasticity and diversity. Many factorsmediate the chemoattraction
of resident microglia and peripheral macrophages to the GBM and the
PBZ48. In this study, the results suggested that the HBI tended to result
in more macrophage infiltration but fewer microglia than the LBI.
Komohara reported that the abundance of macrophages was not
associated with the differential survival of patients with GBM, but their
activation state has some prognostic value49. The increase in M2
macrophages stimulates the malignant progression of glioma21,22.
Interestingly, pseudo-time trajectory analysis ofmacrophages revealed
that macrophages in PBZ differentiated toward a pro-tumorigenic
phenotype. Furthermore, they are involved in M1 or M2 polarization in
different patients. These finding demonstrate the plasticity and diver-
sity of macrophages. Tumor-infiltrating lymphocytes are important
player in adaptive immunity. Although we observed higher T lym-
phocyte infiltration in the HBI, previous studies have indicated that a
highly immunosuppressive tumor microenvironment is present in
GBM50. Thus, the specific role of HBI-infiltrating lymphocytes requires
further investigation. Immunologically, the HBI appears to be a critical
battleground for tumor–body interactions.

Some studies have shown that residual tumor cells proliferate
more quickly and display alterations different from those of cells iso-
lated from the corresponding tumor mass14,51. In this study, we
observed tumor cell infiltration in both the HBI and LBI, and the HBI
was found to have a high level of tumor cell infiltration. Several pre-
vious studies have alsodemonstrated relationships between rCBVwith
tumor cell density in glioma34,35. Therefore, the use of perfusion ima-
ging technique to characterize tumor cell infiltration/density in the
PBZ has a sound theoretical basis and is promising. Moreover, infil-
trated tumor cells in HBI have distinct gene expression profiles com-
pared with those in LBI. For instance, DCX is highly expressed
infiltrated tumor cells in HBI, which is a marker for neural stem cells
and found to be related with the severity of cancer52. Both scRNA-seq
data and the results of the immunohistochemical analysis suggest that
HBI is a special zone which with increased proliferation potential in
PBZ. Overall, these results indicate that the cellular heterogeneity
exists not only inside the tumor, but also among PBZ regions. Under-
standing the biological mechanisms of PBZ-infiltrating tumor cells is
fundamental for understanding GBM recurrence and developing can-
cer cell-targeting clinical strategies.

A recent study by Garofano et al. presented a novel pathway-
based classification of GBM cell states and subtypes. As described in
their study, the GBM samples can be classified as NEU (neuronal), PPR
(proliferative/progenitor), MTC (mitochondrial), and GPM (glycolytic/
plurimetabolic)53. These samples are primarily the tumor core, which
may be quite different from that of the marginal region of the tumor,
for instance, the proportion of malignant cells. Nevertheless, the
tumor cells in HBI highly expressed VEGFA and had enriched GO terms
including glycolysis/gluconeogenesis, which are associated with the
GPM subtype. In further studies, the classification of PBZ-infiltrated
tumor cell states and subtypes may be a valuable direction.

GSCs are thought to self-renew and differentiate into different
lineages and are recognized as the cause of recurrence and treatment
resistance24. GSCs often concentrate around the tumor vasculature54.
Recent studies have also indicated the presence of highly infiltrative
GSCs in the PBZofGBM, as Lama et al. reported that GSCs are localized
at the PBZ and suggested their possible involvement in pre/protu-
morigenic events occurring in the tissue surrounding the GBM6,55.
Indeed, it was indicated in the literature that GBM may contain dif-
ferent pools of GSCs and/or a further hierarchy of stem andprogenitor
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cells. Furthermore,GSCmakers canmediate interactions between cells
and themicroenvironment and dynamically change56. First, our results
indicated obvious heterogeneity in the spatial distribution of GSCs
among HBI and LBI. We reasoned that more microvasculature in HBI
maybe accountable for thedrastic difference. ThedistributionofGSCs
in the PBZ of GBMneeds further investigation. Such investigationmay
be challenging, but the results will likely be interesting. We used a
schematic to show the local microenvironment of PBZ (Fig. 7f). Nota-
bly, several points require clarification. 1. The LBI and HBI were both
positioned at the PBZ of the GBM, and both contained infiltrating
tumor cells. 2. The HBI acts as the “soil” surrounding the “root” of
glioma, providing themajor source of nutrition for tumor progression.
3. Similarly, there are also more “tumor seeds” (GSCs) in this “soil”,
which can lead to GBM local recurrence in the PBZ. 4. The HBI appears
to be a critical location for tumor–body interactions, as more immune
cells infiltrate the HBI than the LBI. 5. This concept does not conflict
with “invasion”, and the HBI and invasion could better reflect the
characteristics of the PBZmicroenvironment. 6. Most importantly, the
HBI should be recognized as a relative concept, and there is no clear
dividing line between theHBI and the LBI.Moreover, one ormoreHBIs
may be present in the PBZ of the same patient with GBM.

Therewere several limitations in this study. First, HBI is a relatively
higher CBF region in PBZ. We could not provide a precise threshold of
regional CBF values of HBI due to the heterogeneity of patients.
Another limitation of our analysis is missing spatial transcriptomic
analysis. Vidhya et.al. explored the tumor-host interdependence in the
reactive-immune regions of GBM by using spatial transcriptomic
analysis57. Exploring the HBI by using multi-omics method is an inter-
esting and promising strategy. The other limitation of the present
study was the limited number of patients. We are also continuing to
expand the cohort and want to better delineate the characteristics of
PBZ heterogeneity in the future. Despite these limitations, this study
also demonstrated that we should perhaps turn attention from tumor
to tumor–host interface, and focus on the peritumoral heterogeneity
of glioblastoma.

Globally, tumor invasion and recurrence potentially occur in the
HBI; thus, the HBI is a potential critical area for PBZ-targeting therapy
(e.g., radiotherapy or photodynamic therapy) after surgical resection.
This study also provides a useful reference for further exploration of
PBZ heterogeneity in glioma and other solid tumors. Finally, the quest
for HBI is open, and more studies are needed to characterize this area
further.

Methods
Patient population
This study prospectively recruited patients from two medical centers
with suspected cerebral GBM on conventional imaging and for whom
surgical treatment was considered. Patients whose tumors were his-
tologically determined to be non-GBMwere excluded. Ethical approval
for the study was obtained from the Ethics Committee of the Second
Affiliated Hospital of Harbin Medical University (Ethics no. KY2021/
172) and the Ethics Committee of Zhejiang Provincial People Hospital
(Ethics no. 2021JS043). Ethical principles set out by the Declaration of
Helsinki were strictly followed, andwritten consent was obtained from
each patient in this study. Sex was determined by self-reporting, and it
was not considered for study design due to limitations in the
exploratory nature of the study design and inadequate sample sizes.
Thedetailed clinical andpathological information of patients are listed
in Supplementary Table 1. We have also obtained written informed
consent from all patients to publish their clinical information poten-
tially identifying individuals.

MRI scans and imaging processing
All patients underwent routine andmultimodalMRI evaluation using a
3.0 Tesla scanner (Premier, GE Healthcare, USA) 48–72 h before

surgery. The sequences included T1-weighted imaging (axial
spin–echo (SE) sequences, repetition time (TR) = 2,242.2ms; echo time
(TE) = 29.5ms; field of view (FOV): 240 * 240mm2; matrix:512 * 512;
slice thickness: 5mm without slice gap), T2-weighted imaging
(axial turbo SE sequences: TR= 4,256.5ms; TE = 90.1ms; FOV:
240 * 240mm2; matrix:512 * 512; slice thickness: 5mm without slice
gap), contrast-enhanced imaging (TR = 4852ms; TE = 10.7ms; FOV =
240 * 240mm2; matrix:128 * 128; slice thickness = 4mm; 18 slices
without slice gap), pseudo-continuous ASL(pCASL) (TR = 4891ms;
TE = 10.6ms; post-labeling delay time = 2025ms; FOV = 240*240mm2;
Flip angle = 111°; slice thickness=4.0mm; NEX = 3), diffusion-weighted
imaging (DWI) (single-shot SE echo-planar sequence: TR = 3467ms;
TE = 77.1ms; flip angle = 90; FOV: 240*240mm2;matrix:256 * 256; slice
thickness =6-7.5mm, diffusion sensitizing gradients were applied
sequentially in the X, Y, and Z directions with b values of 0 and
1000mm2/s.), and diffusion tensor imaging (DTI) (single-shot echo-
planar sequence: TR = 8000ms; TE = 96.6ms; flip angle = 90; FOV:
260*260mm2;matrix: 256*256; slice thickness = 4-4.4mm; b values (0,
1000mm2/s) scanned in 24 directions). The original MR images were
transferred to aworkstation (GE AdvantageWorkstation 4.7). Function
Tool software was used to manually correct and denoise the images,
and finally, images demonstrating cerebral blood flow (CBF) images
were obtained. Regions of interest (20mm2) were selected by two
senior radiologists and one neurosurgeon.

Analysis of ASL data
The raw ASL image data were imported to a GE workstation (ADW4.7)
to generate CBF maps. This software processes pCASL data in a stan-
dardized one-click mode. The CBF maps were subsequently pre-
processing using statistical parametric mapping (SPM, http://www.fil.
ion.ucl.ac.uk/spm/software/spm12) implemented in MATLAB, which
included registration, partial volume correction, normalization, and
smoothing. Briefly, the T1-weighted images and the CBF map were
reoriented to Montreal Neurological Institute (MNI) space and cen-
tered on the anterior commissure for subsequent segmentation and
spatial normalization. Finally, smoothing was performed with an iso-
tropic Gaussian kernel filter of 6mm full width at half max-
imum (FWHM).

3-D model construction and tissue procurement
The original structural and CBF MR images were also used to visualize
the PBZ reconstructions in three-dimensions (3-D) on a medical ima-
ging support platform (Tuomeng Technology, http://www.hljtmkj.
com) before surgery. The patients’ imaging data were analyzed by
senior neurosurgeons and radiologists, and then two PBZ areas (from
different regions) and one tumor area were identified as follows: 1. The
parenchymal part of the tumor (contrast-enhancing lesion), 2. The HBI
area (which does not contain an important functional area, such as a
language or motor center) (higher CBF area) and 3. The LBI area (the
area usually has a lower CBF and far from the HBI).

Notably, in this study, the PBZ (consisting of HBI and LBI) was
defined as the tissue surrounding the contrast-enhancing lesion at a
distance of <1 cm and was considered the interface of the tumor and
brain. PBZ areas sampling were performed only when the following
conditions were satisfied simultaneously: 1. Preoperative MRI showed
significant T2 FLAIR abnormality area surrounding the CE area. 2.
Senior surgeon believe that partial resection of non-CE area beyond
the CE tumor borders is beneficial but also harmless to the prognosis
of patients. 3.The patients who finally received “Supramaximal Safe
Resection”. That is, non-CE FLAIR abnormality was partly removed in
addition to gross total resection of the CE component of the
tumor58–60. 4.The sampling locations of HBI and LBI, as determined by
preoperative ASL-CBF imaging, were located in the non-CE area plan-
ned to be excised before surgery. 5.Individuals gave written informed
consent for the sample donation.
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Subsequently, imaging experts edited the 3-D reconstructions to
enhance visualization by assigning particular color and opacity values
to voxel ranges. The processed imaging data of all enrolled patients
were finally stored in stereolithography (STL) format and downloaded
using HoloLens glasses. Tumor resection was performed by a senior
neurosurgeon, and samples were collected from the three pre-
operative areas with the help of HoloLens glasses and radiologists,
allowing documentation and correlation of the location of the tissue
removed with the preoperative images. The majority of the tumors
were sent to the Department of Pathology for standard pathological
examination and tumor grade determination. A sample of each tissue
sample was stored in liquid nitrogen. A further sample was immersed
in buffered formalin. A third sample was placed in serum-freemedium
and sent to the laboratory for follow-up analysis.

Sample processing for scRNA-seq
The tissues were washed repeatedly with phosphate-buffered saline
(PBS), and as much extraneous tissue and blood as possible were
removed. Then, the tissues were dissociated into single cells in dis-
sociation solution (0.35% collagenase IV5, 2mg/ml papain, 120 units/
ml DNase I) in a 37 °C water bath. The viability of filtered single cells
was assessed via trypan blue (Thermo Fisher Scientific, Waltham, MA,
USA) using ahemocytometer (ThermoFisher Scientific). The cells were
resuspended in 100μl DeadCell RemovalMicroBeads (MACS 130-090-
101), and dead cells were removed using a Miltenyi ® Dead Cell
Removal Kit (MACS 130-090-101). Next, the living cells were loaded on
aChromiumSingleCell Controller to generate aGel Bead-In-EMulsions
containing all cDNAs.

Single-cell suspensions were loaded onto 10x Chromium to cap-
ture single cells according to the 10X Genomics Chromium Single-Cell
3’ Kit (V3) manufacturer’s instructions. The subsequent cDNA ampli-
fication and library construction steps were performed according to
standard protocols. Libraries were sequenced on an Illumina NovaSeq
6000 sequencing system (paired-end multiplexing run, 150bp) by LC-
Bio Technology (Hangzhou, China) at a minimum depth of 20,000
reads per cell.

ScRNA-seq data analysis
The sequencing results were demultiplexed and converted to FASTQ
format using Illumina bcl2fastq software. Sample demultiplexing, bar-
code processing and single-cell 3’ gene counting were performed by
using the Cell Ranger pipeline (https://support.10xgenomics.com/
single-cell-geneexpression/software/pipelines/latest/what-is-cell-ranger,
version 3.1.0). The Cell Ranger output was loaded into Seurat (version
3.1.1) for dimensional reduction, clustering, and analysis of the scRNA-
seq data. When applying quality control, we set the criteria as min gene
>500 and proportion of mitochondria <25% following doublet filtering
via the R package ‘DoubletFinder’(v2.0.3), the detailed information is
also provided in Supplementary Table 4. The cells were normalized to
the total unique molecular identifier read count as instructed in the
manufacturer’s manual (http://satijalab.org/seurat/). After log-
normalizing the data, a principal component analysis was performed
to reduce dimensionality. We then used the Find Neighbors and Find
Clusters functions in the Seurat package for cell clustering analysis and
displayed the 2D map via tSNE/Umap. The cell types were determined
via a combination of marker genes identified from the literature and
gene ontologies for cell types.

The expression of selected genes was plotted with the Seurat
function FeaturePlot and VlnPlot. Heatmaps were generated via the
heatmap function in Seurat. An advanced single-cell volcano plot was
generated via the OmicStudio tools at https://www.omicstudio.cn/
tool. Single-cell trajectory analysis was performed via the OmicStudio
tools at https://www.omicstudio.cn/analysis/tenXMonocle. CellPho-
neDB Python package was using to conduct Cell-Cell interaction and
Cellular communication analysis. The GO analysis was performed

based on the Database of Annotation, Visualization and Integrated
Discovery (DAVID, https://david.ncifcrf.gov/). The KEGG pathway
analysis was conducted the same way as the GO analysis. A pathway
with an adjusted P <0.05 was considered significant. ScRNA-seq data
analysis was performed using the OmicStudio tools created by LC-BIO
Co., Ltd (HangZhou, China) at https://www.omicstudio.cn/cell.

Immunohistochemistry
The tissues were formalin-fixed, paraffin-embedded and sectioned at a
thickness of 4 µm. The histological characteristics were assessed via
hematoxylin and eosin (HE) staining. The immune complexes were
detected with an SP Kit (Solarbio, Beijing, China) and a DAB Substrate
Kit (Solarbio, Beijing, China). The sections were treated with goat
serum for 1 h at room temperature and then incubated with the anti-
bodies at 4 °C overnight as follows: CD31(1:500, abcam, ab9498),
VEGFA(1:200, Wanleibio, WL00009b), EGFR(1:200, Wanleibio,
WL0682a), HIF-1α(1:500, proteintech, 20960-1-AP), MMP9(1:500,
proteintech, 10375-2-AP), Ki67(1:2000, proteintech, 27309-1-AP).
Finally, sections were incubated in secondary antibodie (Goat Anti-
Rabbit IgG H&L(1:500, abcam, ab6721), Goat Anti-Mouse IgG
H&L(1:500, abcam, ab6789)) for 1 h at room temperature. The signals
were detected using an Olympus BX41 microscope. The antibody
information is listed in Supplementary Table 5. Quantitative analysis of
immunohistochemistry were calculated using the IHC toolbox plugin
(IHC Profiler) of Image J Software (Vesion1.48, National Institutes of
Health, Image J system, Bethesda, MD, USA).

Western blotting
The tissueswerewashed repeatedly with PBS, then lysed inRIPA buffer
(50mM Tris (pH 7.4), 150mM NaCl, 1% Triton X-100, 1% sodium
deoxycholate, 0.1% SDSwith protease inhibitors) and incubated on ice
for 30min. Finally, the samples were centrifuged at 12,000 × g at 4 °C
for 15min. Western blotting was performed using SDS–PAGE with
40mg of total protein per sample. The membranes were blocked with
TBS-T supplemented with 5% nonfat dry milk for 1 h and subsequently
incubated with primary antibodies overnight at 4 °C(VEGFA (1:1000,
Wanleibio, WL00009b), EGFR(1:1000, Wanleibio, WL0682a), HIF-
1α(1:2000, proteintech, 20960-1-AP), MMP9(1:1000, proteintech,
10375-2-AP), β-actin(1:1000, Beyotime, AF0003)). The samples were
incubated with secondary antibodies at room temperature in the dark
for 1–2 h (Goat Anti-Rabbit IgGH&L(1:5000, abcam, ab6721), GoatAnti-
Mouse IgG H&L(1:3000, abcam, ab6789)). Blotting band intensities
were quantitated densitometrically using ImageJ software (Vesion1.48,
National Institutes of Health, Image J system, Bethesda, MD, USA). The
antibody information is listed in Supplementary Table 5.

Immunofluorescence staining
The samples were fixed in 4% paraformaldehyde for 2 h, followed by
overnight cryoprotection with 25% sucrose in PBS at 4 °C. Frozen OCT
sections (thickness of 10 µm) were thawed at room temperature for
20min, rinsed and rehydratedwith PBS. After blocking for 1 hwith PBS
buffer containing 10%goat serum, 1%BSAand0.2%Triton, the sections
were incubated with primary antibodies overnight at 4 °C as follows:
Nestin(1:400, abcam, ab18102), CD31(1:200, proteintech, 11265-1-AP),
CD86(1:200, CST, 91882S), Arginase-1(1:200, CST, 93668 T), CD66b
(1:100, Affinity, DF10151), MPO (1:300, proteintech, 22225-1-AP),
Olig2(1:800, abcam, ab109186), SOX2(1:100, abcam, ab92494),
CD68(1:1000, proteintech, 25747-1-AP), CD3(1:1000, proteintech,
17617-1-AP), SOX9 (1:200, Servicebio, GB14171-50), GFAP(1:1000, Ser-
vicebio, GB11096-100), TMEM119 (1:1000, abcam, ab306583). Then,
the samples were stainedwith fluorescent secondary antibodies for 1 h
as follows: iF440-Tyramide(1:500, Servicebio, G1250), iF488-Tyr-
amide(1:500, Servicebio, G1231), iF555-Tyramide(1:500, Servicebio,
G1233), iF594-Tyramide(1:500, Servicebio, G1242), iF647-Tyr-
amide(1:500, Servicebio, G1232). Nuclei were counterstained with 4′,6-
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diamino-2-phenylindole (DAPI solution, Solarbio, China). Images were
taken using a Leica fluorescence microscope (DN4000B, Leica
Microsystems, Germany). Multiplex immunofluorescence staining was
performed by Servicebio Technology Company (Wuhan, China). The
antibody information is listed in Supplementary Table 5.

Statistics and reproducibility
No statistical methodwas used to predetermine sample size. Details of
the biological replicates were provided in figure legends. All the data
were processed using the GraphPad Prism Software (v 8.0.1, GraphPad
Software, San Diego, CA, USA) and SPSS statistics software (v21.0,
Chicago, USA). No data were excluded from the analyses. The Inves-
tigators were not blinded to allocation during experiments and out-
come assessment. All the measured data are expressed as means ± SD.
Statistical significance was established as P <0.05.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw data of scRNA-seq generated in this study have been depos-
ited in the Genome Sequence Archive (Genomics, Proteomics &
Bioinformatics 2021) in National Genomics Data Center (Nucleic Acids
Res 2022), China National Center for Bioinformation / Beijing Institute
of Genomics, Chinese Academy of Sciences (GSA-Human:
HRA009021) that are publicly accessible at https://ngdc.cncb.ac.cn/
gsa-human/browse/HRA009021. All other data included in this study
are provided in Supplementary data and Source data. Source data are
provided with this paper.
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