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Abstract: Primary central nervous system tumors are the most frequent solid tumors in children,
accounting for over 40% of all childhood brain tumor deaths, specifically high-grade gliomas. Com-
pared with pediatric low-grade gliomas (pLGGs), pediatric high-grade gliomas (pHGGs) have an
abysmal survival rate. The WHO CNS classification identifies four subtypes of pHGGs, including
Grade 4 Diffuse midline glioma H3K27-altered, Grade 4 Diffuse hemispheric gliomas H3-G34-mutant,
Grade 4 pediatric-type high-grade glioma H3-wildtype and IDH-wildtype, and infant-type hemi-
spheric gliomas. In recent years, we have seen promising advancements in treatment strategies for
pediatric high-grade gliomas, including immunotherapy, CAR-T cell therapy, and vaccine approaches,
which are currently undergoing clinical trials. These therapies are underscored by the integration of
molecular features that further stratify HGG subtypes. Herein, we will discuss the molecular features
of pediatric high-grade gliomas and the evolving landscape for treating these challenging tumors.
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1. Introduction

Primary central nervous system (brain and spinal cord) tumors are the most fre-
quent solid tumors in children and the second most prevalent pediatric malignancy after
leukemia [1]. Gliomas constitute 80% of all malignant primary CNS tumors, making
them the leading cause of CNS tumor-related mortality, surpassing acute lymphoblastic
leukemia [2,3]. Pediatric high-grade gliomas (pHGGs) mainly consist of anaplastic astro-
cytoma (WHO grade 3) and glioblastoma (WHO grade 4) [4], which are now recognized
as IDH-mutant and IDH-wildtype tumors (4 and Louis et al., 2021 [5]). The global inci-
dence rate of pHGGs is estimated to be between 1.1 and 1.78 cases per 100,000 children [6].
Although considered rare compared to adult HGGs (aHGGs), pHGGs account for over
40% of all childhood brain tumor deaths [7]. Reported overall survival for pHGGs ranges
from 10 to 73 months [8]. pHGGs are most commonly found in adolescents aged 15–19 [9].
pHGGs have a five-year survival rate of less than 10%, even with aggressive treatment
regimens [10–12]. Survival estimates for pHGGs vary based on their anatomical location,
such as supratentorial, brainstem, or spinal cord. For tumors located in the supratentorial
region, the 5-year overall survival rate is less than 20%, with most patients succumbing to
the disease within 2 years of diagnosis [13]. As for tumors located in the brain stem, they
also carry a dismal median survival of less than 1 year [14].

HGGs are most commonly diagnosed as primary tumors in children, although they
can occasionally develop from LGGs [15]. Historically, pHGGs were classified together
with adult gliomas due to the similarity in histological appearances and aggressive clinical
behavior [16]. However, advances in genome and epigenome profiling technologies have
shown that the origin and pathological features of pHGGs differ significantly from their
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adult counterparts [8,17,18]. These improvements have resulted in the reclassification of
pHGG tumor subtypes by the WHO, incorporating molecular features as well as meaningful
clinical data.

2. High-Grade Gliomas in a Nutshell

The latest classification of gliomas by the WHO integrates molecular diagnostics,
histology, and immunohistochemistry data, providing descriptions for various glioma
types. These include adult-type diffuse gliomas, pediatric-type diffuse low-grade gliomas,
pediatric-type diffuse high-grade gliomas, circumscribed astrocytic gliomas, glioneuronal
and neuronal tumors, and ependymal tumors [19–22]. Each type is further subdivided
based on malignancy and its distinct molecular characteristics. The WHO CNS classification
identifies four subtypes, including Grade 4 Diffuse midline glioma H3K27-altered, Grade 4
Diffuse hemispheric gliomas H3G34-mutant, Grade 4 pediatric-type high-grade gliomas
H3-wildtype and IDH-wildtype, and infant-type hemispheric gliomas (Figure 1) [23].
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2.1. Diffuse Midline Glioma (DMG) H3K27-Altered Subtype

In children, diffuse midline gliomas (DMGs) are primarily located in the pons and
represent 15% of all pediatric brain tumors [7]. The 2021 WHO classification recognizes
further subgroups of DMGs that are related to alterations in the H3K27M. These subtypes
are characterized by their diffuse growth patterns and location along the midline (e.g.,
thalamus, brain stem, or spinal cord). Molecular features include the missense mutation of
lysine to methionine (K27M) in the histone H3 genes H3F3A, HIST1H3B, HIST1H3C, or
HIST2H3C [24,25]. The mutation affects the enzymatic activity of EZH2, a subunit of the
Polycomb Repressive Complex 2 (PRC2) involved in gene silencing, leading to an extensive
global loss of H3K27me3 methylation across the genome [26].

Additional changes, such as increased expression of the EZHIP protein, are also
recognized as molecular markers for defining H3K27-altered tumors [27]. Emerging data
indicate biological variations within K27M-mutated tumors where H3.3 mutations typically
occur in midline structures and sometimes coincide with FGFR1 and/or NF1 mutations in
certain thalamic gliomas. These usually occur in children aged 7–10 years and are linked
with unfavorable outcomes [28]. In contrast, H3.1 mutations are predominantly seen in
patients between the ages of 4 and 6 years. Children with H3.1 mutations exhibit distinct
clinicopathologic and radiologic characteristics to the H3.3 mutations and they generally
have slightly longer survivability, although prognosis is still dismal. These mutations often
coincide with ACVR1 mutations [29,30].

2.2. Grade 4 Diffuse Hemispheric Glioma, H3G34-Mutant Subtype

Diffuse hemispheric glioma, H3G34-mutant, is a CNS WHO grade 4 astrocytoma
that is diffusely infiltrative and arises in the cerebral hemisphere and is recognized as
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a distinct subtype from H3K27-altered tumors. Despite being classified as a glioma, its
transcriptomic and epigenomic profiles suggest a neuronal origin [31]. This tumor pri-
marily affects children and young adults, with a median age of 15 years [20]. It is mainly
located in the temporal and parietal lobes [6]. This mutation is observed in around 16%
of cortical pHGGs [32]. Patients with H3G34-mutant gliomas have only a slightly longer
median survival (17.3 months) compared to patients with the K27M-altered glioma subtype
(15 months) [33–35].

The driver alteration is a point mutation at codon 35 of the histone H3.3 gene H3-3A,
which corresponds to glycine 34 in the mature H3.3 protein [36]. This mutation results in
the substitution of glycine with either arginine (G34R) or, less frequently, valine (G34V).
Consequently, it inhibits the activity of SETD2 methyltransferase and KDM2A lysine
demethylase, resulting in widespread epigenetic remodeling characteristic of childhood
gliomas [37–39].

2.3. Grade 4 Pediatric High-Grade Glioma H3-Wildtype and IDH-Wildtype

Diffuse pediatric-type high-grade glioma H3-wildtype and IDH-wildtype (pHGG
H3/IDH WT) is a diverse entity currently characterized by an absence of oncohistone
alterations (i.e., H3.3/H3.1/H3.2 pK27M) and methylation of three groups (i.e., pHGG
RTK1, pHGG RTK2, pHGG MYCN) [40]. In this case, accurate diagnosis relies heavily on
molecular characterization and the integration of both histopathological and molecular
data [41]. pHGG H3/IDH-wildtype tumors are estimated to constitute approximately
40% of pHGGs. Among these, pHGG MYCN and pHGG RTK2 represent the largest and
smallest subgroups, respectively [20].

The vast majority of pHGG H3/IDH-wildtype tumors occur in the supratentorial
anatomic compartment [42]. The overall prognosis for pHGG H3/IDH-wildtype is poor.
pHGG MYCN tumors are associated with the lowest survival rates, with pontine tumors
within this subgroup behaving more aggressively compared to supratentorial counterparts.
Median overall survival is 16.5 months for supratentorial HGG-MYCN and 1.5 months for
pontine HGG-MYCN [40,43].

2.4. Infant-Type Hemispheric Gliomas

The essential diagnostic criteria for infant-type hemispheric glioma encompass a com-
bination of clinicopathological and molecular characteristics [20]. Infant-type hemispheric
glioma is commonly initiated by a fusion event involving a receptor tyrosine kinase (RTK)
gene, such as NTRK1/2/3, ALK, ROS1, or MET [44,45]. The clinical presentation is typi-
cally acute, often occurring within the first year of life. Symptoms are nonspecific and can
range from seizures to lethargy or irritability. Congenital cases are also reported, character-
ized by increased head circumference and bulging fontanelles, which are common clinical
signs [46]. Historically, infant-type hemispheric gliomas have shown a poor response to
standard chemotherapy and radiation treatments. Fusions with receptor tyrosine kinase
genes (such as ALK, ROS1, NTRK, and MET) are highly prevalent and preclinical studies
show promising results for kinase inhibitors for this glioma type [10,45,47]. The underlying
cause of the poor overall survival, whether it stems from the common anatomical location of
this disease or results from phenotypic convergence among various subgroups of pHGGs,
remains a crucial question for future research investigation.

3. Clinical Diagnosis of pHGGs

pHGGs are known for their aggressive behavior and poor prognosis. Diagnosing these
malignancies requires a comprehensive strategy that combines thorough clinical evaluation,
advanced imaging methods, and detailed histopathological analysis. Symptomatically,
children may present with signs of increased intracranial pressure including persistent
headaches, behavioral changes, early morning nausea/vomiting, double vision (diplopia),
and swelling of the optic nerve (papilledema). Additionally, patients may present with
more specific symptoms related to tumor locations, such as muscle weakness, hemiplegia,
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dysmetria, and chorea [15]. While patients with HGGs may experience seizures, which
commonly occur when the tumor invades the temporal lobe, it is not a typical presentation
at diagnosis [48].

3.1. Imaging Techniques

Upon initial presentation, patients typically undergo a CT scan, although a surgical
biopsy is most commonly performed to make a diagnosis. If a bleed or mass is detected,
a contrast-enhanced MRI is then performed [49]. MRI is considered the gold standard
for brain tumor imaging because of its high soft tissue contrast and ability to capture
images in multiple planes [50]. In diagnosing pediatric brain tumors, MRI is utilized
for pre-surgical planning, immediate postoperative imaging, intraoperative scans, follow-
up imaging, creating individualized clinical plans, and planning radiation therapy [51].
One of the primary goals of MRI is to refine the differential diagnosis by evaluating
the lesion’s characteristics across various imaging modalities, including T1, T2, T1 with
contrast (T1 C+), apparent diffusion coefficient (ADC), diffusion-weighted imaging (DWI),
susceptibility-weighted imaging (SWI), and fluid-attenuated inversion recovery (FLAIR),
among others [52].

3.2. Histopathological and Immunohistochemistry Diagnosis

Histopathological and immunohistochemistry (IHC) are critical components in the
diagnosis and characterization of pHGGs [53]. Histopathologically, pHGGs exhibit distinct
features such as high cellularity, marked nuclear atypia, frequent mitoses, necrosis, and
microvascular proliferation, which are indicative of their aggressive nature. Examination
of tissue samples obtained via biopsy or surgical resection under a microscope allows
pathologists to determine the tumor grade and identify specific histological subtypes, which
are essential for accurate diagnosis and treatment planning [54]. IHC further enhances the
diagnostic process by using antibodies to detect specific antigens in the tumor tissue. This
technique helps differentiate between tumor types and assess the expression of various
molecular markers. Commonly used markers in pHGGs include GFAP (glial fibrillary
acidic protein), which confirms glial origin; Ki-67, which indicates proliferative activity;
and mutant proteins such as H3K27M, which is associated with a specific and aggressive
subset of these tumors [55]. The combination of histopathological evaluation and IHC
provides a comprehensive understanding of the tumor’s biological characteristics, aiding
in prognostication and the development of targeted therapeutic strategies.

3.3. Liquid Biopsy

A liquid biopsy offers an alternative means of gathering crucial tumor information
from bodily fluids like blood (serum or plasma), cerebrospinal fluid (CSF), and urine,
presenting a less invasive approach [56]. These fluids harbor biomaterials such as cell-
free DNA, circulating tumor cells, circulating tumor DNA, fragmented peptides, and
microRNAs, all of which are released from tumors [57]. Whole-genome sequencing of
liquid biopsies is becoming increasingly popular for detecting H3 mutations in pHGGs due
to the method’s precision in identifying single and multiple mutations in cancerous cells,
along with the accessibility of tumor materials in liquid biopsies [58]. CSF stands out as a
key source of biomarkers because of its higher concentration of circulating tumor DNA.
However, obtaining CSF samples requires a lumbar puncture, an invasive procedure in
which the risk–benefit should be carefully considered for each patient. This is particularly
concerning since gliomas in the brain can elevate intracranial pressure, posing a risk of brain
herniation due to the acute pressure created by CSF withdrawal [57]. Another possible way
to access CSF is to approach using external ventricular drainage (EVD), which is found to
be an overall safe and effective option in children [59].
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4. The Molecular Landscape of pHGGs
4.1. Genetic Mutations in pHGGs

Mutations serve as a hallmark of cancer and are pivotal for comprehending the mech-
anisms underlying cancer development [60]. Hence, grasping the genomic mutations that
trigger the dysregulation of cellular mechanisms and drive tumorigenesis constituted a fun-
damental principle of cancer research. The majority of pHGGs exhibit genetic complexity,
which includes notable copy number alterations (CNAs), single nucleotide variants (SNVs),
and structural variants [61–63]. Several molecular pathways, characterized by specific
genetic mutations, are believed to play key roles in tumorigenesis and will be explored in
the subsequent sections.

4.1.1. Receptor Tyrosine Kinase (RTK)

RTKs are transmembrane proteins with intrinsic enzymatic activity, crucial for sig-
naling pathways involved in cell proliferation, differentiation, and survival. The RTK
family includes PDGFR, epidermal growth factor receptors (EGFRs), and fibroblast growth
factor receptors (FGFRs), among others [64]. In DMGs, over 60% exhibit various amplifi-
cations and mutations affecting components within the RTK-RAS-P13K pathway. These
genetic alterations frequently coincide with the H3K27-altered subgroup [65]. Recently,
the WHO has categorized EGFR-mutant gliomas as a separate subtype of H3K27-altered
gliomas, characterized by primary abnormalities occurring within the EGFR oncogene
on chromosome band 7 [6]. Targeting this specific EGFR alteration holds promise as a
potential treatment that may benefit these patients, but further research is required [31].
EGFR mutations are more prevalent in adult populations, affecting approximately 90% of
aHGGs. In contrast, EGFR mutations are less common in pediatric populations, with gene
amplification and EGFRvIII overexpression detected in only a small percentage (4%) of
pHGGs [66,67].

4.1.2. Tumor Protein p53 (TP53)

The tumor suppressor gene TP53 encodes the p53 protein, serving as a transcription
factor crucial for tumor suppression [68]. Various stress signals, including DNA damage,
hypoxia, and chemotherapy, activate the p53 pathway, which in turn triggers different
cellular responses such as cell cycle arrest, apoptosis, differentiation, DNA repair, and
autophagy through intricate networks [69,70]. The most frequent mutations affecting the
p53 pathway include missense mutations in TP53, deletions of CDKN2A/ARF, and/or
amplification of MDM2 and MDM4. These alterations result in reduced tumor suppres-
sor activity [71]. TP53 mutations have been observed in up to 80% of DMG samples,
often alongside the H3K27 alterations. However, they are also found in H3-wildtype
tumors [72]. In a retrospective analysis, it was observed that DMGs with mutations in both
H3K27-altered and TP53 exhibit increased resistance to radiation therapy, enhanced tumor
aggressiveness, and worse overall survival compared to patients without these mutations
or with only one mutation present [73]. Indeed, while the H3K27M mutation may serve as
the primary oncogenic driver, the co-occurrence of both mutations and the resulting worse
clinical outcomes suggest that the multifactorial molecular alterations in DMGs contribute
to its fatal nature [65].

4.1.3. Activin A Receptor, Type 1 (ACVR1)

ACVR1, a member of the TGF-beta signaling family, is a bone morphogenic protein
(BMP) receptor that binds to various ligands. ACVR1 activation leads to the phosphoryla-
tion and activation of growth-promoting genes through SMAD transcription factors [74,75].
Certain mutations within ACVR1 are part of the molecular profile of DMGs. Somatic
mutations such as R206H, R258G, G328E/V/W, and G356D within ACVR1 have been
identified in up to 20% of DMG cases, according to some retrospective analyses [30,76].
Under normal, unmutated conditions, ACVR1 aids in myelination within the CNS [77].
When a mutation occurs in ACVR1, it encodes a serine/threonine kinase (ALK2) receptor
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with heightened sensitivity to the ligand activin A. This results in dysregulation of the
BMP/SMAD pathway and increased tumor proliferation. The mutation is also associated
with an earlier age of tumor development, with a median age of diagnosis of 5 years, and a
slightly improved overall survival of 15 months [78].

4.1.4. ATRX

Inactivating mutations in the chromatin remodeler ATRX are identified in hemispheric
pHGG, closely associated with H3F3A-G34R/V mutations, and are found in both the
IDH and histone wildtype epigenetic subtypes [79]. ATRX inactivation is described as
essential for triggering the alternative lengthening of telomeres (ALT) mechanism. This
mechanism enables pHGG cells to extend their telomeres without needing telomerase
reverse transcriptase (TERT) expression, thereby preventing cell death from progressive
telomere shortening. This allows cancer cells to divide indefinitely, facilitating cancer
progression [80]. ATRX is an SNF2 helicase/ATPase that collaborates with DAXX to create
a H3.3 chaperone complex. This indicates that H3.3 and its ATRX chaperone complex play
a fundamental role in the development of pediatric gliomas (Voon & Wong, 2023 [81]). A
study showed that approximately 17% of all pHGGs have inactivating mutations in the
ATRX gene [6]. Among these ATRX-mutated HGGs, 33% also carry H3.3 G34R/V mutations
and 50% overlap with H3.3 K27M mutations. Notably, there is no overlap between ATRX
and H3.1 K27M mutations, which are instead linked to ACVR1 mutations. These findings
strongly suggest that histone H3.3 has a significant oncogenic role in pHGGs [81].

4.1.5. BRAF V600E Mutation

The V-RAF murine viral oncogene homolog B1 (BRAF) is a member of the RAF1
serine/threonine protein kinase family and acts as an oncogene in various malignancies,
including primary tumors of the central nervous system (CNS). Under normal physiological
conditions, BRAF is activated by RAS (Rat Sarcoma virus) proteins, which are small GTPase
proteins [82]. Once activated, BRAF forms homo- or hetero-dimers, which then activate the
mitogen-activated protein kinases MEK1 and MEK2 through phosphorylation. Notably,
MEK1 and MEK2 are encoded by the genes mitogen-activated protein kinase 1 (MAPK1)
and mitogen-activated protein kinase 2 (MAPK2), respectively [83]. The most common
mutation in BRAF is c.1799T>A, resulting in the substitution of valine with glutamic acid
at position 600 (V600E). This mutation is frequently detected in gliomas [84].

In pediatric cohorts, BRAF alterations are primarily observed in low-grade gliomas,
including pilocytic astrocytoma and glial-neuronal tumors [85]. Data from large stud-
ies indicate that BRAF V600E-mutated HGGs constitute only 6–15% of all pHGGs. The
prognosis for BRAF V600E mutations in pHGGs seems more favorable compared to other
molecular groups, with a 2-year survival rate of 67% [6]. However, the prognosis also varies
depending on histological subtypes and associated molecular alterations [86]. With the
advancement in research, there are now several targeted therapies available for managing
these aggressive brain tumors. BRAF inhibitors (e.g., Vemurafenib and Dabrafenib) and
MEK inhibitors (e.g., Trametinib and Selumetinib) are some of the few targeted therapies
for treating pHGGs with BRAF V600E mutations [86,87].

4.1.6. Neurofibromatosis Type 1 (NF-1)

Brain tumors associated with neurofibromatosis type 1 (NF1) are typically found
in LGGs [88]. Mutations affecting neurofibromin, a protein involved in regulating cell
growth and the Ras proto-oncogene, can lead to unchecked cell proliferation and the
development of either LGGs or HGGs. In children with HGG, the occurrence of NF1
is relatively uncommon, ranging from 0.28% to 5% [89]. Individuals with NF1 have a
significantly higher risk of developing low-grade gliomas compared to high-grade gliomas.
However, their risk of developing high-grade glioma is increased by 50-fold compared to
the general population [90]. Molecular analyses of NF1-associated pHGGs have identified
mutational and genomic alterations akin to those in their sporadic counterparts. These
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include mutations in the ATRX, TP53, and CDKN2A genes, as well as in genes involved in
the phosphoinositol-3 kinase (PI3K) pathway. Notably, NF1-associated high-grade gliomas
do not exhibit the IDH and histone H3 mutations frequently found in sporadic malignant
gliomas [91,92].

4.1.7. Neurotrophic Tyrosine Receptor Kinase (NTRK) Fusion

Recent studies have demonstrated recurrent fusion of the neurotrophic tyrosine re-
ceptor kinase (NTRK) gene in 10% of high-grade gliomas outside the brainstem in very
young children, indicating that NTRK fusion genes have an oncogenic impact [45]. A study
conducted by Garcia et al. (2022) [93] found that the NTRK genes (i.e., NTRK1, NTRK2,
and NTRK3) are implicated in infant-type hemispheric gliomas, which typically exhibit
high-grade histology. A recent study has indicated that most gliomas fused with NTRK
genes are located in the hemispheres and are more prevalent among high-grade gliomas
outside the brainstem in patients younger than 3 years old [94,95]. These tumors historically
have been associated with high mortality and recurrence due to their aggressive nature and
high-grade histology. However, the prognosis for NTRK-fused gliomas may be changing
following the recent FDA approval of selective pan-TRK inhibitors such as larotrectinib,
entrectinib, and repotrectinib [96,97].

5. The Tumor Microenvironment in pHGGs

The tumor microenvironment (TME) comprises non-cancerous cells within and around
the tumor, including immune cells, endothelial cells, microglia, astrocytes, and neurons.
pHGGs exhibit an immunologically inactive tumor microenvironment, characterized by low
T cell infiltration and limited immune surveillance [98]. Because of its varied components
and ever-changing nature, the TME is crucial in determining cancer cell survival and their
response to treatment [99].

The TME contributes to additional heterogeneity among these tumors. Another layer
of complexity lies in the maturation of the immune system during childhood, so cau-
tion is necessary before applying findings about the TME from adult brain tumors to
pediatric types. Analysis reveals immune infiltration in pLGGs and pHGGs, indicated
by the presence of CD163+ macrophages and CD8+ T cells. However, for DMGs, there
is no increase in any immune cells compared to normal tissue controls [100]. They are
also found to be lacking in cytokines and chemokines (i.e., IL6, IL1A, and CCL3, etc.)
necessary to recruit immune cells [100,101]. In children, glioma cells also establish an
immunosuppressive environment through various mechanisms, including the release
of soluble factors and induction of hypoxia. For instance, TGF-β inhibits T cell pro-
liferation and IL-2 production, activates regulatory T cells (Tregs), and downregulates
NKGD2 [102,103].

Research has demonstrated that the immune landscapes across all pediatric brain
tumors do not correlate with tumor grade, mutational burden, mesenchymal/epithelial
phenotype, or patient prognosis [104]. IHC data revealed the opposite trend, with more
CD45+, CD8+, and PD1+ cells present in low-grade gliomas compared to higher-grade
tumors. T cell receptor sequencing also indicated a trend toward greater T cell infiltrate and
clonality in low-grade tumors. Conversely, flow cytometry data showed a trend towards
increased B cell numbers and B cell activation in high-grade gliomas [103]. Furthermore,
flow cytometric analysis of adult gliomas and brain metastases revealed that IDH mutation
status and tumor origin significantly influence the TME. Gliomas, in comparison to brain
metastases, showed lower lymphocyte counts and a higher presence of microglia- and
monocyte-derived infiltrating macrophages. Additionally, glioblastomas with wildtype
IDH status demonstrated more lymphocyte and less macrophage infiltration compared
to lower-grade IDH-mutant gliomas [105]. This correlation between tumor grading and
lymphocyte infiltration has not been observed in pediatric subtypes [106].
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6. Current Standard of Care for pHGG Patients

The aggressive nature of HGGs has prompted the adoption of multi-modal treat-
ment strategies. These typically involve surgical debulking followed by a combination of
radiation therapy and/or chemotherapy, which is considered the standard of care.

6.1. Surgery

Surgical resection serves as the initial step in the treatment of HGGs [107]. The primary
objectives of surgical resection in the treatment of HGGs are to obtain tissue for pathological
diagnosis, alleviate intracranial pressure, and cytoreduce tumors [108]. However, complete
tumor resection is often challenging due to the diffuse infiltrative nature of the tumors and
the high risk of causing permanent neurological deficits [109]. In cases where complete
tumor resection is not feasible due to the tumor’s diffuse infiltrative nature or its location in
the eloquent cortex, stereotactic needle biopsy may be the only surgical option, especially
for deep lesions [110]. However, for more superficial lesions or those outside eloquent
areas, several studies have demonstrated that gross total resection (GTR) is associated
with prolonged survival compared to subtotal resection (STR) or biopsy [111,112]. For
hemispheric tumors, GTR has shown significant benefits in terms of prolonger survival
(HR, 0.29; 95% CI, 0.15–0.54; p < 0.001), as well as for infratentorial tumors (HR, 0.44; 95% CI,
0.24–0.83; p = 0.01). However, this survival advantage is not as pronounced for midline
tumors (HR, 0.63; 95% CI, 0.34–1.19; p = 0.16) [113]. While there has been improvement
in surgical mortality rates for HGGs, a significant issue remains with morbidity [114].
Post-surgical complications for HGGs can include stroke, infections, brain edema, and
neurological dysfunctions [115]. The decision to attempt surgical resection is also influenced
by factors such as the patient’s clinical condition, age, associated hydrocephalus, and the
surgeon’s assessment of the risk of neurological sequelae. These considerations highlight
that surgery alone is not sufficient as a form of treatment for pHGGs [116,117].

6.2. Radiotherapy (RT)

Radiation therapy involves the administration of high-energy radiation to target and
kill tumor cells, and it is the standard of care following surgical resection [118]. Radiation
therapy plays a crucial role in improving the survival of children with HGGs. Due to the
infiltrative nature of HGG lesions, even after complete tumor resection, microscopic tumor
cells may still be present. Therefore, radiation therapy is administered to prolong patient
survival by targeting and eliminating these residual tumor cells [119]. The utilization
of radiation therapy is also contingent on factors such as the histologic diagnosis of the
tumor, the availability of effective chemotherapeutic alternatives, and the age of the child.
In pediatric patients, a radiation dose of 54 Gy is typically administered in 1.8 Gy daily
fractions over a period of 6 weeks. However, radiation therapy is often avoided in children
under 3 years old due to the risk of severe neurocognitive sequelae [120]. Research indicates
that, compared to their adult counterparts, pediatric patients have a higher 6-month
survival rate following radiation therapy—79% versus 47% in adults. This suggests that
radiotherapy should be considered, when feasible, for all childhood gliomas. However,
the long-term side effects of radiotherapy on the developing brain must be considered
for pediatric patients. These include neurocognitive deficits, vasculopathy, endocrine
dysfunction, growth defects, and secondary malignancies [121].

6.3. Chemotherapy

Chemotherapy involves administering chemical compounds to kill cancer cells. It
can be given systemically or locally and may be used after surgery, before surgery, or as
adjuvant therapy post-surgery [122–124]. Treating HGGs with drugs has been challenging
because the drugs need to be both potent and cytotoxic while also being able to penetrate
the blood–brain barrier and overcome mechanisms of drug resistance [125,126]. The
initial major clinical trials that demonstrated the effectiveness of Temozolomide (TMZ) in
treating HGG were conducted in adults, including those with relapsed disease, and later,
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in newly diagnosed patients [127,128]. These studies established the use of postoperative
radiotherapy (RT) with TMZ followed by maintenance of TMZ as the standard treatment
for adults with newly diagnosed glioblastoma. For pediatric populations, the maximum
tolerated dose and toxicity profile or oral TMZ have been defined through two phase
I pediatric studies [129]. Although it has been identified that there are no significant
improvements to survival, TMZ has been adopted as the standard of care with newly
diagnosed HGG (ACNS0126). This decision was based on its less toxic profile, tolerability,
and the lack of alternative regimens showing substantial improvements in survival rates,
and this standard has largely remained unchanged today [130]. Following up on the
previous study, the ACNS0423 trial evaluated concomitant TMZ followed by adjuvant
TMZ and lomustine and found moderately improved event-free survival (EFS) and overall
survival compared to the historical cohort from the ACNS0126 trial. However, this regimen
resulted in a substantial increase in hematological toxicities compared to TMZ alone,
indicating that the role of adjuvant chemotherapy still needs further investigation [131,132].

Although studies showed that TMZ is not particularly effective in pHGG tumors over
conventional treatment, the methylation site in MGMT has been found to be a predictor
of TMZ sensitivity [133]. Hypermethylation of the MGMT gene promoter results in the
silencing of gene expression, which leads to decreased levels of the MGMT enzyme, en-
hancing the cytotoxic effects of TMZ [134,135]. Within the population of pHGG tumors
that are hypermethylated at MGMT, there seems to be greater TMZ activity. However, it
is still unknown how this methylation site plays a role in pHGGs; therefore, there is an
urgent imperative to develop targeted therapies tailored for pHGG patients to improve
treatment outcomes and survival rates.

7. Emerging Therapies for pHGGs

Recent advancements therapies integrating the molecular profile of pHGGs has en-
abled the rapid translation of treatments in clinical trials (Table 1).

Table 1. Emerging clinical therapies/treatments for managing pHGGs.

Inhibitors, Immunotherapy
or Others NCT # Phase of

Clinical Trial Target Gene/s Cohort

NK cells injection NCT04254419 1

MGMT, BRAFV600E,
ACVR1, ATRx, TP53,

H3G34, H3.3/H3.1K27,
IDH1, CDKN2A,

PDGFR

Recurrent HGG

Intratumoral injection of
G207 + RT [136] NCT04482933 2 - Neoplasms, HGG,

astrocytoma

Lutathera (177Lu-DOTATATE) NCT05278208 1 and 2 Type-2A somatostatin
receptors (SST2A) HGG, medulloblastoma

iC9-GD2-CAR-T cells NCT05298995 1 GD2 Medulloblastoma,
HGG, DMG

Loc3CART: Locoregional
Delivery of B7-H3-CAR

T cells
NCT05835687 1 - HGG (B7-H3-positive)

CLR 131 NCT03478462 1 Breakdown of dsDNA DMG, HGG

Berubicin NCT05082493 1 Topoisomerase II
(Topo II)

Progressive, refractory, or
recurrent HGG

NEO100 NCT06357377 1 Rad/Raf pathway HGG, DMG

AsiDNA (etidaligide) + RT NCT05394558 1 and 2 DNA-PK HGG, DMG
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Table 1. Cont.

Inhibitors, Immunotherapy
or Others NCT # Phase of

Clinical Trial Target Gene/s Cohort

Larotrectinib [137] NCT04655404 1 TRK HGG with NTRK
fusion, DMG

LAM561 acid NCT04299191 1 and 2 MAPK, CDK,
PI3K inhibitor HGG

Selinezor + RT NCT05099003 1 and 2 CRM1 HGG (H3K27M-mutant or
H3K27-WT), DMG

Fimepinostat NCT03893487 1 PI3K, HDAC DIPG, HGG,
medulloblastoma

DC vaccine + TMZ [134,138] NCT04911621 1 and 2 Anti-tumor defense
mechanisms HGG, DIPG

Trametinib + Everolimus NCT04485559 1 MEK, mTOR Recurrent HGG, grade 2
glioma, LGG

Novel peptide vaccine
(PEP-CMV) + TMZ +

Tetanus–Diphtheria vaccine
NCT05096481 2 - Medulloblastoma,

HGG, DIPG

Lorlatinib +
BABYPOG/HIT-SKK NCT06333899 1 ALK, TRK receptors HGG with ROS1 or

ALK fusion

Abemaciclib + TMZ + RT NCT06413706 2 CKD4/6, Rb
phosphorylation HGG

C7R-GD2 CAR-T cells +
cyclophosphamide and

fludarabine [139]
NCT04099797 2 GD2 GAIL-B in DMG, HGG,

DIPG, medulloblastoma

Ribociclib + Everolimus NCT05843253 2

CDK4/6,
growth-driven

transduction signals in
T cell response

HGG and DIPG with
PI3K/mTOR mutations

Dabrafenib, Trametinib and
Hydroxychloroquine NCT04201457 1 and 2 BRAFV600E, MEK

HGG with BRAFV600E,
BRAF fusion/duplication

positive, or NF1-associated
mutations

Olutasidenib + TMZ NCT06161974 2 IDH1 HGG with IDH1 mutations

Panobinostat + Everolimus NCT03632317 2 Histone deacetylase H3.1 or H3.3 K27M DIPG

Neo-antigen HSP vaccine
(rHSC-DIPGVax) +

Balstilimab/Zalifrelimab [140]
NCT04943848 1 16 peptides on DIPG

and DMG DIPG, DMG

Dabrafenib + Trametinib NCT03975829 4 BRAF, MEK1/2 HGG

Topotecan + TMZ + Ribociclib NCT05429502 1 and 2 Topoisomerase I,
CDK4/6

R/R neuroblastoma,
medulloblastoma, HGG

Abemaciclib + Irinotecan +
TMZ + Dinutuximab +

GM-CSF
NCT04238819 1 and 2 CDK4/6,

topoisomerase I, GD2 HGG

Nivolumab NCT04323046 1 PD-1 receptor Malignant, recurrent HGG

CD200 Activation Receptor
Ligand (CD200AR-L) and
Allogeneic tumor lysate

vaccine + adjuvant
re-irradiation

NCT06305910 1 CD200R1 DMG, H3K27M HGG
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Table 1. Cont.

Inhibitors, Immunotherapy
or Others NCT # Phase of

Clinical Trial Target Gene/s Cohort

INCB7839 NCT04295759 1 ADAM HGG, DIPG, DMG

SurVaxM + Montanide ISA 51 NCT04978727 1 IAP HGG, DIPG

NKTR-214 + Nivolumab NCT04730349 1 and 2 CD8T HGG

NK = natural killer, RT = radiotherapy, DC = dendritic cell, TMZ = temozolomide, R/R = relapsed/refractory.

7.1. Immunotherapy

Treating brain tumors has been particularly difficult due to the unique biological char-
acteristics of these cancers that often hinder progress. Key challenges include the tumor’s
location behind the blood–brain barrier (BBB) and the patient’s age [141]. Certain brain
tumors, especially those in children, can be cured with aggressive surgery, radiotherapy,
and chemotherapy. However, these treatments often come at a significant cost, particularly
for young children, who may suffer lifelong neurocognitive and endocrine side effects [142].
Immunotherapy has emerged as a novel paradigm in cancer treatment over recent years.
The effectiveness of immunomodulating strategies is thought to depend on the presence
of cytotoxic immune cells in the tumor or peripheral blood, which could migrate to and
eradicate the tumor. The process of tumor development leads to the production of tumor-
specific neo-antigens. Despite this, cancer cells often evade detection. They develop various
mechanisms to resist immune surveillance, including local immune evasion, induction of
immune tolerance, and systemic disruption of T cell signaling [143]. Furthermore, due to
the heterogeneous nature of tumor cells, the selection pressure from immune recognition
results in an immune editing process, promoting the survival and growth of more resistant
tumor cells [144].

Indeed, the immune system can detect and combat tumor cells, but this capability
eventually fails, as evidenced by characteristics of the chronic immune response [145]. This
failure is marked by T cell exhaustion, mediated by the expression of inhibitory recep-
tors such as programmed cell death protein 1 (PD-1), T cell immunoglobulin and mucin
domain-containing protein 3 (TIM-3), and lymphocyte activation gene 3 (LAG-3) [146].
In this context, tumors can create a microenvironment that promotes immune inhibition,
preventing direct stimulation of the antitumor immune response. These immune check-
points, or co-inhibitory pathways, are powerful tools tumors use to evade immune attacks,
making them crucial targets for immunotherapies [147]. However, immune checkpoints are
not the sole targets for intervention, and much of the current research on immunotherapy
is centered around adults, often overlooking the fundamental distinction between pedi-
atric and adult immune responses [148]. Indeed, while immunotherapies like CAR-T cell
therapy and checkpoint inhibitors have shown efficacy in treating nervous system tumors,
pHGGs remain largely refractory to treatment. This underscores the necessity for delving
into the immune milieu of pHGGs to fully elucidate the potential of immunotherapy in
their management.

Checkpoint Blockade Inhibitors

Immune checkpoints are integral to the immune system’s regulation, ensuring that
immune responses remain controlled to avoid damaging healthy tissues. Numerous other
checkpoint blockades have demonstrated promise and improved patient survival across a
variety of cancers [149]. However, as previously discussed, pHGGs, particularly DMG, have
limited immune infiltration. Therefore, it is not surprising that these therapies have shown
no survival benefit for pHGG patients, except for those with hypermutant tumors [150].
A deeper understanding of the tumor microenvironment in pHGGs may be crucial for
elucidating the exact mechanisms behind the failure of current treatments. Currently,
several ongoing phase 1 and phase 3 clinical trials are investigating the use of anti-PD1 and
anti-CTLA4 therapies in both newly diagnosed and refractory pHGGs. These trials will
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likely provide valuable insights into the disease and potentially lead to improved patient
outcomes [148,151].

7.2. Chimeric Antigen Receptor T Cell Therapy

Chimeric antigen receptors (CAR) are artificially engineered receptors that empower
lymphocytes, typically T cells, to identify and eliminate cells expressing a particular target
antigen. CAR-T therapy’s effectiveness against B cell lymphoblastic leukemia led to its
approval by the FDA in 2017 [152,153]. However, CAR-T therapy’s efficacy against solid
tumors, including HGG, is generally limited, and it can sometimes lead to life-threatening
toxicities [154].

Although pHGGs have a low mutational burden and therefore fewer tumor-specific
antigens available for targeting, the distinct expression of mutated histone proteins in
H3K27M and H3G34R make them promising targets for CAR-T therapies [148]. To enhance
therapeutic response, ongoing phase 1 clinical trials are exploring HER2, EGFR, and
IL13RA2 CAR-T cells for both adult and pediatric HGGs. Leveraging the unique biological
characteristics of pHGGs could optimize these efforts [155].

An encouraging avenue for CAR-T therapy in pHGGs involves B7-H3 CAR-T, target-
ing B7-H3, an immune checkpoint molecule with high expression in tumor tissue and low
presence in normal tissue. Crucially, B7-H3 is highly expressed in pediatric solid tumors like
HGGs and DMGs [156,157]. When B7-H3 CAR-T cells are co-cultured with patient-derived
DMG lines, they exhibit high levels of interferon-gamma, tissue necrosis factor-alpha, and
interleukin 2 production, indicating their cytotoxic potential [156]. Another promising
avenue is CAR-T cell targeting of disialoganglioside GD2, as it has been demonstrated to be
highly expressed on the surface of all H3K27M DMG cultures examined [158]. Additionally,
GD2 levels in normal tissue are very low, while it is extensively expressed in multiple tu-
mor types [159]. In vivo studies have shown that GD2-specific CAR-T cells exhibit specific
cytotoxicity towards H3K27M DMG tumor cells but not H3WT DMG tumor cells. This
cytotoxicity is driven by the production of interferon-gamma and interleukin 2 [158]. In the
mouse xenograft study, significant tumor clearance was achieved; however, a small subset
of GD2-negative tumor cells survived, underscoring the importance of combination thera-
pies. These initial studies underscore the potential of CAR-T therapies in targeting pHGGs.
Nonetheless, several issues need addressing, particularly treatment-induced edema, which
can be fatal in tumors located near the brainstem in DMG cases.

7.3. Cancer Vaccines

Advances in tumor immunology, alongside technical improvements in vaccine devel-
opment, have renewed interest in using vaccination as a cancer therapy [160,161]. Cancer
vaccines aim to stimulate a patient’s adaptive immune system by exposing it to a high
concentration of tumor antigens. Identifying the appropriate molecular targets is crucial for
designing an effective and specific cancer vaccine. Once target antigens are selected, they
are administered alongside immune adjuvants to effectively activate the host’s antigen-
presenting cells (APCs). These APCs must then be able to induce sustained responses from
CD4+ and CD8+ T lymphocytes [162]. Since tumor cells share much greater similarity
with healthy tissue than with infectious microorganisms, the key to constructing successful
cancer vaccines is to protect healthy tissue while inducing targeted immunity against tumor
antigens that are preferentially expressed by tumor cells [163,164].

8. New Therapeutic Strategies for Treating pHGGs
8.1. Precision Medicine and Targeted Therapy

Despite a significant number of clinical trials for pHGGs, there has been little change
in therapies for these patients over the past 50 years and patient outcomes remain abysmal.
This can partly be attributed to poor drug penetration through the blood–brain barrier,
ineffective drug perfusion, and intra- and inter-heterogeneity of the tumor. As pHGGs
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represent a relatively small proportion of cancers and are classified as “rare”, the limited
sample sizes pose a challenge to identifying novel therapies.

The current treatment approaches for pHGG are considered outdated, offering limited
survival benefits for patients. Immunotherapy has shown great potential as a therapeutic
strategy, but personalized precision medicine is now becoming the focal point of treatment
strategies [165]. This approach aims to target key oncogenic genes for disruption, tailoring
treatment to the individual patient. Furthermore, precision medicine is actively identifying
new targets for targeted therapy by conducting genetic profiling across various tumor
types [166]. The objective is to develop personalized treatments tailored to individuals’
tumor characteristics. This approach aims to provide more precise health trajectories and
enable the detection of disease progression.

8.2. RTK Inhibitors

Alterations in RTKs are a hallmark of HGG tumors, making drugs targeting these
alterations a focal point in HGG research. Numerous clinical trials have assessed various
RTK-targeted therapies [167]. Examples include EGFR inhibitors (e.g., Gefitinib, Erlotinib,
Afatinib, and AZD9291), the EGFRvIII peptide vaccine Rindopepimut, EGFR monoclonal
antibodies, and PDGFR inhibitors (including Imatinib mesylate, Dasatinib, and Tandu-
tinib), either as monotherapies or in combination with other agents like Temozolomide,
Bevacizumab, or radiation therapy [168]. Regrettably, many of these therapies have failed
to yield long-lasting responses in clinical trials. This is because several of these genes can
activate redundant signaling pathways, rendering drugs directed toward single targets
ineffective [169]. Despite a few anecdotal responses, the overall evidence underscores the
lack of efficacy of these therapeutic agents.

8.3. Epigenetic Therapies

Given that epigenetic mutations like K27M and G34R/V are prevalent in HGGs,
treatments targeting them are being developed and have demonstrated promising results in
pre-clinical studies [170]. For instance, the use of GSK-J4, an inhibitor of the histone H3K27
demethylase JMJD3, has led to significant reductions in tumor growth and prolonged
survival in vivo in K27M glioma xenograft models [171]. Numerous Phase 1 clinical trials
have been conducted on adult HGG patients using HDAC inhibitors like panobinostat,
bevacizumab, and romidepsin [172]. For instance, combining Panobinostat with stereotactic
re-irradiation for treating recurrent HGG resulted in a progression-free survival (PFS)
rate at 6 months of 83% in Phase I, with Phase II testing currently underway [173,174].
Moreover, clinical trials are ongoing for pediatric HGGs, investigating the efficacy of
HDAC inhibitors such as panobinostat and vorinostat [172]. The combination of vironostat,
bevacizumab, and temozolomide for treating HGGs showed a 6-month PFS rate of 52.4%
in Phase I/II clinical trials, which appears promising [175]. Mutant IDH tumors exhibit a
deficiency in the homologous recombination system for repairing double-stranded DNA
breaks [176,177]. Poly ADP-ribose polymerase 1 (PARP1) inhibitors were consequently
introduced to counteract the repair of single-strand DNA breaks and modulate chromatin
remodeling through histone modifications. PARP is the cellular protein responsible for
repairing damaged DNA [178]. Indeed, alongside IDH1 inhibitors like ivosidenib and
enasidenib, PARP inhibitors such as olaparib and veliparib are currently undergoing testing,
either as monotherapies or in combination with temozolomide, in children with newly
diagnosed and recurrent IDH1/2 mutant HGG [179].

8.4. Functional Drug and Genetic Screens

Currently, there are variable responses to drug treatments among HGG patients,
largely due to the intricate tumor heterogeneity and the acquisition of genetic mutations
during treatment, leading to drug resistance [117]. Hence, there is an urgent need for
tools that assess cell–drug responses to develop effective treatments aimed at improving
patient survival. High-throughput screens are crucial in this regard, as they test various
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concentrations of each drug on glioma cell lines, helping identify potential drugs capa-
ble of inhibiting tumor growth [180]. Currently, numerous commercially available drug
libraries are accessible for testing on malignant tumors, facilitating the discovery of novel
therapeutics capable of inhibiting tumorigenesis [181]. These include drug libraries such as
those from the U.S. Food and Drug Administration (FDA), Cambridge, and kinase inhibitor
libraries (e.g., Selleckchem, Houston, TX), which comprise drugs at different stages of
clinical investigation for various cancers, targeting a wide array of molecular pathways.
Translating drug data into clinical practice necessitates the identification of biomarkers
and potential mechanisms. Therefore, alternative approaches like functional genomics and
sequencing technologies may offer additional evidence to expedite translation efforts.

Pediatric cancers are often described as having “quiescent” genomes because they
exhibit a lower mutational burden compared to their adult counterparts [182]. However,
research by multiple groups shows that mutational burden does not correlate with fewer
genetic dependencies [18,183]. A first-generation pediatric dependency map showed that
it was indeed possible to identify genetic dependencies across pediatric cancers, and
there remains a broader range of therapeutic targets to be discovered [183]. Similarly,
the Childhood Cancer Model Atlas uncovered specific genetic vulnerabilities that were
therapeutically actionable by readily available inhibitors [18].

9. Conclusions and Future Directions

HGGs in pediatric patients remain among the most challenging cancers to treat, with
poor prognosis despite advances in treatment modalities. Future research directions are
recommended to focus on several critical areas to improve treatment outcomes and patient
quality of life. Comprehensive genomic and epigenetic profiling should continue to identify
novel mutations and pathways, enhancing our understanding of the molecular landscape
of pHGGs. This could lead to the development of new targeted therapies, which are crucial
given the heterogeneous nature of these tumors. Investigating combination therapies that
synergize targeted treatments with existing modalities like radiation and chemotherapy is
another promising avenue. Immunotherapy, which has shown success in adult gliomas,
should be explored for pHGGs, particularly checkpoint inhibitors, cancer vaccines, and
adoptive cell transfer methods. Personalized precision medicine, guided by biomarker
discovery and patient-derived models, holds significant promise in tailoring treatments
to individual tumor profiles, potentially improving therapeutic efficacy and minimizing
side effects.

Clinical trial groups such as the Pacific Pediatric Neuro-Oncology Consortium (PNOC)
and the Collaborative Network for Neuro-oncology Clinical Trials (CONNECT) aim to
develop trials driven by relevant biological research for rapid clinical translation and
expand access to innovative therapies for children with brain tumors. Expanding innovative
clinical trials and fostering international collaboration through global research networks
will accelerate the development and testing of new therapies. Additionally, focusing on
supportive care, including comprehensive palliative care and neurocognitive rehabilitation,
is crucial to improving the quality of life for pHGG patients and survivors. By addressing
these areas, future research aims to significantly improve survival rates and quality of life
for children affected by these aggressive tumors.
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