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Abstract: Glioblastoma (GBM) is the most common yet uniformly fatal adult brain cancer. Intra-
tumoral molecular and cellular heterogeneities are major contributory factors to therapeutic refrac-
toriness and futility in GBM. Molecular heterogeneity is represented through molecular subtype
clusters whereby the proneural (PN) subtype is associated with significantly increased long-term
survival compared to the highly resistant mesenchymal (MES) subtype. Furthermore, it is universally
recognized that a small subset of GBM cells known as GBM stem cells (GSCs) serve as reservoirs for
tumor recurrence and progression. The clonal evolution of GSC molecular subtypes in response to
therapy drives intra-tumoral heterogeneity and remains a critical determinant of GBM outcomes.
In particular, the intra-tumoral MES reprogramming of GSCs using current GBM therapies has
emerged as a leading hypothesis for therapeutic refractoriness. Preventing the intra-tumoral diver-
gent evolution of GBM toward the MES subtype via new treatments would dramatically improve
long-term survival for GBM patients and have a significant impact on GBM outcomes. In this review,
we examine the challenges of the role of MES reprogramming in the malignant clonal evolution of
glioblastoma and provide future perspectives for addressing the unmet therapeutic need to overcome
resistance in GBM.

Keywords: glioblastoma; intra-tumoral heterogeneity; mesenchymal reprogramming; clonal evolu-
tion; anti-GBM therapy; tumor microenvironment; therapeutic resistance

1. Introduction

Glioblastoma (GBM) is the most common infiltrative primary central nervous sys-
tem (CNS) malignancy with a median survival of 15 months [1–3]. While genetic and
environmental factors have been postulated as contributory factors, the overwhelming
majority of GBM cases are sporadic. Advances in GBM epidemiology have resulted in
the appreciation of biological subtypes and also the relevance of these subtypes to GBM
outcomes [4]. Nevertheless, there is a substantial unmet need for impactful therapeutic
strategies that can significantly improve GBM outcomes beyond the standard of care.

GBM standard therapy entails multimodal strategies of maximum surgical resection,
temozolomide (TMZ) chemotherapy, and radiotherapy. However, tumor recurrence is
universal and frequent. Tumor heterogeneity, the tumor infiltrative growth pattern, and
the central nervous system location present significant challenges to current therapeutic
approaches, leading to disease recurrence. As a consequence, therapeutic resistance re-
mains a largely unaddressed phenomenon in GBM. Molecular surrogates of favorable
GBM biology and therapeutic response have been proposed [5–10]. One of the most im-
pactful genetic alterations that govern glioma tumor biology and permit clinically relevant
classification is IDH genomic status [5,10]. The importance of the NADP(+)-dependent
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isocitrate dehydrogenases protein encoded by IDH1 and IDH2 genes has been known for
over a decade, whereby IDH1 mutations are present in high-grade gliomas that develop
from low-grade gliomas, whereas IDH-wildtype GBMs arise de novo and usually have a
poorer prognosis [5,10]. Another molecular prognosticating marker of chemotherapeutic
response is the promoter methylation status of the DNA repair enzyme O6-methylguanine-
DNA methyltransferase (MGMT) [7–9]. MGMT is epigenetically regulated in high-grade
gliomas [8]. Epigenetic silencing of MGMT sensitizes GBMs to TMZ and improves survival,
thereby rendering MGMT methylation status as one of the most important biomarkers
to predict TMZ response [7]. Thus far, MGMT methylation status and mutation in IDH1
are the most impactful independent prognosticating factors in the clinical management of
GBM [6].

Beyond the standard of care treatment, targeted inhibition of crucial growth factor path-
ways [11], immune-checkpoint inhibitors, and tumor vaccine strategies [12–16] have been
extensively explored in GBM for therapeutic efficacy. To date, none of the above strategies
have been effective [13,17–21]. A combination of immunosuppressive microenvironment
factors, as well as tumor molecular and cellular heterogeneity factors, have been postulated
as contributors to therapeutic futility in GBM [22–27]. Furthermore, treatment-induced
mesenchymal (MES) reprogramming has emerged as the leading cause of intra-tumoral
heterogeneity, malignant clonal evolution, and subsequent lethality in GBM [28–30]. Hence,
systematic characterization of malignant reprogramming mechanisms can provide valuable
insights into novel therapeutic interventions in GBM. This review will highlight the role of
MES reprogramming in therapeutic futility in glioblastoma and provide future perspectives
for addressing this formidable challenge in GBM.

2. GBM Stem Cells in the GBM Microenvironment

Regional heterogeneity is both a histopathological and a radiographic hallmark of
GBM, whereby there are regions of central hypoxia and necrosis surrounded by a pseudo-
palisading, a proliferative angiogenic zone that is enhanced in contrast magnetic resonance
imaging (MRI) [31]. Through bulk tumor analysis, it has been demonstrated that the GBM
heterogeneous subclones evolve from a subset of stem-like cells known as the GBM stem
cells (GSCs), which harbor distinct genetic alterations [32] and originate from neural stem
cells of the subventricular neurogenesis zone [33,34]. GSCs have self-renewal capabilities
and are characterized by evaluating the expression of specific gene markers reflective
of stemness including CD133, Sox2, and Nestin [35,36] (Figure 1). In light of their high
proliferation rate and molecular heterogeneity, GSCs are highly resistant to GBM therapy
and serve as a critical nidus for disease recurrence [37,38]. Interestingly, the GSCs within
the perinecrotic hypoxic niche and angiogenic niche are highly proliferative, relative to
GSCs of the brain-invasive front [39]. Post-treatment recurrence is believed to be secondary
to the repopulation of new tumors by GSCs that persist despite treatment [40]. Therefore,
there is overwhelming evidence that GSCs are the primary contributor to tumorigenicity,
treatment-induced resistance, and recurrence. Furthermore, there is evidence that GSCs
mediate therapeutic resistance through multiple mechanisms, impacting DNA repair and
drug efflux systems [41,42] (Figure 1).

Given the apical location of GSCs within the GBM cellular hierarchy, GCSs play a
critical role in GBM tumorigenicity and cell fate determination [39,43,44]. GSCs co-exist
with differentiated tumor cells, astrocytes, and immune cells within the perivascular niche
of GBM [39]. Complex interactions within this perivascular microenvironment sustain
GSC survival and proliferation. Immune cells within the tumor microenvironment include
tumor-associated macrophages (TAMs), microglia, myeloid-derived suppressor cells (MD-
SCs), neutrophils, and monocytes [39,45]. TAMs and microglia play vital roles in GSC
tumorigenesis through the upregulation of matrix metalloproteinase 9 (MM9) expression
via transforming growth factor-β (TGF-β) signaling [46,47]. Furthermore, the maintenance
of GSC self-renewal is sustained through tumor cell-induced paracrine proliferation and
migration of astrocytes [48,49].
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Figure 1. Malignant reprogramming of GSCs in GBM. Schematic representation of the impacts of 
GSCs on GBM tumor propagation. GSCs contribute to therapeutic resistance, the hypoxic microen-
vironment, MES reprogramming, tumor cell self-renewal, angiogenesis, and tumor invasion. 
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featured in GBM through the comprehensive characterization of over 600 GBM patient 
tissues [50]. In particular, mutations in TP53, receptor tyrosine kinase genes (RTKs), and 
RB were identified as the most common critical genetic alterations in GBM [51]. Loss of 
function of the tumor suppressor gene TP53 through mutation or alterations of other p53 
signaling components such as MDM2 promotes the malignant reprogramming of tumor 
cells [52–54]. RB signaling, which is tumor suppressive, is highly dysregulated in GBM 
through aberrations of crucial activators of p53 such as CDK4 amplification and CDKN2A 
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Figure 1. Malignant reprogramming of GSCs in GBM. Schematic representation of the impacts of
GSCs on GBM tumor propagation. GSCs contribute to therapeutic resistance, the hypoxic microenvi-
ronment, MES reprogramming, tumor cell self-renewal, angiogenesis, and tumor invasion.

3. Heterogeneity in GBM

Intra-tumoral heterogeneity, both at the cellular and molecular genetics level (Table 1),
is a pathognomonic hallmark of GBM that is responsible for therapeutic resistance and
poor outcomes in GBM [27]. Hence, a deeper understanding of the nature of cellular and
molecular heterogeneity in GBM is essential to developing therapies that are impactful in
GBM. Over the last two decades, there have been significant advances in deciphering criti-
cal genetic alterations in GBM, which have facilitated both tumor characterization and an
enhanced appreciation of the GBM landscape. The Cancer Genome Atlas (TCGA) was the
seminal study that characterized critical molecular pathway aberrations that were highly
featured in GBM through the comprehensive characterization of over 600 GBM patient
tissues [50]. In particular, mutations in TP53, receptor tyrosine kinase genes (RTKs), and RB
were identified as the most common critical genetic alterations in GBM [51]. Loss of function
of the tumor suppressor gene TP53 through mutation or alterations of other p53 signaling
components such as MDM2 promotes the malignant reprogramming of tumor cells [52–54].
RB signaling, which is tumor suppressive, is highly dysregulated in GBM through aber-
rations of crucial activators of p53 such as CDK4 amplification and CDKN2A deletion
in GBM [55]. In addition, pervasive alterations to RTK signaling pathways, including
EGFR, PDGF, and TGF-β, facilitate GBM oncogenesis through the downstream activa-
tion of oncogenic pathways [39]. Signal transduction through RTKs facilitates important
oncogenic processes at the cellular level including proliferation, apoptosis resistance, and
invasion [56,57]. Amplification of EGFR as well as constitutive-active mutants (EGFRvIII)
represents the most common alteration in GBM [58,59]. Similarly, PDGFRA amplifica-
tion [60] and deletional mutations [61] are commonly encountered in GBM. Downstream
activations of RAS/MAPK and PI3K/AKT/mTOR signaling pathways through mutations
and deletions of pathway components appear to be common oncogenic and malignant
propagating events in GBM [60]. The diverse activations and complex interactions of
multiple oncogenic signaling pathways in GBM are key aspects of GBM heterogeneity that
present unique therapeutic challenges.
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Table 1. Gene expression profiles in different regions of GBM tumors. The overview of the GBM
regions reveals distinct patterns and enrichment of specific molecular profiles. The enriched gene
profiles were analyzed during the Ivy Glioblastoma Atlas Project.

Tumor
Region

Leading Edge and
Infiltrating Tumor Perinecrotic Zone Pseudopalisading

around Necrosis

Hyperplastic
Blood Vessels in
Cellular Tumor

Microvascular
Proliferation

Top 10 Gene
Expression Profile

VSNL1 PI3 IL8 COL3A1 ESM1

CCK IL8 VEGFA LOC100506027 COL3A1

SNAP25 CCL20 HILPDA LUM IBSP

GABRA1 SLPI NDRG1 COL1A1 CRIP1

CRYM SAA1 ADM ACTG2 LOC100506027

GNG3 PTX3 CA9 ESM1 HIGD1B

SYT1 SAA2 CA12 ACTA2 RGS5

NEFL TREM1 ANGPTL4 COL6A3 ITGA1

SYNPR CHI3L1 HK2 COL1A2 OR51E1

GABRA2 MMP7 CHI3L1 DCN MMP9

Molecular interactions between tumor cells and non-tumor cells within the GBM
tumor microenvironment (TME) add further complexity to intra-tumoral heterogeneity.
Fortunately, the Ivy Glioblastoma Atlas Project (https://glioblastoma.alleninstitute.org/,
accessed on 22 May 2024) made significant contributions toward understanding the genetic
landscape in GBM from a regional perspective (Table 1). Biopsy samples were obtained
using image-guided investigation of MRI-distinct regions in GBM, and the tissue was sub-
jected to bulk RNA sequencing (RNA-seq). There were marked variations and significant
regional heterogeneity based on the top 10 gene expression profiles (Table 1). Although
the bulk tumor data were quite valuable, molecular details at the cellular level are more
informative of intra-tumoral heterogeneity. Recent advances in single-cell RNA sequencing
(scRNA-seq) have bridged the gap between the molecular profiling features of a bulk tumor
and individual tumor cells. For instance, within the bulk tumor, there are variations in
individual tumor cell gene expression and clustering, leading to heterogeneity in the GBM
molecular subtype profiles of individual tumor cells with implications for therapeutic
resistance [27]. Furthermore, scRNA-seq investigations have implicated the TME as a
malignant facilitator of GBM through reprogramming mechanisms involving hypoxia [62],
immunosuppression [63,64], MES reprogramming [65,66], and cellular metabolism [67,68].
Most recently, the emergence of spatial transcriptomics has permitted a deeper investigation
of cellular interactions within the TME and optimal delineation of cellular niches within
the tumor [69–71]. In a very recent study, Greenwald et al. defined GBM cellular states
and uncovered their organization through approaches combining spatial transcriptomics,
spatial proteomics, and computational analysis [72]. Their findings indicated that GBM
tumors contain both disorganized and structured regions, whereby the organized regions
were associated with an abundance of MES-hypoxic cancer cells that extended beyond
what could be observed in histopathology.

The clonal evolution of GSCs and non-GSC populations and subsequent interactions
with the tumor microenvironment (TME) contribute to heterogeneity. GSCs are constantly
in a state of equilibrium toward differentiation into non-GSC populations versus the
maintenance of stemness. Stemness hierarchical plasticity is the basis for initiating the
recurrent tumor after cytotoxic therapy. In terms of cellular architecture heterogeneity, GSC
subpopulations can be classified as oligodendrocyte progenitor cells, neural progenitor
cells, astrocyte-like cells, or mesenchymal-like cells [73,74]. It is now apparent that IDH
mutation status influences both the GSC proliferation state and cellular architecture [75].
For instance, the GSCs in IDH-mutant tumors are in a non-proliferative state compared

https://glioblastoma.alleninstitute.org/
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to GSCs in IDH-wild-type tumors where GSCs are highly proliferative. Furthermore,
while IDH-mutant and IDH-wild-type tumors consist of mixed GSC subpopulations, the
proliferating mesenchymal-like cells are most commonly associated with IDH-wild-type
GBM [75].

Further insights into the molecular inter-tumoral and intra-tumoral heterogeneities of
GSCs have emerged secondary to large-scale genomic and RNA sequencing investigations,
that reveal GBM segregation into distinct survival prognostic molecular subtypes [76,77].
Using a combination of gene expression, mutational, and copy number analysis, Verhaak
et al. subsequently stratified GBM into the following four distinct molecular subtypes
reflecting inter-tumoral heterogeneity: proneural (PN), mesenchymal (MES), neural (NL),
and classical (CL) [51]. PN tumors are often enriched in oligodendrocytic signature, have
the best prognosis, and are characterized by mutations in PDGFRA and IDH1/2 [51]. MES
subtype tumors have a strong astrocytic signature, have the worst prognosis, and are
genetically characterized by NF1 mutations [51]. The classical subtype has an astrocytic
signature as well but is characterized by EGFR aberrations [51]. The neural subtype has
both astrocytic and oligodendrocytic signatures and is characterized by neuronal gene
expressions [51]. Although the molecular subtypes in GBM have been identified based on
individual tumor analysis, it is now evident from the stereotactic surgery investigation of
different GBM regions in a single patient that more than one subtype can exist within the
same tumor [78]. Intra-tumoral heterogeneity in GBM molecular subtypes has significant
clinical implications with respect to therapeutic response and prognosis.

A unique advantage of the classification of GBM into distinct molecular subtypes is
the association of genetic heterogeneity with therapeutic resistance and tumor recurrence.
For instance, the single-cell RNA sequencing (scRNA-Seq) of GBM further reveals the
impact of intra-tumoral heterogeneity in molecular subtypes on GBM survival [27]. It
became evident that all GBM tumors have PN subpopulations and that it was the variance
of PN subpopulations relative to the other molecular subtypes that impacts survival [27].
MES subpopulations are highly resistant to therapy and confer dismal survival compared
to other subtypes. TCGA dataset analysis revealed NF1 mutations and NF-κB signaling
aberrations as facilitators of the MES subtype [79]. Furthermore, TNF-α/NF-κB signaling
drives radiation resistance in GBM through the PN to MES transition of GBM stem cells [80].
Similarly, the induction of TGF-β2 through the dephosphorylation of OLIG2 facilitates MES
transition [81]. Hence, within the context of molecular intra-tumoral heterogeneity, MES
proclivity significantly impacts survival and contributes to variations in clinical outcomes.

4. MES Reprogramming

MES reprogramming is a cellular process during which cancer cells acquire enhanced
migratory and invasive characteristics contributing to malignant transformation and propa-
gation [82]. MES reprogramming is driven by signaling networks involving transcriptional
factors and downstream effectors, and reprogramming is often the aftermath of interactions
between cancer cells and the TME or therapeutic exposure [82]. Although MES repro-
gramming was traditionally considered as a phenomenon mainly unique to epithelial
cancers, the MES state of GBM has been identified through molecular clustering whereby
NF1 loss appears to be a consistent genetic lesion [51]. There is mounting evidence that
therapeutic resistance and recurrence in GBM are associated with enhanced MES phe-
notype reprogramming [83–85]. For instance, detailed analyses of recurrent GBMs have
uncovered evidence of molecular subtype transitions as the basis for chemotherapy and
radiotherapy resistance [77,85–88]. PN towards MES reprogramming represents the most
common molecular subtype transition whereby PN genes are down-regulated and MES
genes are upregulated [80,89–91]. MES and PN preclinical genetic models of GBM driven
by NF1 loss and PDGFB overexpression, respectively, demonstrate differential responses to
radiation (RT) and TMZ whereby the PDGFB overexpression phenotype is more sensitive
compared to the NF1 loss phenotype [92]. Interestingly, therapy-resistant GBMs have an
MES-like phenotype, while therapy-sensitive GBMs have a PN-like phenotype [85]. Given
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the profound negative impact of MES reprogramming on GBM outcomes, there is urgency
and renewed emphasis on identifying drivers of MES reprogramming with the hopes of
developing novel GBM therapies.

Besides the acquisition of invasive and migratory phenotypes, MES reprogramming
appears to also activate unique metabolic programs to support demands associated with
the aforementioned phenotypes [82]. Thus far, the detailed mechanism of how metabolic
alteration synergizes with MES reprogramming is poorly understood in GBM. However,
there are some studies that have reported the correlation between metabolic alteration
and MES reprogramming in GBM. For instance, Su et al. demonstrated that metabolic
and subsequent MES reprogramming in GBM occurs through the TGFβ1-mediated up-
regulation of NADPH oxidases 4 (NOX4) and reactive oxygen species (ROS), leading to
downstream overexpression and nuclear accumulation of hypoxia-inducible factor 1α
(HIF-1α) [93]. Utilizing a combination of patient GBM xenografts and patient GBM tissues,
Talasila et al. analyzed gene expression changes associated with invasive and angiogenic
phenotypes in GBM [94]. They observed an angiogenic switch that was highly correlated
with MES programming whereby angiogenic xenografts employed higher rates of gly-
colysis compared with invasive xenografts. They also noted that MES reprogramming
was associated with angiogenic switch through the upregulation of transcriptional factors
BHLHE40, CEBEP, and STAT3, which employ higher rates of glycolysis. Lastly, malic
enzyme (ME2), an enzyme that catalyzes the formation of pyruvate from malic acid, was
found to be highly expressed in GBM and its expression was positively correlated with
MES reprogramming through upregulation of MES gene markers and downregulation of
PN gene markers [95]. ME2 mediated metabolic reprogramming through inhibition of ROS
and AMPK phosphorylation and subsequent facilitation of SREBP-1 nuclear localization,
leading to ACSS2 lipogenesis.

4.1. Treatment-Induced MES Reprogramming and Clinical Relevance

One of the most significant challenges in the treatment of GBM is the limited dura-
bility of clinical response. As already alluded to, heterogeneity in molecular subtypes, as
well as a propensity for clonal evolution toward a more aggressive molecular subtype,
have therapeutic–prognostic implications. GBM treatment can reprogram GSCs toward an
aggressive MES phenotype, leading to enhanced stemness, invasion, and therapeutic resis-
tance. In particular, treatment-induced MES reprogramming is a significant contributor to
GBM therapeutic refractoriness to chemotherapy and radiotherapy [79,80,86,96–98]. Both
radiation therapy and chemotherapy induce MES reprogramming in GBM preclinically
and clinically. In order to overcome the challenge of MES reprogramming, a detailed un-
derstanding of molecular mechanisms associated with the MES status of GSCs is necessary.

In an attempt to decipher molecular drivers of MES reprogramming in GCSs, Bhat
et al. identified a genetic signature associated with MES transition, radiation resistance,
and poor GBM outcomes mediated through NF-κB signaling pathway activation [80]. NF-
κB signaling activation reprogrammed GSCs toward an MES phenotype that was highly
resistant to radiation resistance through upregulation of CD44 [80]. Paradoxically, radiation
therapy has been implicated as a propagator of the MES reprogramming of GBM through
the activation of critical MES regulators and signature genes [86,96]. In PN GBM mouse
models, radiation treatment induced PN to MES reprogramming both genetically and phe-
notypically [86]. Furthermore, radiation-mediated MES GBMs are generally more invasive
and resistant to TMZ [96]. It is now recognized that the radiation-induced upregulation of
TGF-β, VEGF, and PDGF promotes tumor invasion and resistance associated with MES
reprogramming [99,100]. New insights into the impact of GBM radiation therapy on brain-
invasive GBM cells have provided further enlightenment on transcription programs of MES
reprogramming in GBM with potential implications for treatment outcomes [97]. The brain-
invasive front of GBM represents a region where the safe resection of tumors is not feasible
because tumor cells are highly infiltrated into normal brain tissue. Minata and colleagues
recently identified two subpopulations of GSCs within the invasive front of GBM patients,
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consisting of a CD133+ PN subpopulation and a CD109+ MES subpopulation [97]. Upon
exposure to ionizing radiation, CD133+ PN GSCs transitioned to CD109+ MES GSCs, sug-
gesting that radiation induces the expression of CD109 [97]. Mechanistically, the radiation-
induced expression of CD109 in GCSs leads to downstream activation of the TAZ/YAP
axis, resulting in MES reprogramming, brain invasion, and radiation resistance [97]. Hence,
CD109 could serve as a therapeutic target for radiation-induced MES reprogramming in
GBM. Approaches to targeting radiation-induced reprogramming have focused on master
transcriptional regulators such as STAT3 [96,101] and NF-κB [102] pathways. Targeting
STAT3 either through a small molecule inhibitor of survivin, YM155 [101] or through the
upstream blockade of STAT3 using JAK2 inhibitors (AZD1480 or ruxolitinib) [96] signifi-
cantly enhanced radiation sensitivity and prevented MES reprogramming. Recently, it was
reported that activation of adhesion G-protein-coupled receptor G1 (GPR56/ADGRG1)
could abrogate NF-κB pathway-mediated MES reprogramming in GBM [102].

MES reprogramming is equally a challenge to GBM alkylator chemotherapy where
transcription factors such as the forkhead box protein O1 (FOXO1) drive MES resistance
reprogramming in GBM to alkylators [103]. TMZ is generally the first-line therapy in GBM
administered concurrently with radiotherapy followed by adjuvant TMZ. Given its DNA
alkylating mechanism, TMZ treatment leads to a hypermutated and MES phenotype, espe-
cially upon tumor recurrence, and further studies evaluating the genetic and phenotypic
changes associated with the evolution of TMZ resistance in GBM interestingly revealed the
acquisition of an MES gene signature as part of the evolution of GBM cells toward TMZ
resistance [104–107]. In GBM, there are sub-populations of proliferative as well as quiescent
GSCs. Not surprisingly, quiescent GSCs are highly refractory to anti-proliferative therapy
with TMZ and harbor a very strong TGF-β and HIF1α transgene MES signature [106].
Recent findings have revealed that several key transcriptional pathways play crucial roles
in MES reprogramming and TMZ resistance. For instance, FOXO1 affects multiple MES
marker genes’ expression and further positively induces TMZ and CDDP (Cisplatin) resis-
tance [103], while STAT3 and NF-κB could induce an immunosuppressive environment
associated with TAMs dependent on mTOR activity [108].

Beyond alkylating chemotherapy agents, anti-angiogenic agents have been employed
as second-line agents in GBM therapy but without any significant impact on overall
survival [109–111]. Emerging data have implicated anti-angiogenic therapy in promoting
GBM tumor hypoxia and MES reprogramming [83,84,112]. Hence, anti-angiogenic therapy
failures are often associated with markedly invasive and resistant GBM at recurrence. The
MES reprogramming propensity of standard first-line and second-line GBM therapies
significantly underscores the urgent need for new treatments that could either prevent or
treat MES reprogramming.

4.2. Heterogenous Tumor Microenvironment

The GBM tumor microenvironment (TME) is another major contributor to malignant
reprogramming in GBM (Figure 2). Cellular and molecular heterogeneities are highly fea-
tured within the TME in GBM (Table 1). Furthermore, distinct histological and MRI-defined
regions in GBM with unique cellular compositions and transcriptional programs contribute
to intra-tumoral heterogeneity [113] (Table 1). The well-recognized MRI distinct regions
include the central necrotic zone, the tumor-enhancing zone, and the peri-tumoral flair or
edema region [114–116]. The central necrotic region is highly hypoxic and hypocellular
with respect to tumor cells, while the tumor-enhancing region is highly angiogenic and
hypercellular [114–116]. The peri-tumoral flair region harbors brain-invasive GBM cells.
Furthermore, histopathologic correlates of the TME include perinecrotic/pseudopalisading
regions, the tumor core, and brain-invasive regions. Additional insights into the unique
transcriptional programs within each TME niche have emerged through meticulous assess-
ment of laser-microdissected GBM patient tissues [117]. The perinecrotic/pseudopalisading
regions of GBM are highly MES and are characterized by HIF1α signaling, TNF-α signal-
ing, and immune response gene enrichment signatures [117]. Not surprisingly, hypoxia
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is a crucial feature of the perinecrotic/pseudopalisading regions of GBM, and a critical
facilitator of both GSC proliferation and angiogenesis [118,119]. While the complete mech-
anistic underpinnings of the hypoxia-mediated malignant reprogramming of GBM are
not fully elucidated, there is mounting evidence that the TME is a critical facilitator. One
proposed mechanism of the hypoxia-mediated malignant reprogramming of GBM via
the direct activation of pro-angiogenic genes and the subsequent recruitment of inflam-
matory cells [118,120]. HIF1α signaling secondary to hypoxia has a significant impact
on GBM cells. For instance, it has been demonstrated that activation of the HIF1α-ZEB1
axis contributes to GBM invasion and MES reprogramming [121]. Furthermore, genetic
silencing or pharmacological inhibition of HIF1α effectively reversed hypoxia-mediated
MES reprogramming [121]. Another postulated mechanism of hypoxia-mediated MES
reprogramming involves the EPHB2-HIF2α-paxillin signaling axis [122]. HIF2α is required
for the stabilization of the tyrosine kinase receptor (TKR) EPHB2 and promotes MES re-
programming by phosphorylating paxillin and focal adhesion kinase (FAK) [122]. Hence,
HIF1α- and HIF2α-related mechanisms have MES reprogramming implications for GBM
cells within the hypoxic tumor microenvironment. Interestingly, it is now recognized that
interactions between normal glial cells with tumor cells can create hypoxia adaptation
synergies for tumor cells. For instance, it is postulated that astrocytes within the hypoxic
microenvironment release the cytokine CCL20 and upregulate HIF1α in an NF-κB signaling-
dependent manner, thereby creating hypoxia adaptation for GBM [123]. Interestingly, the
MES reprogramming of GBM cells shares similar genetic signatures with astrocyte reactiv-
ity [124]. Collectively, these observations indicate that TME factors cooperate with each
other to form interaction networks that promote MES reprogramming in GBM (Figure 2).
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Figure 2. The impact of the GBM tumor microenvironment on MES reprogramming. Representative
mechanisms underlying MES reprogramming in the GBM tumor microenvironment. Different cell
types from the GBM tumor microenvironment including T cells, tumor-associated macrophages
(TAMs), and microglia can interact with GBM tumor cells and further impact GBM cell MES repro-
gramming. Such MES reprogramming can be demonstrated by specific gene markers including CD44,
YKL40, TIMP1, SERPINE1, and TGFB1.

Tumor-associated immune cells represent a critical component of the TME. There is
mounting evidence that immune-mediated mechanisms are associated with MES repro-
gramming [80,125,126]. MES subtype GBMs are highly characterized by pro-inflammatory
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and immunosuppressive genetic profiles [125–129]. Furthermore, tumor infiltrative T lym-
phocytes are highly represented in MES GBM compared to other GBM molecular subtypes,
confirming an immune propensity in MES reprogramming [125,126,130,131]. Recent find-
ings point out that MES-like states may be associated with T cell activation [132]. It is now
apparent that of all T cell types, CD8+ T cells are the most represented in MES GBM [127].
Besides lymphoid infiltration, there is mounting evidence of myeloid infiltration into the
GBM TME [133,134]. Chemokines and cytokines secreted by GBM cells within the hypoxic
niche can activate and recruit TAMs in the TME [135]. MES master transcription regulators
such as STAT3 and NF-κB have been implicated as contributors to the immunosuppres-
sive environment associated with TAMs [108]. TAMs as well as microglia can promote
hypoxia-induced neovascularization through the release of VEGF and CXC-chemokine
ligand 2 (CXCL2) into the TME [136]. TAMs and microglia also express TNF-α, TGF-β, and
MMP9, which facilitate the MES reprogramming of GBM cells [80,128,137]. Specifically,
the secretion of extracellular matrix remodeling factors along with pro-angiogenic and
anti-inflammatory cytokines contributes to an aggressive MES tumor phenotype. Hence,
MES GBMs are most commonly associated with macrophage/microglia infiltration and
necrosis [51,77,138]. Collectively, interactions between the immune components of TME
and GBM cells enhance the adaptive fitness of tumor cells within the hypoxic niche through
MES reprogramming (Figure 2). Such interactions can provide valuable insights into the
complex cellular and molecular interplay with the TME and may also yield innovative
therapeutic targets [139,140].

4.3. Key Regulators, Pathways, and Clinical Targets in MES Reprogramming

A deeper understanding of the mechanistic underpinnings related to transcriptional
regulators of MES reprogramming in GBM is essential in addressing the unmet need for
novel GBM therapeutics (Figure 3). The master regulator of the MES state has been exten-
sively studied in several cancers, including GBM, whereby NF-κB has emerged as a critical
regulator of the malignant reprogramming of cancer stem cells [141,142] (Figure 3). NF-κB
impacts both tumor cells and the TME. In tumor cells, NF-κB promotes the expression
of MES-like markers, while within the TME, NF-κB induces the expression of various
pro-inflammatory genes, including those encoding cytokines and chemokines [125,143,144].
The combination of MES expression and a highly proinflammatory TME accounts for
the therapeutic resistance of GBM. Besides the direct induction of MES markers in GBM,
NF-κB signaling could indirectly mediate MES reprogramming through crosstalk with
other regulators including STAT3 and HIF1α [123,145]. Similar to NF-κB, STAT3 exerts
transcriptional regulation of both GBM cells and the TME. In GBM cells, co-transcriptional
synergistic activation of both STAT3 and C/EBPβ is necessary for MES transformation [146]
(Figure 3). As master regulators of MES reprogramming, activation of STAT3 and C/EBPβ
induced the transcription of MES genes in GSCs, while suppression of STAT3 and C/EBPβ
abrogated the MES gene profile and phenotype. Furthermore, within the GBM TME,
activation of both STAT3 and C/EBPβ propagated tumor necrosis and hypoxia [79,138].
Moreover, as previously alluded to, TAMs are significantly abundant in MES GBM, and
it now appears that the modulation of STAT3 transcriptional activity in TAMs is a basis
for TAM-mediated MES reprogramming in GBM [137]. Besides TAMs, microglia represent
another important closely related TME component that modulates GBM cell transcrip-
tional fate. Mechanistically, microglia facilitate TME immunosuppression, tumor immune
evasion, and tumor MES transition through the mTOR-dependent regulation of STAT3
and NF-κB [108]. Recently, TAZ, the transcriptional activator with PDZ-binding motif
was identified as an MES-related network inducer, whose activity was correlated with
GSC invasion and self-renewal (Figure 3). Mechanistically, TAZ forms a complex with the
transcriptional enhanced associate domain (TEAD), thereby facilitating the recruitment of
TAZ to MES gene promoters [147]. Similar to STAT3 and C/EBPβ, TAZ activity promotes
GBM tumor necrosis, which also propagates MES reprogramming and stemness [148].
TAZ can also impact MES reprogramming through its downstream interactions with the
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Hippo signaling pathway through co-activation of the pathway with Yes-associated protein
(YAP) [149]. Although the TAZ transcriptional program appears to be independent of
that of STAT3-C/EBPβ despite similarities to GBM tumor cell and TME impacts, both
transcription programs intersect with NF-κB. It was recently reported that the NF-κB-
mediated MES reprogramming and therapeutic resistance in GSCs occurred through the
regulation of STAT3, C/EBPβ, and TAZ [80,150]. Collectively, NF-κB in cooperation with
other regulators, serves as a critical master regulator of MES reprogramming within the
TME in GBM.
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Figure 3. Key factors impacting MES reprogramming. Schematic summary of the most important
gene/protein regulators as well as biological events/interventions involved in GBM MES repro-
gramming. (1) Therapeutic treatment (TMZ, radiation, etc.): treatment can reprogram GSCs toward
an aggressive MES phenotype, leading to enhanced stemness, invasion, and therapeutic resistance.
(2) Hypoxic environment: a hypoxic TME can mediate malignant reprogramming of GBM through the
direct activation of pro-angiogenetic genes and recruitment of inflammatory cells. (3) Inflammatory-
related cytokines: these cytokines along with the extracellular matrix contribute toward an aggressive
MES tumor phenotype. (4) Epigenetic regulator (EZH2): EZH2-mediated histone methylation plays
an important role in the regulation of the expression levels of multiple MES marker and regulator
genes. (5) LncRNAs, and (6) miRNAs: these two kinds of non-coding RNAs contribute to GBM MES
reprogramming through the regulation of key transcriptional factors, such as ZEB1. (7) Key signal-
ing pathways (TGF-β, TNF-α, STAT3, NF-κB, and TAZ/YAP) and (8) angiogenic factor signaling
(VEGF): these key signaling pathways are the master regulator of malignancy, and they frequently
interact/collaborate with the hypoxic TME and therapeutic treatment to promote MES reprogram-
ming. (9) Some other key genes (BIRC3 and S100A4): these genes are also identified as the driver
of MES reprogramming, through activation of key transcriptional factors including C/EBPβ, TAZ,
and STAT3.

The recent identification of several potential targetable molecular biomarkers of MES
reprogramming has raised prospects for clinical translation. Our group identified an anti-
apoptotic protein, BIRC3 (baculoviral IAP repeat containing 3), as a biomarker for MES
GBM and a mediator of hypoxia-driven survival adaptation through HIF1α signaling [151]
(Figure 3). BIRC3 was previously reported as a novel driver of therapeutic resistance in
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GBM [151,152]. The dual role of BIRC3 in apoptosis evasion and MES reprogramming ren-
ders BIRC3 a potential biomarker and therapeutic target for MES GBM that could synergize
with cytotoxic chemotherapy. The enzyme transglutaminase 2 (TGM2) is another reported
biomarker of the peri-necrotic hypoxic region of GBM [153]. TGM2 has been implicated as
a driver of GSC MES reprogramming through the activation of key transcriptional factors
including C/EBPβ, TAZ, and STAT3, suggesting that it could be a potential therapeutic
target for MES reprogramming [153]. Another reported MES biomarker and potential thera-
peutic target is S100A4, a gene encoding a small calcium-binding protein that interacts with
other key regulators such as p53 [154]. S100A4 has been identified as a critical regulator of
GSC self-renewal as well as a reporter of MES reprogramming through the downstream
regulation of key transcriptional factors such as SNAIL2 and ZEB1 [154]. Furthermore,
the neurotrophic factor prosaposin (PSAP), a conserved glycoprotein that promotes GBM
migration/invasion and MES reprogramming via the TGF-β1/SMAD signaling pathway,
has been reported as a novel targetable MES biomarker [155] (Figure 3).

There is mounting evidence that the regulatory activities of certain long noncoding
RNAs (lncRNAs) contribute to MES reprogramming in GBM through the upregulation
of MES genetic markers and MES phenotypes. A novel lncRNA, TALNEC2, was recently
reported to be highly expressed in GBM and identified as a regulator of cell prolifera-
tion and MES transformation [156]. Silencing of TALNEC2 successfully attenuates both
GSC self-renewal and MES reprogramming, leading to radiation sensitivity both in vitro
and in vivo [156]. Cooperative interactions between lncRNAs, microRNAs (miRNAs),
and other key regulators of MES reprogramming such as the ZEB signaling axis exist
in GBM [157,158]. For instance, the lncRNA LINC0051 regulates and promotes MES re-
programming in GBM through the LINC00511/miR-524-5p/ZEB1 signaling axis [157].
Furthermore, there is supportive evidence that through TGF-β activation, ZEB1 could also
upregulate another lncRNA, LINC00645, to mediate MES reprogramming through the
LINC00645/miR-205-3p/ZEB1 signaling axis [158]. Interestingly, lncRNAs can also sup-
press MES reprogramming. lncRNA LINC00599 functions as a tumor suppressor in GBM,
whereby the expression of LINC00599 significantly attenuates GBM MES reprogramming
and tumor aggressiveness [159].

Besides lncRNAs, microRNAs have been reported to play an important role in modu-
lating MES reprogramming in GBM. For instance, miR-181c was found to be downregulated
in GBM, and the overexpression of miR-181c inhibits TGF-β signaling and further sup-
presses tumor cell invasion and MES reprogramming [160]. Specifically, miR-181c inhibits
TGF-β signaling by downregulating TGFBR1, TGFBR2, and TGFBRAP1 expressions. Re-
cently, Zhang et al. analyzed multiple GBM databases including the TCGA, GSE16011,
and Rembrandt and reported that miR-95 and miR-223 have opposing modulatory im-
pacts on MES reprogramming in GBM [161]. Overexpression of miR-95 suppressed MES
reprogramming while overexpression of miR-223 facilitated MES reprogramming. The
functional correlation between MES reprogramming and miR-223 was further confirmed
in a study by Huang et al., in which they showed that the inhibition of the miR-223-PAX6
axis suppressed cell invasion and improved chemotherapy sensitivity [162]. MiR-96 was
recently identified as a tumor suppressor and potential therapeutic agent that antagonizes
MES reprogramming in GBM through the downregulation of AEG-1 [163]. MiR-101-3p
was also found to be a negative regulator of MES reprogramming through the inhibition of
TRIM44 signaling [164].

Epigenetic mechanisms have also been implicated in malignant reprogramming in
GBM [165–168]. Interestingly, the inhibition of HDAC6, a histone deacetylase was found
to attenuate and also reverse MES signature gene reprogramming in GBM [165]. Histone
methyltransferases represent another class of histone modifiers that may play a role in
GBM MES reprogramming through the promoter methylation silencing of target genes. For
instance, the suppression of H3K27 methylation by enhancer of zeste homolog 2 (EZH2),
a histone lysine N-methyltransferase enzyme, reverses MES reprogramming through
the upregulation of EZH2 target genes and the downregulation of MES markers [168]
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(Figure 3). Furthermore, interactions between downstream miRNA targets of EZH2 and
key master regulators of MES reprogramming such as TGF-β signaling in GBM have been
reported [166]. In particular, EZH2 has been identified as a regulator of the miR-490-
3p/TGIF2/TGFBR1 signaling axis [166]. Collectively, histone modifications represent a
common phenomenon and may confer therapeutic vulnerability for targeting malignant
reprogramming in GBM.

It is worth noting that there are ongoing efforts to identify and target novel critical
drivers of MES reprogramming. Understanding and targeting the mechanistic underpin-
nings of key MES drivers are essential for improving GBM therapeutic outcomes.

4.4. Recent and Potential Therapies Targeting MES Reprogramming

MES reprogramming is a very complicated and challenging phenomenon in GBM
with an unmet need for innovative therapies. Currently, there are no effective clinical
therapies to treat or prevent MES reprogramming. However, several promising preclinical
and clinical agents have been explored and repurposed as anti-MES therapies. Ideally, these
agents should have excellent blood–brain barrier penetrance and synergize with standard
GBM therapy.

Recently, paeoniflorin, a natural anti-cancer compound that has been widely studied
both in the preclinical and clinical settings, was found to inhibit MES reprogramming and
angiogenesis in GBM [169]. Paeoniflorin was first identified as an anti-inflammatory and
anti-oxidative drug and later noted to exhibit anti-cancer effects through the induction
of apoptosis. In this study, it was demonstrated that paeoniflorin can activate autophagy,
promote c-Met degradation via K63-linked polyubiquitination, and further inhibit MES
reprogramming and angiogenesis in GBM.

As previously mentioned, TGF-β is one of the key growth factors that triggers MES
reprogramming and angiogenesis in many cancers including GBM. Several anti-TGF-β
pharmacologic targeting strategies have been evaluated. Pirfenidone, an anti-fibrosis FDA-
approved agent, was reported to inhibit TGF-β expression in malignant glioma cells [170].
Similarly, quetiapine, an FDA-approved anti-psychotic agent, was also reported to inhibit
MES reprogramming in a RANKL-TGF-β dependent manner [171]. GBM tumor cells can
secret RANKL into TME and increase tumor cell motility to surrounding non-malignant
cells, such as astrocytes, and further induce these surrounding cells to secrete TGF-β which
in turn reprograms GBM cells to the MES-like invasive type [171]. Thus, combination
treatment with quetiapine and pirfenidone may undermine RANKL/TGF-β signaling
and interaction between GBM cells and surrounding cells, which can further suppress
MES reprogramming [170,171]. Another FDA-approved agent with anti-TGF-β activity
is the anti-diabetic agent metformin [172,173]. Metformin was found to inhibit both MES
reprogramming and stem-like properties in GBM through TGF-β and AKT/mTOR path-
ways [174,175]. Given the critical role of TGF-β in MES reprogramming, synergies between
standard GBM therapies and the inhibition of TGF-β through pirfenidone, quetiapine, and
metformin merits further investigation.

5. Conclusions

Despite significant advances in and enlightenment on the genetic and epigenetic
landscapes of GBM, there has been limited progress in improving outcomes for patients
afflicted with this very lethal cancer. The interplay between the GSC tumor niche and the
TME has emerged as the critical determinant for the therapeutic refractoriness of GBM.
Hence, several critical challenges related to the tumor niche as well as the TME niche have
to be simultaneously addressed to positively impact therapeutic outcomes. Within the
tumor niche, the cellular and molecular heterogeneity of GSC subpopulations modulate
clonal adaptation to therapy, leading to malignant reprogramming and therapeutic resis-
tance. Furthermore, the immunosuppressive cellular components of the TME perpetuate
malignant reprogramming of the GSC niche. Therefore, the development of therapeutic
strategies that prevent clonal adaptation within the GSC niche is highly essential.
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In this review, we have presented an overview of potential therapeutic targets associ-
ated with signaling nodes and master regulators of malignant reprogramming. Methodical
assessment of potential therapeutic targets could be accomplished through window-of-
opportunity clinical trials in recurrent GBM patients undergoing standard-of-care salvage
surgery, whereby resected tumor tissue can be analyzed for both drug penetrance and drug
target engagement. Hence, developing and establishing the brain-penetrance profile of
novel anti-malignant reprogramming therapies should be the objective of future efforts.
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DNMT DNA methyltransferase
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FAK Focal adhesion kinase
FOXO1 Forkhead box protein O1
GBM Glioblastoma
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HDAC Histone deacetylase
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MGMT O-6-methylguanine-DNA methyltransferase
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STAT3 Signal transducer and activator of transcription 3
TAMs Tumor-associated macrophages
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TGM2 The enzyme transglutaminase 2
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