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Abstract
Gliomas are the most common primary malignant tumours of the central nervous system (CNS), which are highly aggres-
sive, with increasing morbidity and mortality rates year after year, posing a serious threat to the quality and expected 
survival time of patients. The treatment of gliomas is a major challenge in the field of neuro-oncology, especially high-
grade gliomas such as glioblastomas (GBMs). Despite considerable progress in recent years in the study of the molecular 
and cellular mechanisms of GBMs, their prognosis remains bleak. Tumour-associated macrophages (TAMs) account for 
up to 50% of GBMs, and they are a highly heterogeneous cell population whose role cannot be ignored. Here, we focus 
on reviewing the contribution of classically activated M1-phenotype TAMs and alternatively activated M2-phenotype 
TAMs to GBMs, and exploring the research progress in reprogramming M1 TAMs into M2 TAMs.
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1 Introduction

The increasing prevalence of brain and other neurological cancers is a serious threat to human life and health [1]. Nota-
bly, GBMs, which constitute up to 33% of such cases, are the most aggressive and deadly [2, 3]. Their 5-year survival rate 
stands at a mere 4–7% [4]. GBMs are challenging because they are highly heterogeneous. GBM is categorized into three 
subtypes based on gene expression: preneural, mesenchymal, and classical, each subtype exhibits distinct heterogeneity 
in the tumor microenvironment (TME) [5]. While immunotherapy has shown effective anti-tumor outcomes in various 
cancers, its benefits in GBMs have been limited, largely because of the tumor’s immunosuppressive microenvironment, 
partly due to the presence of a tumour immunosuppressive microenvironment [6]. The TME has a multifaceted composi-
tion, encompassing astrocytes, oligodendrocytes, fibroblasts, and microglia, as well as both adaptive and innate immune 
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cells [7]. Additionally, non-protein entities like diverse proteins, polysaccharides, and hormones are integral components 
of the TME [8]. TAMs in gliomas consist of microglia derived from yolk sac progenitor cells and bone marrow-derived 
macrophages/monocytes (BMDMs) [9, 10], which are the major members of the TME leading to immunosuppression, 
accounting for 30% of all cell types [11].Under typical physiological circumstances, TAMs play roles in organogenesis, 
tissue equilibrium, and organism defense [12]. Within the brain, TAMs are responsible for synaptic pruning, phagocytizing 
apoptotic cells, modulating neuronal plasticity, and overseeing immunosurveillance [13–15]. Most studies have con-
cluded that the number of TAMs correlates with tumour growth, low survival, poor patient prognosis and high recurrence 
rates [16–18]. However, TAMs are highly heterogeneous cell populations with not only pro-inflammatory M1 and anti-
inflammatory M2 phenotypes, but also a wide range of other phenotypes [19–21]. Conventionally, the pro-inflammatory 
M1 phenotype is pivotal in causing tissue damage, while the anti-inflammatory M2 phenotype aids in tissue repair [22, 
23]. In GBMs, M1 TAMs has been shown to be effective in eliminating cancer cells [24] and the M2 phenotype is usually 
associated with poor patient prognosis [17]. These phenotypic roles are transformed into each other due to changes 
in environmental factors, which results in their extreme instability during the development of GBMs. Therefore, it is an 
essential task to explore the factors and mechanisms of phenotypic transformation in TAMs.

2  Origin, localisation and phenotypic characterisation of TAMs

In the past, microglia were thought to be derived from bone marrow cells of the haematopoietic system [25]. However, 
recent studies have found that microglia are actually the progeny of CD45− c-kit + stem cells with erythroid and myeloid 
potential within the embryonic yolk sac [26], which together with the BMDM, constitute TAMs. Microglia and BMDMs are 
macrophage populations with distinct ontogenetic origins, with microglia originating from the embryonic yolk sac and 
BMDMs deriving from the bone marrow [27]. BMDM originates from hematopoietic progenitor cells, whereas microglia, 
post-birth, are not replenished by hematopoietic cells [9]. Microglia are dispersed throughout the tumor region in GBMs, 
while BMDMs are predominantly situated near vascular structures surrounding metastatic tumors in the brain, as well 
as within GBMs [28]. Notably, BMDMs constitute a greater fraction within the tumor’s core, whereas microglia predomi-
nantly occupy the periphery of the tumor nucleus [10]. Currently, distinguishing microglia from BMDMs in excised GBM 
samples remains challenging due to their substantially overlapping labeling profiles [29]. However, this issue is some-
what mitigated by their distinct ontogeny and functional roles. Certain substances [30, 31] remain capable of effectively 
distinguishing between these two macrophage populations. These markers are undoubtedly useful in facilitating the 
exploration of their function in GBMs. Pathologically, TAMs assume a pro-inflammatory phenotype, releasing inflam-
matory cytokines to elicit a cytotoxic response. Initially serving a tumor-surveillance function, they are subsequently 
superseded by anti-inflammatory cells, which facilitate tissue repair, remodeling, and angiogenesis [32]. In GBMs, M1-type 
TAMs secrete IL-1, IL-6, IL-12, IL-23, TNF-α, and reactive oxygen species (ROS), triggering a pro-inflammatory response 
characterized by increased acute phase proteins, enhanced leukocyte migration to the site of infection, and enhanced 
antigen presentation and cytotoxicity [33]. In addition, they also release ROS, which damage cell membranes and DNA 
through oxidation, enhance the release of inflammatory factors, and regulate inflammatory responses [34]. Conversely, 
M2 TAMs manifest anti-inflammatory traits alongside pro-tumor proliferation and metastatic attributes. These cells release 
IL-4, IL-5, and VEGF, reduce MHCII expression [35], promote the polarization of macrophages towards M2 type and inhibit 
the production of pro-inflammatory cytokines. They also elevate levels of IL-10, M-CSF, CXCL14, CCL22, and CCL17 [36, 
37]. M-CSF promotes macrophage proliferation and survival, CXCL14 regulates immune cell migration, and CCL22 and 
CCL17 inhibit inflammation by attracting regulatory T cells (Tregs). In addition, Luo et al. showed that cytokines secreted 
by cancer stem cells can also promote the polarization of macrophages towards M2 type [38]. This suite of factors con-
tributes to immunosuppression and stimulates the release of transforming growth factor beta (TGF-β) [39].

3  Regulatory pathways of TAMs isoforms in the tumour microenvironment

The TME and cancer evolution within GBMs maintain a reciprocal relationship. TAMs modulate cancer proliferation, migra-
tion, angiogenesis, and immunosurveillance, orchestrating the TME to facilitate GBM progression [40, 41]. Conversely, 
cancer cells influence the composition and functionality of the TME via diverse signaling pathways [42–44]. Indeed, TAM 
infiltration in interstitial GBMs is attributed to notable mutations or deletions in PTEN, NF1, and EGFR genes [45–47]. 
Mutation or deletion of PTEN leads to overactivation of the PI3K/Akt signaling pathway, which promotes cancer cell 
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proliferation and thus suppresses immune cell function [48]. NF1 defects in tumor cells increase the infiltration of tumor-
associated macrophages and microglia, thereby exacerbating the immunosuppression of the tumor microenvironment 
[46]. EGFR mutations activate KRAS, and active KRAS leads to increased CCL2 expression levels [49]. Following infiltration 
of TAMs, multiple signalling pathways within the TME are able to regulate polarisation between TAMs subtypes, resulting 
in a complex microenvironment centred on TAMs. TAMs are classified into M1 and M2 phenotypes, which is an extremely 
simplified classification. Both microglia and macrophages adhere to a common schema: the M1 phenotype represents 
classical activation, while the M2 phenotype is indicative of alternative activation [50, 51]. The M1 pro-inflammatory 
phenotype is activated by agents like lipopolysaccharide (LPS), IFN-γ, and TNFα. In contrast, the M2 anti-inflammatory 
phenotype is stimulated by interleukins, notably IL-4, IL-10, and IL-13 [47, 52]. M1-associated macrophages express mark-
ers such as CD40, CD74, MHC-II, and phosphorylated STAT1, while M2-aligned cells exhibit markers including CD163, 
CD204, arginase-1 (ARG1), and phosphorylated STAT3 [53].

The M2 phenotype has been subdivided into M2a, M2b, and M2c types based on their functions and properties. The 
M2a subtype is stimulated by IL-4 and IL-13 [54], while the M2b subtype responds to agonists of immune complexes, toll-
like receptors (TLRs) [55], and IL-1R ligands. In contrast, TAMs exposed to TGFβ, glucocorticosteroids and IL-10 manifest the 
M2c isoform [56]. In the complex TME of GBM, chromatin modification is influenced by the activity of metabolic enzymes, 
metabolites, and cofactors. Epigenetics and metabolic reprogramming play key roles in macrophage polarization, and 
metabolic reprogramming further influences the functional status of macrophages by regulating glycolysis, oxidative 
phosphorylation, and fatty acid oxidation [57]. In addition to the classical immunosuppressive and proangiogenic effects 
through cytokine production, TAMs produce other abundant activities in the TME.

3.1  Tumour‑promoting functions of TAMs

3.1.1  Immunosuppression

Studies have shown that CD68 and CD163 positive M2 macrophages inhibit the anti-tumour function of T cells (Fig. 1), aid 
immune escape and reduce patient survival [58]. Liu and colleagues employed single-cell RNA sequencing (scRNA-seq) 
to uncover novel microglial subtypes displaying pro-inflammatory and proliferative characteristics. Among these, they 
identified CD163HMOX1 microglia, which promote T-cell depletion by secreting IL-10 while simultaneously sustaining 
their pro-inflammatory properties via TGF-β [59]. In the presence of IL-10, CD4 T cells are more susceptible to modula-
tion than CD8 T cells, potentially owing to the activation of signaling pathways downstream of the STAT3-BLIMP-1 axis 
[60]. The presence of CD163 HMOX1 microglia and macrophages has exclusively been observed in mesenchymal GBMs 
[59, 61]. TAMs have the capability to prompt glioma stem cells into adopting a mesenchymal phenotype, consequently 
fostering an immunosuppressive microenvironment [61]. Nevertheless, it remains imperative to gather substantial evi-
dence to establish whether the recently identified CD163HMOX1 microglia population also harbors this potential. In vitro 
experiments have convincingly shown that TGF-β exerts a substantial inhibitory effect on microglial proliferation and 
activation, impacting their cytokine production [62]. Subsequent investigations have also elucidated the role of TGF-β 
in regulating the differentiation and proliferation of T cells and macrophages [63]. This area of study is particularly cap-
tivating due to the dual autocrine and paracrine production of TGF-β within these cell types. TGF-β facilitates tumor 
progression by upregulating VEGF expression and inducing immunosuppressive effects [64, 65]. Nevertheless, there 
remains a scarcity of comprehensive experiments to establish the self-inhibitory actions of TGF-β produced by TAMs 
and its effects on tumors. Nonetheless, the prevailing consensus in the majority of studies suggests that TGF-β exhibits 
pro-tumorigenic properties, implying that its inhibitory impact on TAMs themselves may be less pronounced compared 
to its tumor-promoting effects.

The aggregation of macrophages led to the suppression of patients’ helper T-cell type 1 (Th1) lymphocytes [66]. This 
suppression can be attributed to the increased levels of TGF-β [39]. TAMs undergo activation toward the M2 phenotype 
when stimulated by IL-4 and/or IL-13, and this activation is associated with the promotion of Th2 cell production [20]. 
Furthermore, the M2 phenotype attracts regulatory T cells (Tregs) by expressing chemokines such as CCL2 [39, 67]. Human 
primary TAMs exert suppression of T-cell immune function by disrupting the antigen-presentation process through 
downregulation of essential molecules like CD40, CD80, and CD86 [68]. However, when the colony-stimulating factor-1 
receptor (CSF-1R) is inhibited and CD40 is upregulated, TAMs can undergo reprogramming [69], resulting in their capacity 
to initiate a protective T-cell response [70].

Remarkably, in vitro experiments revealed that BMDMs phagocytose glioma cells, resulting in the formation of double-
positive TAMs, resembling the properties of TAMs found within the GBM tumor microenvironment [71]. These TAMs 
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exhibit M2 phenotypic characteristics and exert inhibitory effects on T cell expansion by expressing CD276, PD-L1, and 
PD-L2 [71]. Additionally, the expression of epithelial membrane protein 3 (EMP3), which promotes M2 TAMs polarization, 
negatively regulates T cell responses in GBMs by impairing the ability of macrophages to secrete CXCL9 and CXCL10 [72].

3.1.2  Involvement in tumour microenvironment remodelling

Complex signalling exists between TAMs and tumours in different regions of the TME [73]. An important function of 
TAMs is their ability to interact with GSCs, which together remodel the TME and create favourable conditions for tumour 
cell growth and metastasis (Fig. 2). Recent studies have found that GSCs can differentiate into endothelial cells [74] and 
then safely multiply in the perivascular niche (PVN) to form a glioma stem cell bank [75, 76]. Such GSCs are very hardy, 
attributed to their reduced proliferation rate and heightened ability to respond to DNA damage. Consequently, they 
display limited sensitivity to treatment-induced DNA damage, enabling them to evade treatment-related cell death and 
mitigate mitotic abnormalities [77]. M204-like TAMs marked by CD2+ macrophages was mainly distributed near blood 
vessels and necrotic areas, this observation suggests that these specific areas may engage in pre-tumor interactions 
with glioma stem cells [78].

In the experimental samples, there was co-localization observed between TAMs and CD133-positive glioma stem 
cell-like cells (GSLCs) within the marginal zone of GBMs [79] (Fig. 3). These TAMs exhibited elevated levels of TGF-β1, 
leading to the upregulation of matrix metalloproteinase-9 (MMP-9) expression in GSLCs and consequently enhancing 
the aggressiveness of these GSLCs [79].

Moreover, recent research has uncovered that the activation of STAT145 in GBM cells, triggered by TGF-β released by 
M2 TAMs, facilitates persistent growth and self-renewal of GSCs. This pathway is regarded as the primary mechanism 
driving tumor expansion [39]. MMP is thought to be associated with the promotion of proliferation and migration of 
GBMs [64] and correlates with the M2 phenotype. Down-regulation of MMP-14 significantly improves the survival rate 

Fig. 1  CD163HMOX1 microglia in mesenchymal GBMs promote T-cell depletion through IL-10 and maintain inflammation via TGF-β, which 
also inhibits microglial proliferation. TGF-β supports tumor progression and immunosuppression. TAMs with M2 characteristics, including 
CD276, PD-L1, and PD-L2, suppress T cell expansion and response in the GBM microenvironment
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Fig. 2  This figure illustrates the key features of TAMs in the tumor microenvironment and their dynamic interactions. The figure first shows 
the components of the glioblastoma tumor microenvironment, in which tumor cells are constantly dividing and expanding, accompanied 
by the formation of neovascularization around the tumor. In addition, the figure highlights the role of TAMs in the tumor microenvironment, 
including their regulatory mechanisms in tumor development and their classical immunosuppressive role

Fig. 3  In the GBM marginal 
zone, elevated TGF-β1 in TAMs 
upregulates MMP-9, enhanc-
ing tumor aggressiveness. 
TGF-β activation of STAT145 
promotes tumor growth, 
while M2 TAMs sustain their 
phenotype and support 
tumor cells through the 
CXCR2-JAK2/STAT3 axis and 
Wnt signaling. POSTN recruit-
ment of M2 TAMs contributes 
to an immunosuppressive 
environment
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of GBM experimental mice [80]. Theoretically, inhibition of MMP-9 may have the same effect, which may be a promising 
therapeutic target.

Another important pathway is the maintenance of GSCs through Wnt signalling induction. GSCs initially release and 
express Wnt-induced signaling protein 1 (WISP1). Subsequently, WISP1 utilizes the α6β1-Akt integrin pathway in an 
autocrine manner to enhance GSC stability. Additionally, it employs a paracrine mechanism to support M2 TAMs [81]. 
TAMs secrete pro-polypeptides (PTNs) that activate GSCs via PTPRZ1 receivers, thereby accelerating pathological growth 
of GBM [81]. Nonetheless, a significant hurdle in targeting Wnt signaling within glioblastomas lies in the internal and 
external heterogeneity of these tumors, particularly the presence of GSCs. These cells are resistant to therapy and could 
potentially be accountable for tumor recurrence [52]. M2 TAMs additionally sustain their phenotype via a paracrine mech-
anism involving the CXCR2-JAK2/STAT3 axis. This axis is activated by CXCL8, which also contributes to the maintenance 
of mesenchymal GSCs [82]. Other predisposing factors involved in the maintenance of GSCs and/or M2 TAMs through 
the paracrine pathway include β2-microglobulin (B2M) [83], upstream stimulatory factor 1 (USF1) [84], and arsenite 
resistance protein 2 (ARS2) [85]. In addition, periosteal protein (POSTN) secreted by GSCs efficiently recruited M2 TAMs 
[86] and GSCs induced T cell death and recruited Treg, which was largely associated with the recruitment of M2 TAMs.

3.2  Anti‑tumour function of TAMs

TAMs are usually considered to be pro-tumourigenic because most cytokine production is associated with the M2 phe-
notype. Unfortunately, a minority of TAMs exist in the form of the M1 phenotype. Typical activation of anti-tumour M1 
TAMs is activated by toll-like receptors (TLRs), which are partially activated by microorganisms [87]. The M1 phenotype 
of microglia becomes activated and can either engage in direct phagocytosis or eliminate microorganisms by releasing 
ROS or NO. Additionally, they secrete inflammatory cytokines such as tumor necrosis factor α (TNF-α), IL-6, IL-10, and 
IL-12 [88]. Glycogen synthase kinase-3β (GSK-3β) is able to modulate the inflammatory response in microglia [89]. The 
inhibition of GBM by GSK-3β was found to correlate with the inhibition of molecular axes related to adhesion kinase, 
guanine nucleotide exchange factor/Rac1 and c-Jun N-terminal kinase [90]. GSK-3β is involved in the Wnt/STOP signalling 
pathway, but its activation of microglia has not been characterised [52]. However, it is not clear whether these responses 
are triggered by activation of the M1 phenotype, but this study demonstrates the potential of GSK-3β as a therapeutic 
target. Remarkably, macrophages are also involved in active immune responses. CD169 macrophages from human and 
mouse GBM recruit T cells and NK cells and promote specific T cell responses [91]. This is in contrast to classical T cell 
suppression [91].

4  Treatment of GBM: reprogramming of TAMs

There are many therapeutic options for targeting GBMs. In general, surgery is often difficult to completely remove the 
tumour mass, and conventional radiotherapy leads to normal tissue involvement [92]. In addition, most therapies tar-
geting GBMs have failed [93]. One strategy has been to reprogram TAMs from a tumour-promoting M2 phenotype to an 
M1 phenotype, as M1 TAMs and M2 TAMs are very active in the TME. In addition to TLRs, cytokines and chemokines such 
as interferon gamma (IFN-γ), LPS and TNF-α can increase M1 phenotypic polarisation [94], which have been mentioned 
many times in previous reports and will no longer be the focus of our discussion, and in addition we have collated the 
latest advances in reprogramming TAMs (Table 1).

Classical STAT-3 activation is generally associated with M2 phenotypic polarization, while STAT-1 activation promotes 
M1 phenotypic polarization. More in-depth exploration of how these pathways interact and regulate TAM phenotypes 
is crucial for understanding their role in GBMs. One possible approach is to inhibit STAT-3 activation, downregulate M2 
TAMs and/or increase M1 phenotypic polarisation. Zhang et al. showed that the use of the STAT-3 inhibitors CPA-3 and 
STAT261 siRNA induced reprogramming of TAMs and elimination of GBM cells in in vitro medium [103].

Moreover, a novel small-molecule STAT-3 inhibitor, WP1066, has been shown to elevate the expression of immune co-
stimulatory molecules, including CD86, CD80, and CD40, which are essential for T-cell activation [97]. This outcome may 
be linked to the down-regulation of M2 TAMs. However, it’s worth noting that another activator of M1 TAMs, granulocyte 
macrophage colony-stimulating factor (GM-CSF), can activate the PI3K-AKT pathway by means of STAT5 [104]. Regard-
ing STAT-1, there is currently insufficient experimental data to confirm the stability and effectiveness of its activation of 
the M1 phenotype.
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CD47 has been identified on tumour cells as the “don’t eat me” signal [105]. At the tumour cell membrane, CD47 
binding to SIRPα inhibits immunophagocytosis [106, 107]. Disrupting the CD47-SIRPα axis boosts the M1 pheno-
type, enhancing macrophage-mediated phagocytosis of glioma cells and GSCs [108, 109]. CD47 inhibitors, including 
Hu5F9-G4, TTI-621, ALX148, and the small molecule RRx-001, have been employed in clinical trials [110]. Gholamin 
et al. used Hu5F9-G4 in a study of pediatric brain tumors, demonstrating its safety and efficacy [98], with good toler-
ability . However, there are still limitations as it is uncertain whether it is associated with peripheral M1 macrophage 
recruitment. Although this reprogramming role has been demonstrated in breast, liver and bladder cancer species 
[107].

Interestingly, in a mouse model, curcumin (CC) was able to re-educate M2 TAMs into NO-producing M1 TAMs, and 
low levels of CC were also sufficient to elicit this reprogramming response [111]. This NO production was induced by 
inducible NOS (iNOS) induced macrophages [112] Within TME, cancer cells release cytokines and STAT-3 transcrip-
tion factors, leading to the increased expression of Arg1 in TAMs. Arg1, in turn, breaks down l-arginine, reducing the 
capacity of iNOS to utilize this substrate for NO production [111]. A synergistic strategy (TriCurin), in which CC was 
mixed with two natural polyphenols and then encapsulated in liposomes (TrLp), showed potent antitumor effects 
in a mouse model of GBM, where TrLp shifted M2 TAMs to a tumor-killing M1-like state, mobilizing NK cells for an 
immune response [100]. In addition, TriCurin inhibited STAT-3 signalling in GBMs [113]. We speculate that iNOS may 
be the main regulator and CC may be involved in STAT-3 signalling.

CpG, a TLR9 ligand, binds to the IL-10 receptor antibody, activating NF-κB and inducing CCL16 production, con-
verting TAMs to M1 anti-tumor phenotype [114]. NF-κB, crucial for TAM transcription [115], is typically activated 
through IKKβ-mediated IκBα phosphorylation [116]. In ovarian cancer-derived TAMs, inhibiting IKKβ enhances anti-
tumor potential, shifting from M2 to M1 state [117]. Notably, Alantolactone (ATL) in glioblastoma multiforme targets 
IKKβ’s ATP-binding site, potentially inhibiting NF-κB, downregulating cyclooxygenase-2 (a pro-tumor signal) [118]. 
Although not confirmed, this may involve elevating M1 TAMs, emphasizing the importance of IKKβ/NF-κB inhibition 
in maintaining TAMs’ M1 phenotype in tumors.

5  Discussion

With the introduction of TAMs reprogramming technology, new possibilities for tumour therapy have opened up. 
This technology not only targets tumour cells, but also regulates their growth microenvironment. Combined with 
immunotherapy, it provides a powerful tool to deeply regulate the tumour microenvironment, heralding the emer-
gence of more precise treatments.

However, this does not mean that TAMs reprogramming is flawless. In GBM TME, TGF-β is a key factor in the regula-
tion of TAM inflammation. Unfortunately, the multiple sources and targets of action of TGF-β make it a very difficult 
cytokine to control. For example, the disappointing performance of a TGF-β inhibitor called trabedersen in phase II 
trials [119] suggests that other pathways of TGF-β origin may exhibit potent pro-tumourigenic effects, which also 
creates difficulties for reprogramming TAMs. Although these reprogramming-related therapeutic agents are consid-
ered safe and effective [98], M1 TAMs still release some factors such as IL-1-β at the TME that may promote tumour 
cell growth rather than inhibit it, and it is not yet certain that this reprogramming effect is long-lasting and stable.

While TAMs reprogramming holds significant theoretical potential, its clinical application presents numerous 
challenges. Accurate assessment and monitoring of TAMs phenotype conversion, management of potential side 
effects, and optimization of these strategies for personalized treatment are crucial areas that need to be addressed. 
Long-term use of reprogramming therapies may also introduce new challenges, such as the impact on the patient’s 
immune system over time, which necessitates further investigation.

As we mentioned earlier, disruption of the CD47-SIRP-α axis can significantly increase the M1 phenotype. We sug-
gest that researchers could develop and evaluate the effectiveness of different types of CD47 inhibitors in inducing 
M1 phenotypes. For example, different strategies such as monoclonal antibodies, small molecule inhibitors or CAR 
T cell therapy may bring significant clinical application potential.

Therefore, when performing TAM reprogramming, we must find an appropriate balance between therapeutic 
efficacy and potential risks. With in-depth basic research and extensive clinical validation, the true potential and 
possible limitations of this approach will gradually become clearer.
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