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Abstract 

CNS tumours encompass a diverse group of neoplasms with significant morbidity and mortality. The SHH signal‑
ling pathway plays a critical role in the pathogenesis of several CNS tumours, including gliomas, medulloblastomas 
and others. By influencing cellular proliferation, differentiation and migration in CNS tumours, the SHH pathway 
has emerged as a promising target for therapeutic intervention. Current strategies such as vismodegib and sonidegib 
have shown efficacy in targeting SHH pathway activation. However, challenges such as resistance mechanisms 
and paradoxical effects observed in clinical settings underscore the complexity of effectively targeting this pathway. 
Advances in gene editing technologies, particularly CRISPR/Cas9, have provided valuable tools for studying SHH path‑
way biology, validating therapeutic targets and exploring novel treatment modalities. These innovations have paved 
the way for a better understanding of pathway dynamics and the development of more precise therapeutic inter‑
ventions. In addition, the identification and validation of biomarkers of SHH pathway activation are critical to guide 
clinical decision making and improve patient outcomes. Molecular profiling and biomarker discovery efforts are 
critical steps towards personalised medicine approaches in the treatment of SHH pathway-associated CNS tumours. 
While significant progress has been made in understanding the role of the SHH pathway in CNS tumorigenesis, ongo‑
ing research is essential to overcome current therapeutic challenges and refine treatment strategies. The integration 
of molecular insights with advanced technologies and clinical expertise holds great promise for developing more 
effective and personalised therapies for patients with SHH pathway-driven CNS tumours.
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Introduction
Central nervous system (CNS) tumours are abnormal cell 
developments in the brain, spinal cord, intracranial endo-
crine glands and other parts of the CNS [1]. Compared to 
other malignancies, CNS tumours are rare in adults, but 
they represent a significant burden of morbidity and mor-
tality [2]. The latest Global Cancer Observatory (GLOB-
OCAN) report shows that CNS tumours ranked 19th out 
of 321,731 cancer cases and 12th out of 248,500 cancer 
deaths worldwide. In terms of incidence rates, most cases 
of CNS tumours are found in Asia with 177,139 (55.1%) 

of the global incidence, followed by Europe with 67,559 
(21.0%), North America with 28,126 (8.7%), Latin Amer-
ica and the Caribbean with 26,992 (8.4%), Africa with 
19,289 (6.0%) and Oceania with the least incidence of 
2626 (0.82%) [3]. Asia also has the highest CNS tumour 
mortality rate at 132,799 (53.4%) of the global mortality 
rate, with Oceania having the lowest reported mortality 
rate at 0.80% [3]. Due to the complex nature of most CNS 
tumours, the diagnosis and treatment of these tumours 
in the clinical setting has been a major challenge for 
many decades.
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However, there have been tremendous advances 
in molecular trends in CNS tumour research aimed 
at improving the diagnosis and treatment of these 
tumours. Some of these new trends include the discov-
ery of the 1p/19q marker for oligodendroglial tumours 
and intradialytic hypotension (IDH) mutations in glio-
mas as an important factor in the classification of dif-
fuse gliomas on a molecular basis, the telomerase 
reverse transcriptase (TERT) promoter has been identi-
fied as an important factor in telomere lengthening and 
CNS tumorigenesis, and triggering receptor expressed 
on myeloid cells (TREM) has emerged as a potential 
target to assess the tumour immune microenvironment 
[4–7]. The HH signalling pathway has also been found 
to be widely involved in CNS malignancies, making it a 
potential target for cancer therapy. In addition to regu-
lating cancer cell properties, the HH pathway has been 
shown to play an immunoregulatory role within the 
tumour microenvironment (TME) [8].

The sonic hedgehog (SHH) signalling pathway, an 
example of HH, is a critical regulator of tissue and 
organ growth and patterning during embryonic devel-
opment. This unique pathway is strongly associated 
with neural tube development, neural differentiation, 
patterning of the ventral forebrain, dopaminergic dif-
ferentiation of the midbrain, proliferation and sur-
vival of ventral progenitors, proliferation of cerebellar 
neuronal precursors and patterning of the developing 
thalamus [9]. Aberrations in the SHH pathway there-
fore lead to neuronal degeneration and various neu-
rological deficits, including brain tumours. Activation 
of the SHH pathway occurs in two main mechanisms: 
canonical and non-canonical signalling. Canonical sig-
nalling is initiated when the SHH ligand binds to the 
Patched (PTCH) receptor at the cell membrane. Nor-
mally, PTCH inhibits the Smoothened (SMO) protein, 
but ligand binding releases this inhibition, allowing 
SMO to activate the downstream signalling cascade [6]. 
This activation by the 7-transmembrane protein SMO 
promotes neuroprotection and recovery in neurological 
disorders. Non-canonical signalling, on the other hand, 
operates independently of the GLI transcription factors 
and can be divided into two types. The first type modu-
lates calcium (Ca2 +) levels and the actin cytoskeleton 
while also activating small GTPases such as RhoA and 
Rac1 [6]. The second type, SMO-dependent type II 
signalling, disrupts cyclin B1, leading to increased cell 
proliferation and survival [6].

The aim of this review is to explore the role of the 
SHH pathway in CNS tumorigenesis, thereby providing 
insight into defective pathways and facilitating the devel-
opment of effective therapeutic interventions for CNS 
malignancies.

Methods
This narrative review aims to provide a comprehen-
sive framework of the role of the SHH pathway in CNS 
tumours. Specific inclusion and exclusion criteria were 
used to ensure a rigorous and comprehensive approach. 
The inclusion criteria consisted of full-text articles writ-
ten in English. Several databases were used, including 
PubMed/Medline, EMBASE, the Cochrane Library and 
Scopus. Key words such as ’sonic hedgehog’, ’SHH’, ’CNS 
tumours’, ’gliomas’, ’meningiomas’, ’medulloblastomas’ and 
’neuroblastomas’ were used for a comprehensive data-
base search. References cited in recent reviews on similar 
topics were also manually reviewed to identify additional 
sources that could contribute to the search strategy. Stan-
dalone abstracts, conference proceedings, letters to edi-
tors, editorials, perspectives and posters were excluded, 
with priority given to the inclusion of high quality and 
reliable evidence. In addition, the review did not limit the 
publishing dates and the number of studies to provide a 
comprehensive manuscript. It included descriptive, ani-
mal model, cohort and observational studies from both 
preclinical and clinical settings to provide a holistic per-
spective. A summary of the methodology used is shown 
in Table 1.

SHH pathway in CNS development
SHH is a glycoprotein that functions as a critical sig-
nalling molecule in the development of the neural tube 
(NT), which gives rise to the brain and spinal cord [10]. 
The NT, the embryonic precursor of the CNS, forms 
through gastrulation during early embryonic develop-
ment [11]. Defects in neural tube development (NTD) 
are among the most common birth defects in humans 
[12].

The CNS development begins with the folding of the 
posterior neural plates, guided by molecular signals from 
the notochord and prechordal mesoderm, leading to the 
formation of the NT by 3 to 4  weeks post-conception. 
Neurulation, divided into primary and secondary phases, 
involves the closure of the anterior and posterior neu-
ropores, forming the brain and spinal cord [13]. The SHH 
pathway regulates NT formation by controlling the pat-
terning of the NT and providing signals to ventral neural 
progenitors during neurogenesis [11]. Absence of SHH 
leads to serious midline defects such as holoprosenceph-
aly, with associated cardiac and genitourinary anomalies 
[14, 15]. Elevated SHH signalling is linked to exenceph-
aly, anencephaly, encephalocoele, and spina bifida, due to 
the incomplete closure of the spinal cord and backbone 
[16–18].

SHH plays a crucial role in neural stem cell (NSC) 
development. NSCs, derived from the neural crest, 
are multipotent cells capable of self-renewal and 



Page 4 of 22Wireko et al. Molecular Brain           (2024) 17:83 

differentiation into neuronal and glial subtypes [19]. Dur-
ing early brain development, NSCs in the ventral zone 
increase in number through even division, followed by 
asymmetric division during neurogenesis to produce 
NSCs and neurons. As gestation progresses, NSCs gen-
erate astrocytes, oligodendrocytes, and neurons, marking 
the end of the neurogenic phase [20].

The SHH pathway controls NSC proliferation in  vivo, 
shortening their time in the G1 and S-G2/M phases. 
Excessive activation can lead to the accumulation of qui-
escent NSCs, impairing neuronal development. Thus, 
SHH is vital for maintaining CNS homeostasis and proper 
development during injury [21]. In cerebellar develop-
ment, SHH mediates the interplay between Purkinje cells 
(PCs) and Granule Cell Progenitors (GCPs), regulating 
GCP proliferation and ensuring proper cerebellum size 
and foliation [22]. SHH also inhibits cell apoptosis and 
inflammation via the Nurr1 gene, maintaining interneu-
ron activity in the medial ganglionic eminence and aiding 
oligodendrocyte progenitor cell production [22–25].

The SHH signalling pathway components/
classifications in tumorigenesis
The canonical pathway
The canonical SHH pathway is a conserved signalling 
cascade crucial for embryonic development and tis-
sue patterning [26]. Encoded by the SHH gene, the 45-
kDa precursor protein transcribes into the SHH ligand, 
the primary signalling molecule initiating the pathway 
by binding to PTCH1 receptors [22]. PTCH1 is distrib-
uted in the primary cilia and in absence of SHH, PTCH1 
inhibits the pathway, by inhibiting another protein, SMO, 
preventing downstream signalling, maintaining the path-
way in an inactive state. When SHH binds to PTCH1, it 
leaves the cilia and its inhibition of SMO is lifted, acti-
vating a canonical SHH signalling cascade in the primary 
cilia and allowing SMO to activate downstream signalling 

components [22]. The signally pathway involves two 
steps: ciliary localization and subsequent activation. The 
interactions between PTCH1 and SMO are argued to be 
mediated by accessible (membrane) cholesterol [22].

Besides PTCH1, other SHH co-receptors, such as 
CDON, BOC, and GAS1 are essential for SHH pathway 
activation and are also involved in CNS development. 
This includes cell fate specification, axon guidance, and 
cell proliferation [22]. This cascade leads to SMO reach-
ing its major target, which is regulation of GLI family 
transcription factors, specifically GLI1, GLI2, and GLI3. 
GLI1 primarily acts as a transcriptional activator, pro-
moting the expression of target genes involved in cell 
proliferation and survival. GLI2 can function as both an 
activator and a repressor, while GLI3 generally acts as a 
repressor. When activated, GLI1 and GLI2 promote the 
expression of target genes involved in cell proliferation, 
survival, and differentiation [26].

In absence of SHH signalling, the GLI proteins are 
inhibited by Suppressor of Fused (SUFU) by sequestering 
GLI in the cytoplasm. Kinesin family member 7 (KIF7) is 
an additional protein regulating the GLI proteins activity 
and localisation in conjunction with SUFU [27]. On stim-
ulation by SHH, the SUFU-GLI complex dissolves from 
the tip of the cilia, as the GLI dissociates from SUFU and 
translocates to the nucleus, activating the SHH pathway 
[22].

The non‑canonical pathway
The non-canonical SHH pathway represents alterna-
tive signalling routes from the canonical pathway, pro-
viding additional complexity and flexibility and insight 
into cellular responses and tumorigenesis. It encom-
passes two types: (1) GLI-independent; and (2) alter-
native pathways involving GLI activity. While SMO 
plays a crucial role in the canonical pathway, the non-
canonical SHH pathway can independently activate 

Table 1  Summary of methodology

Methodology steps Description

Literature search PubMed/MEDLINE, EMBASE, Scopus and the Cochrane Library

Inclusion criteria Various study designs including experimental studies, randomised controlled trials, prospective and retrospective cohort 
studies
Studies involving both paediatric and adult populations
Studies providing raw data
Full-text articles published in English

Exclusion criteria Non-English studies, stand-alone abstracts, conference proceedings, editorials, commentaries, and letters

Search terms Key words such as ’sonic hedgehog’, ’SHH’, ’CNS tumours’, ’gliomas’, ’meningiomas’, ’medulloblastomas’ and ’neuroblastomas’ 
were used for a comprehensive database search

Additional search A manual search was performed to include references from recently published procedure-specific and disease-specific 
reviews

Sample size requirement No strict sample size requirement
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downstream effects without SMO involvement, mainly 
through GLI activity [28]. In type 1, PTCH1 influences 
cellular processes independently of SHH, PTCH1-SMO 
interactions, or GLI transcription factors. The PTCH1 
C-terminal domain (CTD) induces apoptotic cell death 
via alternative pathways like RAS-RAF-MEK-ERK, 
PI3K-AKT-mTOR, TGF-β, and epigenetic modulation 
[26]. PTCH1 also negatively regulates cell proliferation 

by interacting with phosphorylated CCNB1, a G2/M 
checkpoint regulator [22]. Type 2 is SMO-dependent, 
and SMO has shown to not only function as a classic 
SHH signalling transducer, but is also responsible for 
activating small GTPases, such as Rac1 and RhoA and 
rearranging the actin cytoskeleton for the proper regu-
lation of cell processes, such as angiogenesis, tubulo-
genesis and synaptogenesis [22]. The SHH pathways in 
tumorigenesis have been summarised in Fig. 1.

Fig. 1  The SHH pathways in tumorigenesis and their types (canonical and non-canonical). Image was created with https://​www.​Biore​nder.​com. 
CNS; Central Nervous System, CDON; Cell Adhesion Associated Oncogene Regulated; BOC; Butoxycarbonyl, GAS; Growth Arrest Specific, PTCH; 
Patched, SMO; Smoothened, SUFU; Suppressor of Fused; PKA; Protein Kinase A, CTD; C-Terminal Domain, CCNB; Cyclin B, GTPase; Guanosine 
Triphosphate, SHH; Sonic Hedgehog, RAS; Reticular Activating System, RAF; Rapidly Accelerated Fibrosarcoma, MEK; Mitogen-Activated Protein, 
ERK; Extracellular-Signal-Regulated kinase, PI3K; Phosphatidylinositol-3 Kinase, AKT; Protein Kinase B, mTOR; Mammalian Target of Rapamycin, TGF-β; 
Transforming Growth Factor Beta

https://www.Biorender.com
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The role of SHH signalling pathway in CNS tumours
Gliomas
Gliomas, originating from glial cells in the brain and 
spine, represent a diverse group of tumours known for 
their aggressive behaviour and resistance to treatment, 
posing significant therapeutic challenges. The SHH sig-
nalling pathway, a crucial regulator of cellular prolif-
eration, differentiation, and tumorigenesis, has been 
increasingly recognized for its role in the pathogenesis 
of CNS tumours [29]. SHH signalling influences glioma 
growth and development through various mechanisms. 
The tumour stroma, mainly consisting of endothelial 
cells, adipocytes, immune cells, and cancer-associated 
fibroblasts (CAFs), secretes soluble factors that promote 
tumour metastasis and chemotherapy resistance [30, 31]. 
Recombinant human SHH N-terminal peptide (rhSHH) 
enhances HH signalling, leading to increased mRNA lev-
els of matrix metalloproteinase-2 (MMP2) and MMP9, 
which facilitate the adhesion and invasion of GBM cells 
[31].

Additionally, SHH signalling in GBM cells is signifi-
cantly amplified by Fms-related tyrosine kinase 1 (FLT1). 
Suppressing SHH signalling reduces the migration 
and invasion driven by FLT1 overexpression, whereas 
enhancing SHH signalling restores FLT1’s invasive and 
migratory capabilities [32]. FLT1, a tyrosine kinase recep-
tor that binds VEGF-A, promotes tumour growth and 
metastasis through angiogenesis [32, 33]. Moreover, 
truncated GLI1 (TGLI1), a product of SHH signalling, 
functions as an enhanced GLI1, promoting angiogenic 
heparanase expression and thereby facilitating GBM 
angiogenesis and tumour growth [34]. GLI2, another 
SHH signalling product, is stabilised by mTORC2 
through the inactivation of GSK3β and subsequent inhi-
bition of GLI2 ubiquitination, affecting GBM angiogene-
sis, metastasis, cell proliferation, and CSC’s regeneration 
[35]. GLI2 also influences both HH and Wnt pathways, 
playing a vital role in GBM stem cell (GSC) maintenance. 
GLI2 knockdown using lentiviral-mediated shRNA 
downregulates genes related to HH and Wnt signal-
ling pathways, including leucine-rich repeat-containing 
GPCR 5, inhibits tumour cell proliferation and invasive 
capacity, and induces apoptosis [35].

Furthermore in the context of gliomas, the SHH path-
way is associated with specific tumour grades. Studies 
demonstrate that the SHH pathway is active in grade 
II and III gliomas but not in grade IV de novo GBM’s. 
The pathway’s activity and responsiveness are confined 
to progenitor cells within these tumours, suggesting 
a regulatory role in maintaining the proliferative and 
undifferentiated state of glioma progenitor cells. Abnor-
mal activation of this pathway enhances the prolifera-
tive capability of grade II and III glioma cells, driving 

tumorigenesis [36, 37]. Further research has examined 
the expression of SHH pathway components in different 
glioma subtypes. Studies found higher expression levels 
of SHH-related genes in brainstem astrocytomas com-
pared to supratentorial astrocytomas and normal brain 
tissue. This differential expression suggests that enhanced 
PTCH1 expression and SHH pathway activation are 
involved in brainstem gliomas, potentially explaining the 
differences in malignant behaviour between brainstem 
and hemispheric gliomas. This indicates that the SHH 
pathway’s role in gliomagenesis may vary significantly 
depending on the tumour’s anatomical location and cel-
lular context [38].

Medulloblastoma
Medulloblastomas (MBs) are the most common malig-
nant brain tumours in children, typically originating in 
the cerebellum. They are classified into four main molec-
ular subgroups—WNT, SHH, Group 3, and Group 4—
each with distinct prognostic and clinical implications 
[39, 40]. WNT-activated MBs have the most favourable 
prognosis, with five-year survival rates close to 100%, 
making them suitable candidates for reduced-intensity 
therapy to minimise long-term side effects [39]. SHH-
activated MBs have variable outcomes influenced by 
genetic factors; TP53 mutations, for example, signifi-
cantly worsen the prognosis, particularly in high-risk 
cases, which may require intensified treatment [41]. 
Additionally, other genetic markers like MYCN and GLI2 
amplification affect outcomes in SHH MBs [41]. Group 
3 MBs, comprising about 25% of cases, have the poorest 
prognosis, especially with MYC amplification, and a high 
metastatic rate (50%), necessitating aggressive treatment 
despite associated complications [42]. Group 4 MBs 
typically display an intermediate prognosis—better than 
Group 3 but less favourable than WNT—and span all age 
groups. They often show classic histology but may occa-
sionally have large cell/anaplastic features, with poorer 
outcomes linked to FSTL5 expression [40, 43]. These 
molecular subtypes inform personalised therapy strate-
gies, aiming to enhance survival rates and reduce treat-
ment-related side effects. For instance, reduced-intensity 
therapy benefits WNT MBs, while high-risk SHH MBs 
or metastatic Group 3 MBs require more aggressive 
treatments tailored to their specific risk factors. This 
molecular classification has significantly advanced MB 
treatment, allowing for more precise, effective, and safer 
treatment planning [39, 43].

Similar to gliomas, dysregulation of the SHH signal-
ling pathway has been implicated in MB pathogenesis 
[44]. Granule cells (GCs), the most abundant neurons in 
the cerebellum, are key to coordinating afferent inputs 
and motor outputs. During embryogenesis, granule cell 
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precursors (GCPs) emerge from the upper rhombic lip 
and migrate to form the external granule layer (EGL) by 
embryonic day 13 (E13). Postnatally, these progenitors 
change shape and proliferate rapidly within the EGL, a 
process critical for proper cerebellar development. SHH, 
secreted by Purkinje cells (PCs), is a critical factor in 
GCP expansion, as evidenced by the fact that removal of 
PCs inhibits GCP proliferation and causes EGL thinning 
[45–47]. The most commonly mutated genes in the SHH 
pathway are PTCH1 (44–45%), SMO (11–14%), SUFU 
(8–11%) and GLI2 (8–11%), leading to the sequential 
activation of GLI2, the downstream target of SHH signal-
ling [48–50]. When PTCH1 is inhibited, SMO initiates 
an intracellular signalling cascade that results in GLI2 
translocation to the nucleus, where it activates the tran-
scription of target genes [51, 52]. SUFU acts as a nega-
tive regulator by repressing GLI activity, thereby affecting 
the production, trafficking and function of GLI proteins 
[53, 54]. When PTCH1 is lacking in GCPs, it triggers 
the activation of the SHH signalling pathway, leading to 
abnormal proliferation and subsequent MB formation 
[55, 56]. This is supported by the study by Yang et al. in 
which knockout of PTCH1 in mice resulted in the devel-
opment of MB [56]. Similarly, forced activation of SMO 
in PTCH1-deficient mice resulted in hyperproliferation 
of GCPs, which ultimately led to a high incidence of MB 
formation [57, 58]. Loss of function of SUFU has been 
shown to lead to MB formation. Mutation of SUFU leads 
to the formation of truncated proteins that are unable 
to export the GLI transcription factor from the nucleus 
to the cytoplasm, resulting in activation of the SHH sig-
nalling pathway [59]. Math1-Cre-mediated deletion of 
SUFU in mouse GC precursors (GCPs) showed that dele-
tion of SUFU resulted in both EGL hyperplasia and GCP 
proliferation [60].

The role of GLI1 in MB remains controversial. Some 
studies report that silencing GLI1 in MB cell lines leads 
to upregulation of target genes such as PTCH1, cyclin D2, 
plakoglobin, NKX2.2 and PAX6, suggesting a positive role 
for GLI1 in MB [61]. In addition, Insm1 and Nhlh1 have 
been identified as novel targets of HH signalling in the 
mouse cerebellum, with Nhlh1 being directly activated 
by GLI1 in cerebellar progenitor cells [62]. However, the 
role of GLI1 appears to differ depending on the type of 
brain pathology. The researchers used retroviruses to 
inject the SHH gene into the developing brains of mouse 
embryos, activating the SHH pathway specifically in the 
cerebellum. This approach resulted in 76% of the mice 
developing MBs. Interestingly, GLI1, a transcription fac-
tor previously thought to be critical for SHH-induced 
tumourigenesis, was found to be non-essential for 
tumour formation, as MBs developed even in GLI1 null 
mutant mice [63].

YAP1 has been identified as a critical effector in MB 
progression, and its up-regulation is associated with 
altered SHH signalling. YAP1 plays an essential role in 
the proliferation of cerebellar granule neuron precur-
sors (CGNPs), the cells of origin for certain MBs. It was 
localised in the nuclei of CGNPs and specifically in cells 
of the perivascular niche, where tumour-repopulating 
cells reside. Notably, YAP1 was detected even in post-
irradiation samples, suggesting its role in MB recur-
rence [64]. The interplay between SHH and insulin-like 
growth factor (IGF) signalling in MB formation has also 
been investigated. Using the RCAS/tv-a system to target 
the expression of SHH, IGF2 and activated Akt to nestin-
expressing neural precursors in mice, the researchers 
found that co-expression of SHH with IGF2 or Akt sig-
nificantly increased tumour incidence. While SHH alone 
caused tumours in 15% of the mice, the combination of 
SHH with IGF2 and Akt increased tumour incidence to 
39% and 48%, respectively [65].

Meningioma
SHH pathway aberrations are also evident in meningi-
omas, tumours arising from the meninges surrounding 
the brain and spine. The SHH pathway plays a regula-
tory role in cell proliferation and survival within these 
tumours. Recent large-scale genome sequencing studies 
have revealed that approximately 5% of meningiomas 
contain activating mutations in the SHH pathway, par-
ticularly in the SUFU gene. SUFU, a negative regula-
tor of SHH signalling, is crucial for controlling pathway 
activation and is a potential therapeutic target. Studies 
emphasise the importance of genetic screening for SUFU 
mutations in families with a history of meningiomas 
[66, 67]. Further gene expression profiling studies have 
identified key genes involved in SHH pathway activa-
tion in meningiomas. Analysis of 36 meningioma speci-
mens using real-time RT-PCR revealed 16 overexpressed 
genes, including HHAT and DISP1, which facilitate HH 
ligand release. FOXM1, a GLI transcription factor target, 
showed the highest mRNA level increase, particularly in 
aggressive tumours. Additionally, SPP1 and IGF2, related 
to cell proliferation and extracellular matrix interactions, 
were notably overexpressed in higher-grade meningi-
omas [68].

Neuroblastoma
Neuroblastoma (NB), a common paediatric cancer, origi-
nates from NCCs and can affect various parts of the body, 
including the brain and spine [69]. Within NBs, auto-
crine activation of the SHH pathway has been observed, 
where the tumour cells produce the SHH ligand them-
selves. Persistent activation of the SHH pathway in NB 
cells, indicated by high levels of SHH, PTCH1, SMO, 
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and GLI2, suggests this autocrine mechanism. SHH 
binds to the PTCH1 receptor on the same cell, promot-
ing continuous pathway activation, allowing pathogenic 
cells to evade apoptosis and proliferate. In addition, the 
SHH pathway actively influences neuroblastoma activ-
ity. Immunofluorescence staining reveals intact SHH sig-
nalling in NB cells, with SHH, PTCH1, GLI1 and GLI2 
expressed in both the membrane and nucleus. This sig-
nalling pathway has a significant impact on NB by regu-
lating cell proliferation, apoptosis, tumorigenicity and the 
cell cycle through modulation of CCND1 and p21 pro-
teins. CCND1 facilitates progression from G1 to S phase 
of the cell cycle, while p21 induces G1 arrest and pre-
vents entry into S phase by inhibiting cyclin-dependent 
kinases (CDKs) [70, 71]. In addition, hypoxia-inducible 
factor-1α (HIF-1α), which promotes proliferation, migra-
tion and invasiveness of NBs, does so through the SHH 
pathway. HIF-1α expression levels are strongly correlated 
with SHH, PTCH1 and GLI1, and GLI1 knockdown sup-
presses the effects of HIF-1α on NB proliferation, migra-
tion and invasiveness [72].

MicroRNAs (miRNAs) also play a role in modulating 
SHH signalling. The miR181 family has been found to 
regulate the expression of CDON, a dependence recep-
tor for SHH. This receptor promotes apoptosis in the 
absence of the SHH ligand. Studies have shown that high 
expression of miR181 is tied to lower CDON levels and 
increased NB aggressiveness. miR181 directly targets 
and degrades the 3′ UTR of CDON mRNA, leading to a 
reduction in protein levels. This miRNA-mediated regu-
lation of CDON expression disrupts apoptotic signalling 
pathways, thereby promoting the survival and prolifera-
tion of NB cells [73].

Chondroma
Chordoma is a rare, malignant bone tumour derived from 
embryonic notochordal remnants, typically occurring in 
the bones of the skull base and spine, most commonly the 
sacrum. These tumours are difficult to treat due to their 
proximity to vital structures, resistance to radiation, and 
unresponsiveness to conventional cytotoxic chemother-
apy agents [74]. The SHH pathway, essential for chondro-
genesis and involved in cellular differentiation, growth, 
and tissue patterning during embryonic development 
[75], remains active in certain pathological conditions, 
including various tumours. Limited studies have focused 
on the SHH pathway’s role in chordoma formation and 
progression.

Research has utilised immunohistochemistry (IHC), 
genetic analysis, and in situ hybridization to detect SHH 
pathway components in cranial and spinal chordoma 
samples. These methods demonstrated overexpression 
of SHH and its downstream effectors, particularly GLI1, 

indicating active SHH signalling in chordomas. In con-
trast, these effectors are scarcely detectable in normal 
nucleus pulposus tissues [76]. RNA-Seq and NanoString 
analyses confirmed the upregulation of PTCH1 and GLI1, 
further indicating SHH pathway activation in chordomas 
[77].

Craniopharyngioma
Craniopharyngiomas (CPs) are rare, histologically benign 
but clinically aggressive tumours of the epithelium of 
Rathke’s pouch, primarily affecting the hypothalamic-
pituitary axis. They are classified into two main types: 
adamantinomatous CPs (ACPs) and papillary CPs. The 
SHH signalling pathway plays a crucial role in cell differ-
entiation and proliferation, such as in Rathke’s pouch, as 
well as in tumour cell migration [78].

Studies have investigated the role of SHH in CPs, 
detecting upregulation of SHH in human and mouse 
models [79]. In this model, SHH colocalizes in cells with 
nuclear accumulation of β-catenin, suggesting that both 
autocrine and paracrine SHH signalling contribute to 
ACP tumorigenesis. This hypothesis is supported by 
mRNA microarray gene expression analysis and targeted 
immunohistochemistry, which found overexpression of 
SHH in ACPs [78, 80]. In situ hybridization further con-
firmed significant expression of SHH pathway proteins, 
including SMO, GLI1, GLI3, and SUFU, indicating an 
active role of SHH signalling in promoting tumour cell 
proliferation and maintenance [81].

Discussions and prospects
The interplay between the SHH signalling pathway 
and other molecular signalling pathways in CNS tumours
With the WNT/beta‑catenin signalling pathway
The SHH pathway plays a critical role in embryologi-
cal processes such as cell proliferation, differentiation, 
and migration, mirroring its significance in oncogen-
esis. Studies underscore the shared molecular pathways 
regulating both normal development and tumour growth 
[82]. Initiation of the SHH canonical signalling pathway 
occurs when the SHH glycoprotein binds and deactivates 
PTCH1, releasing its inhibition on SMO, thereby indi-
rectly regulating SMO activity [83]. Subsequent inter-
nalisation and degradation of the SHH-PTCH1 complex 
enable SMO activation through phosphorylation at the 
primary cilium [83]. Phosphorylated SMO translocates 
into the primary cilium, initiating downstream signalling 
cascades that culminate in nuclear translocation of GLI 
transcription factors and subsequent expression of GLI 
target genes [84].

The Wnt signalling pathway encompasses canonical 
and non-canonical routes, each with distinct mecha-
nisms. Non-canonical Wnt pathways like the Wnt/
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Ca2 + pathway and planar cell polarity pathway func-
tion independently of β-catenin-T-cell factor/lymphoid 
enhancer-binding factor (TCF/LEF) [85]. In contrast, 
the canonical Wnt pathway (Wnt/β-catenin pathway) 
involves β-catenin translocation into the nucleus to acti-
vate target genes through TCF/LEF transcription factors, 
crucial for gene expression initiation [86]. This pathway 
consists of extracellular, membrane, cytoplasmic, and 
nuclear segments mediated by Wnt proteins (e.g., Wnt3a, 
Wnt1, Wnt5a), receptors (FZD, LRP5/6), and down-
stream components (β-catenin, DVL, GSK-3β, AXIN, 
APC, CK1), which regulate β-catenin levels and subse-
quent gene transcription [87, 88].

Implications of Wnt signalling in CNS tumours such 
as GBM, MB, meningioma, and pituitary adenomas are 
well-documented through complex pathways [48, 89–91]. 
In MB, interactions between SHH and Wnt signalling are 
evident. SHH signalling induces GLI1/2, promoting the 
expression of sFRP-1, which negatively regulates Wnt sig-
nalling by promoting cytoplasmic β-catenin accumula-
tion [92]. Moreover, GLI1 activates Wnt ligands (Wnt2b, 
Wnt4, Wnt7b), stabilising β-catenin and enhancing Wnt 
pathway activation [93]. Both pathways converge on 
N-myc, a critical molecule in MB pathogenesis regulated 
by SHH through GSK3-β inhibition, promoting N-myc 
expression and stabilisation [94, 95]. GLI3 interaction 
with β-catenin C-terminal domain reduces Wnt-medi-
ated transcriptional activity [96]. SUFU binds β-catenin, 
exporting it from the nucleus and repressing β-catenin/
TCF-mediated transcription; SUFU loss leads to SHH 
and Wnt pathway overactivity, contributing to MB prolif-
eration and differentiation failure [97].

In GBM, both canonical and non-canonical Wnt sig-
nalling pathways contribute to tumour proliferation 
and invasion by mimicking embryonic processes [98]. 
Elevated expression of canonical Wnt factors (WNT3A, 
TCF4) correlates with higher glioma grades and poor 
outcomes [99]. WNT/β-catenin signalling upregulates 
VEGF, supporting GBM angiogenesis [100]. Non-canon-
ical Wnt factors (WNT5A, FZD-2) promote NSC pro-
liferation and enhance neural differentiation, impacting 
GBM invasiveness [101, 102]. GLI1-mediated β-catenin 
stabilisation suggests a potential role of Wnt signalling in 
GBM development, warranting further investigation into 
the SHH-Wnt signalling relationship [103]. In summary, 
highlighting the intricate interactions between SHH and 
Wnt signalling pathways in CNS tumours is crucial for 
understanding their roles in tumorigenesis and identify-
ing potential therapeutic targets.

Crosstalk with the Notch pathway
Notch signalling is a critical intercellular commu-
nication mechanism initiated by binding between a 

transmembrane receptor and ligands expressed on adja-
cent cells [104]. The Notch receptor precursor undergoes 
glycosylation in the endoplasmic reticulum (ER), affect-
ing its affinity for various ligands. Following transport 
to the Golgi apparatus, proteolytic processing at S1 sites 
produces Notch extracellular subunit (NEC) and trans-
membrane/intracellular domain (NTMIC) heterodimers. 
These are then transported to the cell membrane as type I 
transmembrane proteins (NOTCH1-4 in mammals) [105, 
106].

Interaction of the Notch receptor with canonical 
ligands (DLL1, DLL4, Jagged1, Jagged2) on neighbouring 
cells exposes a cleavage site hidden by the LNR domain. 
This triggers proteolytic cleavage at the S2 site by ADAM 
10 or 17 enzymes, followed by γ-secretase-mediated 
cleavage within the endosome or at the plasma mem-
brane, releasing the Notch intracellular domain (NICD) 
[107, 108]. NICD translocates to the nucleus where it 
binds with CSL, displacing the co-inhibitory complex 
and forming a NICD/CSL/Maml complex. This complex 
enhances the expression of downstream genes, including 
the HES family, which regulate proliferation and apopto-
sis [104, 109–111].

Notch signalling synergizes with SHH signalling dur-
ing nervous system development [112] and plays a cru-
cial role in oncogenesis, including CNS tumours such as 
gliomas, MBs, meningiomas, and choroid plexus papil-
lomas [113, 114]. HES1, a downstream target of Notch 
signalling, modulates SHH signalling in glioblastoma 
by binding to N-boxes within GLI1’s first intron, sup-
pressing its expression and potentially inhibiting the 
HH cascade [115]. Mastermind-like1 (Maml1) regulates 
SHH signalling by interacting directly with GLI pro-
teins, enhancing SHH-responsive gene expression [116]. 
Additionally, Jagged1, a Notch ligand, reduces GLI2 
expression, promoting apoptosis. Reciprocally, GLI2 
downregulation reduces Jagged1 expression, highlight-
ing crosstalk between SHH and Notch pathways [117]. 
Notch signalling also affects SHH signalling by promot-
ing SHH-independent accumulation of SMO within the 
primary cilium, thereby influencing GLI3 activity and 
cilium length [118]. Moreover, the Notch pathway indi-
rectly regulates SHH signalling through molecules such 
as Akt, STAT3, and mTOR, which promote stem cell sur-
vival [119]. While direct links to CNS tumours are less 
explored, these interactions suggest Notch signalling’s 
role in promoting survival of CNS tumour cells.

In conclusion, Notch signalling’s intricate regula-
tion and crosstalk with SHH signalling contribute sig-
nificantly to CNS tumour development and progression. 
Understanding these interactions provides insights into 
potential therapeutic targets for addressing dysregulated 
cell growth in CNS malignancies.
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Relationship with the PI3K/AKT/mTOR pathway
The PI3K/AKT/mTOR (PAM) signalling pathway is piv-
otal in supporting tumour growth and progression by 
orchestrating cell cycle activities and regulating the syn-
thesis of macromolecules such as proteins, nucleotides, 
and lipids [120, 121]. Within this pathway, mTOR exists 
in two distinct complexes: mTORC1 and mTORC2, each 
comprising mTOR along with Deptor and mLST8 subu-
nits [122]. mTORC1, a component of the PAM pathway, 
becomes activated when growth factors stimulate PI3K, 
which subsequently activates AKT1. AKT1 then inhib-
its the tumour-suppressor TSC1/2 complex, releasing its 
inhibition on RHEB, thereby activating mTORC1 [123]. 
Activation of mTORC1 leads to the phosphorylation of 
ribosomal protein S6 kinase (S6K) and eukaryotic trans-
lation initiation factor 4E binding protein 1 (4E-BP1), 
which regulate mRNA translation, cell growth, and pro-
liferation. Phosphorylation of 4E-BP1 prevents its bind-
ing to eukaryotic translation initiation factor 4E (eIF4E), 
crucial for initiating mRNA translation, while non-phos-
phorylated 4E-BP1 binds tightly to eIF4E, inhibiting 
translation [124–126].

The RTK/PAM pathway is well-known for its role in 
enhancing the invasiveness of gliomas. Activation of 
mTOR by Akt phosphorylation leads to the activation 
of cyclin D1, which complexes with cyclin-depend-
ent kinase (CDK) to drive the cell cycle from G1 to S 
phase, a critical step in promoting carcinogenesis when 
cyclin D1 is overexpressed. Additionally, Akt-mediated 
phosphorylation of P27kip1 neutralises its inhibitory 
effect on CDK activity, allowing for continued cell 
growth and differentiation [120, 121]. The interac-
tion between SHH pathway and the PAM pathway has 
been demonstrated in various studies, particularly in 
GBMs. Studies on PTEN-deficient GBMs have shown 
that SHH and PI3K signalling pathways synergisti-
cally promote tumour growth and survival. Conversely, 
inhibiting both PI3K/Akt and SHH pathways results 
in tumour apoptosis and reduced growth of PTEN-
deficient GBMs in experimental models, underscoring 
the crosstalk between these pathways [127]. Similarly, 
research by Nanta et  al. demonstrates that blocking 
SHH and PAM pathways in GBM cells diminishes sur-
vival, self-renewal capacity, and expression of factors 
maintaining pluripotency, while also affecting cell pro-
liferation and epithelial-mesenchymal transition [128]. 
Despite these insights, the precise mechanistic details 
of how SHH and the PAM pathway interact in CNS 
tumours remain unclear. However, studies on esopha-
geal adenocarcinoma cells suggest that TNF-alpha 
activates GLI proteins through the mTOR pathway, 
specifically involving S6K1-mediated phosphoryla-
tion of GLI1 at Ser84 [129]. These findings provide 

mechanistic clues that similar interactions may occur 
in CNS tumours, highlighting the potential for thera-
peutic interventions targeting these pathways. Figure 2 
summarises the interaction between SHH pathway and 
other molecular signalling pathways.

The therapeutic relevance of SHH signalling pathways 
in CNS tumours
Drugs targeting SHH signalling pathway
The SHH signalling pathway plays a crucial role in the 
development and growth of various cancers. Conse-
quently, numerous therapies targeting SHH signalling 
are emerging as promising neuro-oncological treatment 
strategies. Currently, drugs that target SHH signalling 
pathways in CNS tumours can be categorised into SMO 
inhibitors, GLI inhibitors and SHH inhibitors.

SMO inhibitors  Recent advancements in SHH path-
way inhibitors, such as GDC-0449 and HhAntag, have 
sparked significant interest in their therapeutic potential. 
A clinical case study highlighted GDC-0449’s efficacy in a 
26-year-old patient with metastatic MB, leading to rapid 
tumour regression and symptom relief, albeit with tran-
sient response due to secondary mutations bypassing its 
effects [130]. Molecular insights revealed abnormal SHH 
pathway activation linked to PTCH1 gene loss, under-
scoring the need for personalised treatment approaches 
[130]. Combining GDC-0449 with HhAntag, which tar-
gets SMO via multiple binding sites, shows promise in 
overcoming drug resistance, with high-dose HhAntag 
demonstrating complete tumour eradication and pro-
longed MB-free survival [131].

Cyclopamine, acting on the PTCH-SMO complex, has 
demonstrated efficacy in reducing glioma, glioblastoma, 
and MB growth in mouse models and inhibiting human 
MB cell lines in vitro [132–134]. Recent studies revealed 
that Cyclopamine not only reduces cell viability but also 
enhances temozolomide (TMZ) efficacy by inducing 
apoptosis through cleaved caspase-3 activation, along 
with upregulating stemness markers like SOX-2 and 
OCT-4 in GBM cells [135]. Mechanistically, Cyclopamine 
disrupts the SHH signalling autocrine loop, downregu-
lates BCL-2, and upregulates BAX, promoting apoptosis 
[70].

LDE-225 (Erismodegib/Sonidegib/Odomzo), a Cyclo-
pamine derivative, effectively induces cell cycle arrest 
and apoptosis across various cancers, including GBM, 
by antagonising SMO and reducing GLI protein expres-
sion, validated in mouse models [136–138]. Approved for 
locally advanced basal cell carcinoma, LDE-225 is under-
going phase 2 trials for HH pathway-activated relapsed 
MB [139]. Conversely, vismodegib (GDC-0449), another 



Page 11 of 22Wireko et al. Molecular Brain           (2024) 17:83 	

SMO inhibitor, has shown mixed results, inhibiting chor-
doma growth but potentially enhancing tumour prolifer-
ation in certain contexts [23, 140].

Various next-generation inhibitors like IPI-926 
(Saridegib), BMS-833923/XL139, PF-5274857, TAK-441, 
LY2940680 (Taladegib), and Itraconazole target different 

Fig. 2  The interaction between the sonic hedgehog signalling pathway and other molecular pathways. Image was created with https://​www.​
Biore​nder.​com. SHH; Sonic Hedgehog, HH; Hedgehog, SUFU; Suppressor Of Fused, WNT; Wingless-Related Integrated Site, SMO; Smoothened, 
PTCH; Patched, GLI; Glioma Associated Oncogene, PKA; Protein Kinase A, sFRP; Secreted Frizzled-Related Protein, LRP; Low-Density Lipoprotein 
Receptor-Related Protein, GSK; Glycogen Synthase Kinase, APC; Antigen Presenting Cell, TCF; T-Cell Specific Transcription Factor, LEF; Lymphoid 
Enhancer-Binding Factor, VEGF; Vascular Endothelial Growth Factor, HES; Hairy And Enhancer Of Split, CNS; Central Nervous System, MB; 
Medulloblastoma, ADAM; A Disintegrin And Metalloproteinase, MAM; Mitochondrial-Associated Membranes, NICD; Notch Intracellular Domain, 
NECD; Notch Extracellular Domain, PIP; Phosphatidylinositol Phosphate, PDK; Pyruvate Dehydrogenase Kinase, AKT; Protein Kinase B, PI3K; 
Phosphatidylinositol 3-kinases, TSC; Tuberous Sclerosis Complex, Rheb; Ras Homolog Enriched In Brain, mTORC; Mammalian Target Of Rapamycin 
Complex, GDP; Guanosine Diphosphate, GTP; Guanosine Triphosphate

https://www.Biorender.com
https://www.Biorender.com
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facets of SHH signalling. These compounds exhibit 
promising preclinical efficacy in SHH pathway-driven 
cancers, highlighting ongoing efforts to refine therapeu-
tic strategies [141–147]. Itraconazole, for instance, syn-
ergizes with Cyclopamine in inhibiting HH-driven MB 
proliferation [146, 147]. These developments underscore 
the complexity and potential of SHH pathway inhibition 
in treating a spectrum of cancers, necessitating contin-
ued research into optimise therapeutic outcomes.

GLI inhibitors  GANT 61, a GLI antagonist, inhibits the 
DNA binding ability of GLI1 and GLI2. In vitro and in vivo 
studies have shown that GANT61 effectively reduces 
the expression of GLI1, c-MYC, MYCN, and Cyclin D1, 
leading to apoptosis in NB cells. Additionally, GANT61 
enhances the efficacy of chemotherapeutic drugs used 
in NB treatment, either additively or synergistically, and 
suppresses the growth of established NB xenografts in 
nude mice [148].

SHH inhibitors  Gliomas pose significant challenges due 
to their aggressive nature; however, targeting the SHH 
pathway in GBM stem cells shows promise for thera-
peutic intervention. SHH signalling inhibitors effectively 
dismantle GBM cancer stem cells (CSCs) and prevent 
tumour recurrence by targeting SHH ligands, SMO, and 
GLI1 transcription factors at multiple points in the path-
way [149]. Experimental models, such as zebrafish stud-
ies, have underscored the oncogenic potential of SHH 
signalling in the CNS. Activation of SHH signalling in 
zebrafish CNS models led to increased tumorigenesis, 
demonstrating the oncogenic role of SMOA1 in brain and 
retinal tumours [150].

In human tumour cells, inhibition of the SHH path-
way reduces proliferation, highlighting its critical role 
in tumour growth [151]. In preclinical studies with 
orthotopic malignant glioma xenografts, pharmacologi-
cal SHH pathway inhibition significantly improved sur-
vival rates by targeting CD133 + tumour-initiating cells 
responsible for tumour initiation and maintenance [152]. 
Despite initial success, tumours eventually regrew, sug-
gesting the potential need for combination therapies 
for more effective treatment strategies. 5E1, a mono-
clonal antibody targeting the SHH ligand, inhibits MB 
growth in mouse models by preventing ligand binding 
to PTCH1. Treatment with 5E1 reduces tumour prolif-
eration, promotes tumour cell apoptosis, and enhances 
survival rates compared to cyclopamine treatment [153]. 
Although these drugs await clinical approval for CNS 
tumours, they offer promising insights for future thera-
peutic approaches. Additionally, targeting SMO, GLI, and 
SHH signalling in non-CNS tumours suggests potential 
applications in CNS tumours, underscoring the need for 

further research. Furthermore, SHH signalling interacts 
with pathways like Wnt/β-catenin, Notch, and PI3K/Akt/
mTOR, suggesting that combination therapies targeting 
these interactions could synergistically suppress tumour 
growth [154]. Comprehensive research into these inter-
actions and treatments is crucial for advancing therapeu-
tic strategies against CNS tumours.

DNA methyltransferase inhibitors  The expression of 
SHH pathway components and targets in NBs is regulated 
through both transcriptional and epigenetic mechanisms. 
Promoter regions of genes like PTCH1, HHIP, and SFRP1 
can undergo methylation, impacting their expression lev-
els. Studies indicate that hypermethylation of these pro-
moters correlates with decreased expression of SHH path-
way inhibitors, thereby enhancing pathway activation. 
This epigenetic modulation contributes to the aggressive 
nature of NBs. However, treatment with DNA methyl-
transferase inhibitors has shown potential in restoring 
expression of these epigenetically silenced genes, suggest-
ing a therapeutic strategy for modulating SHH signalling 
in NBs [155]. Table 2 summarises the drugs targeting the 
SHH pathway in CNS tumours.

Challenges with drug targeting the SHH signalling pathway 
in CNS tumour therapy
Genetic mutation  Genetic analysis of resistant tumours 
has revealed several mechanisms that confer resistance 
to SMO inhibitors like GDC-0449. These mechanisms 
include SMO mutations, SUFU loss, and amplification of 
GLI or HH target genes. In about 50% of resistant basal 
cell carcinomas (BCCs), SMO mutations maintain HH 
pathway activation despite inhibitor treatment. These 
mutations fall into two categories: those within the drug 
binding pocket (DBP) and those outside it (non-DBP). 
Mutations such as C469, D473, I408, V321, and W281 
within the DBP impair SMO inhibitor binding [156, 157]. 
Specifically, the D473 mutation in SMO is associated 
with GDC-0449 resistance in MB cells by disrupting the 
drug’s effective receptor binding. Studies using MB cells 
and allograft mouse models strongly support this, dem-
onstrating how D473 mutations confer GDC-0449 resist-
ance [158]. The D473Y mutation in vismodegib-resistant 
BCCs induces conformational changes in the binding site, 
disrupting the stabilising hydrogen bond network [159]. 
Computational docking studies identified other muta-
tions like W281, V321, I408, and C469, which interfere 
with vismodegib binding. For instance, the SMO-W281C 
mutation disrupts the interaction critical for drug binding 
[156]. Mutations distal to the DBP, such as T241, A459, 
S533, and G497, may also confer resistance by destabi-
lising SMO’s architecture, promoting its activation and 
reducing inhibitor affinity [156, 157].
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Non‑canonical pathway activation  Initially, resistance 
was linked to mutations within the canonical HH pathway. 
However, subsequent research revealed non-canonical 
HH signalling pathways, such as AP-1 and TGF-β signal-
ling, drive resistance by promoting Arhgef17 transcrip-
tion. Arhgef17 activates RhoA, leading to actin polymeri-
zation and nuclear translocation of MRTF, enhancing GLI 
transcriptional activity independently of SMO inhibition 
[160, 161]. DYRK1B, a member of the DYRK family, influ-
ences HH signalling by regulating ligand expression and 
pathway activation via autocrine mechanisms. Inhibition 
of DYRK1B reduces GLI1 expression, offering a potential 
therapeutic target for GLI1-dependent cancers resist-
ant to SMO inhibitors [162, 163]. Up-regulation of the 
insulin-like growth factor 1 receptor-phosphatidylinositol 
3-kinase (IGF-1R-PI3K) signalling pathway correlates 
with increased PI3K expression in resistant MBs, con-
tributing to resistance mechanisms [154]. Activation of 
the RAS/MAPK pathway, driven by mutations like HRAS 
(G12V) and BRAF (V600E), is significant in resistance and 
metastasis in HH-dependent cancers. These mutations 
enable cancer cells to proliferate independently of HH 
signalling, evading SMO inhibitors like LDE-225, GDC-
0449, and LEQ-506 [164].

Loss of  primary cilia  A newly discovered resistance 
mechanism involves the absence of primary cilia, con-
ferring resistance to LDE-225 in MB cells. Primary cilia, 
crucial for HH pathway signal transmission, are lost 
during tumour development, unexpectedly shielding 
tumour cells from SMO inhibitors [165]. Genome-wide 

transposon mutagenesis screening in HH-dependent MB 
cells identified SUFU and oral-facial-digital syndrome 1 
(OFD1) genes as critical in this resistance mechanism. 
Mutations in OFD1 lead to cilia loss, resulting in slow-
growing, GLI2-dependent resistant tumours. In cilia-
deficient cells, only the full-length form of GLI2 (GLI2-F) 
is present, unaffected by SMO inhibitors. The absence of 
cilia disrupts GLI2 proteolytic processing, preventing the 
formation of the truncated repressor form (GLI2-R). Con-
sequently, HH signalling remains active with unprocessed 
GLI2-F, allowing cilia-deficient cells to evade drug inhibi-
tion [165].

Adverse reactions  Another challenge in developing 
drugs targeting the SHH signalling pathway is the poten-
tial for adverse reactions or side effects. Currently, only 
a few drugs targeting the SHH pathway—namely GDC-
0449, LDE-225, IPI-926, LY2940680, and TAK-441—have 
documented adverse effects. GDC-0449 has been associ-
ated with muscle cramps, taste disturbances, weight loss, 
hair loss, and weakness [166]. LDE-225 side effects include 
muscle spasms, taste disorders, nausea, alopecia, and 
elevated creatine kinase levels. Although these reactions 
are often mild, long-term adverse effects can significantly 
impact patients’ quality of life and lead to drug withdrawal 
[167]. Compared to GDC-0449, patients receiving LDE-
225 reported fewer and slower-occurring adverse events 
[168]. IPI-926, LY2940680, and TAK-441 commonly 
cause fatigue, nausea, and muscle spasms, with liver dys-
function and alopecia specific to IPI-926 [169–171]. The 
adverse reactions of other drugs targeting the SHH path-

Table 2  Summary of drugs targeting the sonic hedgehog signalling pathway in central nervous system tumours

SMO; Smoothened, GLI; Glioma, SHH; Sonic Hedgehog, HH; Hedgehog, DNA; Deoxyribonucleic Acid, HhAntag; Hedgehog Signaling Antagonist, GBM; Glioblastoma, 
MB; Medulloblastoma, TMZ; Temozolomide, PTCH; Patched, mRNA; Messenger Ribonucleic Acid, SMO; Smoothened, c-MYC; Cellular Myelocytomatosis Oncogene, NB; 
Neuroblastoma, HHIP; Hedgehog-Interacting Protein, SFRP; Secreted Frizzled-Related Protein

Therapeutic agents Examples and functions

1. SMO inhibitors [130, 
132–134, 136–138, 
142–147]

GDC-0449 (Vismodegib): Inhibits SHH pathway, showing potential in treating metastatic MB
HhAntag: Complements GDC-0449 by blocking SMO through additional binding sites
Cyclopamine: Reduces growth rates of gliomas, GBMs, and MBs, enhances TMZ therapy by inducing apoptosis
LDE-225 (Sonidegib): Induces cell cycle arrest and apoptosis, reduces epithelial-mesenchymal transition in multiple cancers
IPI-926 (Saridegib): Suppresses tumour growth in MB allograft models
BMS-833923: Decreases GLI1 and PTCH1 mRNA expression, inhibiting proliferation
PF-5274857: Selective SMO antagonist, effective in MB allograft models
TAK-441: Effective against Vismodegib-resistant SMO mutants
LY2940680 (Taladegib): Inhibits HH signalling, effective against Vismodegib-resistant SMO mutants. Itraconazole: Inhibits SMO 
accumulation, effective in MB allograft models, synergistic with cyclopamine

2. GLI inhibitors [148] GANT 61: Inhibits DNA binding of GLI1 and GLI2, downregulates GLI1, c-MYC, MYCN, Cyclin D1, induces apoptosis in NB cells, 
enhances effects of chemotherapeutic drugs

3. SHH inhibitors [153] Target multiple components of the SHH signalling cascade, showing effectiveness in the breakdown of GBM cancer stem cells, 
preventing tumour recurrence
- 5E1: Monoclonal antibody targeting SHH ligand, inhibits MB growth, reduces tumour proliferation, increases apoptosis, 
improves survival rates

4. DNA methyltrans‑
ferase inhibitors [155]

Restore epigenetically silenced SHH pathway inhibitors, such as PTCH1, HHIP, and SFRP1, suggesting potential therapeutic 
approach for modulating SHH signalling in NBs
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way have not yet been identified due to the lack of clini-
cal trials. Therefore, further research is crucial to uncover 
potential side effects and deepen our understanding of 
the safety profiles of these therapies, ultimately improving 
patient care and outcomes.

Strategies for overcoming resistance to SMO inhibitors
Several strategies have been proposed to overcome resist-
ance to drugs targeting the SHH signalling pathway. One 
approach involves the development of second-generation 
SMO inhibitors. HH003, a novel SMO inhibitor featuring 
a tetrahydropyrido(4,3-d)pyrimidine scaffold, has dem-
onstrated efficacy in blocking the SHH pathway by sup-
pressing the transcription of target genes such as GLI1 
and PTCH1, induced by pathway agonists. Both in vitro 
and in vivo studies have confirmed the anti-tumor activ-
ity of HH003, effectively inhibiting the growth of various 
cancer cells, including glioblastoma T98G and SF295 
[172]. Another promising strategy entails the use of the 
Bcl-2 homology 3 mimetic ABT-199, which can over-
come resistance caused by SMO mutations. ABT-199 
suppresses SHH signalling by acting as a competitive 
inhibitor of oxysterol, likely targeting the cysteine-rich 
domain of SMO. It has effectively reduced SMO ago-
nist (SAG)-stimulated HH activity in Light II cells with 
various SMO mutants. In MB transgenic mice harbour-
ing the SMO-W539L mutation, ABT-199 significantly 
inhibited tumour growth, whereas GDC-0449 showed no 
effect, suggesting that ABT-199 can overcome resistance 
to current SMO inhibitors caused by SMO mutations 
[173].

Additionally, combination therapies offer a viable 
strategy to combat resistance. For instance, combin-
ing AMPK activators with Vismodegib can overcome 
Vismodegib resistance and inhibit the growth of SMO-
D473G MB cells. In both mouse subcutaneous and 
intracranial models, the combination of Metformin 
and Vismodegib showed synergistic suppression of MB 
tumour growth [174]. Similarly, combining LDE-225 
with the PI3K class I inhibitor NVP-BKM120 or the 
dual PI3K/mTOR inhibitor NVP-BEZ235 has markedly 
delayed the development of resistance in MB tumours 
derived from PTCH+ /− p53−/− mice [154]. Moreover, 
the combination of Itraconazole and ATO has signifi-
cantly improved anti-tumor efficacy in a subcutaneous 
allograft model of PTCH+/− ;p53−/− mice. Itraconazole 
inhibited the activity of all known SMO resistance 
mutants at levels similar to SMO-D477G, resulting in 
inhibited tumour growth and reduced tumour vol-
umes in SMO-resistant tumours [147]. These find-
ings suggest that combination therapy may represent 
the future direction for overcoming resistance to SHH 

pathway-targeting drugs. Further research is essen-
tial to identify the most effective combinations and to 
develop new drugs that can enhance treatment efficacy 
and improve patient outcomes. The challenges of tar-
geting the SHH pathway in CNS tumour therapy and 
strategies to overcome resistance to SMO inhibitors are 
summarised in Table 3.

Novel biomarkers for SHH signalling pathway activation 
in CNS tumours
Biomarkers are crucial for identifying and stratifying 
CNS tumours such as MBs and meningiomas. GAB1 has 
emerged as a significant biomarker, detectable through 
immunohistochemistry and useful in excluding HH-
independent meningiomas [175]. Additionally, GAB1 
serves as a diagnostic marker for SHH tumours, shown 
by specific reactivity of anti-GAB1 antibodies [176]. 
In SHH MB, Shih et  al. developed a risk stratification 
scheme categorising patients into high-risk, standard-
risk, and low-risk groups based on biomarkers. High- and 
standard-risk patients are identified by GLI2 amplifica-
tion, 14q loss, and leptomeningeal dissemination, with 
GLI2 amplification alone correlating with poor progno-
sis. Absence of these markers defines a low-risk group 
similar to WNT tumour patients, highlighting GLI2 and 
14q loss as reliable prognostic indicators [177].

YAP1 has emerged as a predictive marker for response 
to SMO inhibitors in SHH MB patients. Those genetically 
resistant to SMO inhibitors, particularly in the aggressive 
alpha subtype, often exhibit YAP1 overexpression. SHH-
like cell lines with TP53 mutations show enhanced SMO 
inhibitor responsiveness upon YAP1 depletion, suggest-
ing YAP1 as a therapeutic target to improve outcomes 
[178]. Combining Sonidegib and Verteporfin, which 
inhibit SMO and YAP1 respectively, shows synergistic 
effects, proposing a dual inhibition strategy for overcom-
ing resistance in SHH MB therapy [178]. GLI1 is another 
promising biomarker, particularly for predicting neu-
roblastoma (NB) severity with high MYCN expression. 
MYCN amplification is associated with more aggressive 
NB. GLI1-positive NB cases without MYCN amplifica-
tion correlate with early clinical stages and improved 
outcomes, while low GLI1 expression and MYCN ampli-
fication correlate with advanced disease and poor prog-
nosis. Only 10% of MYCN-amplified cases were positive 
for GLI1, suggesting GLI1 expression as a biomarker for 
NB differentiation and prognosis [179].

Further research is necessary to identify additional bio-
markers and ensure they are accessible, cost-effective, 
and reliable in terms of specificity and sensitivity. This 
will enhance their clinical utility for diagnosis, prognosis, 
and treatment decisions.
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Study limitations
There are several important limitations that must be 
addressed in this review. Firstly, the majority of stud-
ies included are preclinical, providing valuable insights 
into the mechanisms and implications of SHH signalling 
and its interplay with other molecular pathways in CNS 
tumours. However, the clinical implications of these find-
ings remain largely speculative at this stage. Secondly, 
many of the drugs discussed are primarily studied in 
contexts other than CNS tumours, making it challeng-
ing to draw definitive clinical conclusions. While some 

clinical trials have been conducted with these drugs in 
CNS tumour settings, many have either been terminated 
early or completed only up to phase 2, resulting in limited 
understanding of their mechanisms, efficacy, safety pro-
files and adverse reactions specifically in CNS tumours. 
Furthermore, certain studies have explored drugs not 
approved for CNS tumours, yielding promising results, 
but often with small patient cohorts that may not be rep-
resentative of the broader population.

The complexity of the SHH signalling pathway and 
its interactions with other pathways in CNS tumours 

Table 3  Summary of challenges with drug targeting in the sonic hedgehog signalling pathway in central nervous system tumour 
therapy and strategies for overcoming resistance to smoothened inhibitors

SMO; Smoothened, GLI; Glioma, HH; Hedgehog, SUFU; Suppressor Of Fused, BCC; Basal Cell Carcinoma AP; Activator Protein 1,TGF-B; Transforming Growth Factor 
Beta, DYRK1B; Dual Specificity Tyrosine-Phosphorylation-Regulated Kinase 1B, IGF; Insulin-Like Growth Factor, PI3K; Phosphatidylinositol 3-Kinase, MAPK; Mitogen-
Activated Protein Kinase, OFD; Orofaciodigital syndrome type 1, PTCH; Patched, SAG; Smoothened Agonist, AMPK; Activated Protein Kinase, MB; Medulloblastoma, 
ATO; Arsenic Trioxide, mTOR; Mammalian Target of Rapamycin

Challenges/strategies Description

Challenges

 Genetic mutations [156–158] Analysis of resistant tumours has revealed various genetic mutations that cause resistance 
to SMO inhibitors like GDC-0449. These include mutations in SMO, loss of SUFU, and amplifica‑
tion of GLI or HH target genes. Around 50% of resistant BCCs have SMO mutations that continue 
to activate the HH signalling pathway despite treatment. These mutations can occur in the DBP 
or other regions, affecting drug binding and causing resistance

 Non-canonical pathway activation [154, 160–164] Resistance can also result from non-canonical HH signalling pathways, such as AP-1 and TGF-
β, which enhance GLI transcriptional activity independently of SMO inhibition by promoting 
Arhgef17 transcription. DYRK1B regulates ligand expression and pathway activation via auto‑
crine mechanisms. Increased IGF-1R-PI3K signalling pathway activity and RAS/MAPK pathway 
activation are also linked to resistance, enabling cancer cells to grow independently of the HH 
signalling pathway and evade SMO inhibitors

 Loss of primary cilia [165] Another mechanism of resistance involves the loss of primary cilia, which contain key compo‑
nents of the HH pathway. Cilia loss during tumour development protects tumour cells from SMO 
inhibitors. Mutations in the OFD1 gene lead to cilia loss, resulting in tumours dependent on GLI2 
activity. In cells without cilia, only the full-length form of GLI2 (GLI2-F) remains, ensuring continu‑
ous, low-level HH signalling activity and allowing cells to evade drug effects

 Adverse reactions and side effects [166, 168–170] Targeting the SHH signalling pathway with drugs can cause adverse reactions or side effects. 
Known side effects for drugs like GDC-0449, LDE-225, IPI-926, LY2940680, and TAK-441 include 
muscle cramps, taste disturbances, weight loss, hair loss, weakness, muscle spasms, nausea, 
alopecia, and elevated creatine kinase levels. Although often mild, these reactions can signifi‑
cantly impact patients’ quality of life and lead to drug discontinuation. Further research is needed 
to identify potential side effects and improve understanding of these therapies’ safety profiles

Strategies for overcoming resistance

 Second-generation SMO
inhibitors [172]

HH003, a new SMO inhibitor with a tetrahydro-pyrido(4,3-d)pyrimidine scaffold, effectively blocks 
the SHH pathway by suppressing the transcription of target genes like GLI1 and PTCH1. In vitro 
and in vivo studies have shown that HH003 inhibits the growth of various cancer cells, includ‑
ing glioblastoma T98G and SF295, making it a promising second-generation SMO inhibitor

 Bcl-2 homology 3 mimetic ABT-199 [173] ABT-199 overcomes resistance caused by SMO mutations by acting as a competitive inhibitor 
of oxysterol, likely targeting the cysteine-rich domain of SMO. It effectively reduces SMO agonist 
(SAG)-stimulated HH activity in Light II cells with various SMO mutants. In MB transgenic mice 
with the SMO-W539L mutation, ABT-199 significantly inhibited tumour growth, indicating its 
potential to bypass resistance to current SMO inhibitors due to SMO mutations

 Combination therapy [147, 154, 174] Combining AMPK activators with Vismodegib can overcome resistance and inhibit the growth 
of SMOD473G MB cells. In mouse models, the combination of Metformin and Vismodegib 
showed synergistic suppression of MB tumour growth. Additionally, combining LDE-225 
with PI3K class I inhibitor NVP-BKM120 or dual PI3K/mTOR inhibitor NVP-BEZ235 delayed resist‑
ance development in MB tumours. The combination of Itraconazole and ATO also improved 
anti-tumor efficacy in SMO-resistant tumours. These combination therapies have shown promise 
in inhibiting tumour growth and reducing tumour volumes
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remains poorly understood, necessitating further 
research to bridge these knowledge gaps. Given the 
dynamic nature of SHH interactions with various cellu-
lar pathways, this review may not comprehensively cover 
all recent discoveries or emerging insights into how these 
interactions influence disease progression and therapeu-
tic responses. Additionally, the diverse characteristics 
among different cancer types and within CNS tumours 
pose challenges in fully capturing their heterogeneity, 
potentially limiting the applicability of findings across all 
clinical contexts. Addressing these limitations will not 
only enhance our understanding of the SHH signalling 
pathway and its therapeutic implications in CNS tumours 
but also facilitate the development of more effective 
treatments that leverage cellular regulatory mechanisms 
and interactions with other molecular signalling path-
ways, ultimately improving clinical outcomes.

Conclusion
In conclusion, The SHH signalling pathway plays a cru-
cial role in the proliferation and growth of certain CNS 
tumours. Understanding the molecular mechanisms of 
SHH signalling is essential for developing improved ther-
apeutic strategies that suppress this pathway and enhance 
treatment outcomes. Future research should focus on 
exploring combination therapies, identifying new molec-
ular targets, and potentially exploring the benefits of gene 
editing technologies to optimise treatment modalities 
for patients with CNS tumours. Additionally, investigat-
ing genetic variations within SHH signalling tumours 
can provide valuable insights for personalised medi-
cine, allowing for tailored treatments and reducing the 
risk of resistance. A greater emphasis should be placed 
on understanding the interplay between SHH signalling 
and other molecular pathways in CNS tumours including 
aspects of the tumour immune microenvironment. This 
knowledge is critical for unlocking the full therapeutic 
potential of medication-directed therapy and translating 
these findings into clinical practice. By addressing these 
areas, we can move closer to developing more effec-
tive and personalised treatments for SHH-related CNS 
tumours, ultimately improving patient outcomes.
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