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Glioblastoma (GBM) is a highly malignant, invasive, and poorly prognosed brain

tumor. Unfortunately, active comprehensive treatment does not significantly

prolong patient survival. With the deepening of research, it has been found that

gut microbiota plays a certain role in GBM, and can directly or indirectly affect the

efficacy of immune checkpoint inhibitors (ICIs) in various ways. (1) The

metabolites produced by gut microbiota directly affect the host’s immune

homeostasis, and these metabolites can affect the function and distribution of

immune cells, promote or inhibit inflammatory responses, affect the phenotype,

angiogenesis, inflammatory response, and immune cell infiltration of GBM cells,

thereby affecting the effectiveness of ICIs. (2) Some members of the gut

microbiota may reverse T cell function inhibition, increase T cell anti-tumor

activity, and ultimately improve the efficacy of ICIs by targeting specific

immunosuppressive metabolites and cytokines. (3) Some members of the gut

microbiota directly participate in the metabolic process of drugs, which can

degrade, transform, or produce metabolites, affecting the effective

concentration and bioavailability of drugs. Optimizing the structure of the gut

microbiota may help improve the efficacy of ICIs. (4) The gut microbiota can also

regulate immune cell function and inflammatory status in the brain through gut

brain axis communication, indirectly affecting the progression of GBM and the

therapeutic response to ICIs. (5) Given the importance of gut microbiota for ICI

therapy, researchers have begun exploring the use of fecal microbiota

transplantation (FMT) to transplant healthy or optimized gut microbiota to

GBM patients, in order to improve their immune status and enhance their

response to ICI therapy. Preliminary studies suggest that FMT may enhance the

efficacy of ICI therapy in some patients. In summary, gut microbiota plays a
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crucial role in regulating ICIs in GBM, and with a deeper understanding of the

relationship between gut microbiota and tumor immunity, it is expected to

develop more precise and effective personalized ICI therapy strategies for

GBM, in order to improve patient prognosis.
KEYWORDS

glioblastoma, gut microbiota, immunotherapy, immune checkpoint inhibitor,
gut-brain axis
1 Introduction

Glioblastoma (GBM) is a highly malignant tumor of the

nervous system that occurs mainly in the glial cells of the brain.

It has one of the highest incidence rates and is the most complicated

to treat among all brain tumors. It grows rapidly, with a short

disease course and poor prognosis (1). For GBM, surgery combined

with radiotherapy and chemotherapy is commonly used as the

standard treatment. However, even with active treatment, the

median survival period is only 15 months (2). Studies have shown

that immune checkpoint inhibitors (ICIs) play a role in GBM (3),

and are expected to become a new treatment strategy.

ICIs can relieve the inhibitory state of the patient’s immune

system and activate T cells to attack tumors, thereby controlling the

growth and spread of the tumor (4). However, ICI therapy has certain

limitations. For example, not all patients benefit from ICI therapy;

some patients may not respond to treatment or develop resistance,

and ICI therapymay cause adverse reactions, such as immune-related

adverse reactions, fatigue, and nausea (5). Researchers have found

that gut microbiota plays a crucial role in regulating ICI therapy in

GBM (6). The relationship between gut microbiota and ICI therapy

for GBM is a complex topic of research. Currently, studies are

underway on how the gut microbiota affects ICI therapy for GBM,

and how to utilize it to enhance the effectiveness of ICI therapy.

Notably, the composition and diversity of gut microbiota may affect

the function of the immune system, thereby affecting the efficacy of

ICIs in GBM treatment. For example, metabolites produced by the

gut microbiota, such as short-chain fatty acids (SCFAs), tryptophan

(Trp), and arginine, may affect immune cell activity, thereby affecting

the effectiveness of ICI therapy (7). In addition, the gut microbiota

may affect the immunogenicity of tumor cells, namely their ability to

recognize and attack the immune system, which can also affect the

effectiveness of ICI therapy (8). We are currently exploring methods

to utilize the gut microbiota to enhance the efficacy of ICIs in GBM

treatment. Some studies have shown that the activity and function of

immune cells can be improved by regulating the composition and

diversity of the gut microbiota, thereby enhancing the effectiveness of

ICI therapy (9).

Taken together, the relationship between the gut microbiota

and ICI therapy for GBM is an emerging research field. Although
02
there is currently no clear conclusion, it has broad research

prospects. This article reviews the role of gut microbiota in

regulating ICIs in GBM to provide new ideas and methods

for GBM.
2 Relationship between the gut
microbiota and GBM

The gut microbiota includes a large number of

microorganisms that colonize the human gut, affecting the

body’s digestive function, defense ability, susceptibility to

autoimmune diseases and tumors, and the body’s response to

disease-treating drugs (10). Probiotics can promote intestinal

peristalsis and food digestion, inhibit the growth of pathogenic

bacteria, decompose harmful substances, and enhance immunity.

Neutral bacteria have a dual function and are harmless to the

human body under normal circumstances. When the bacterial

community system is disrupted, bacteria can proliferate in large

quantities and cause diseases; pathogenic bacteria, in particular,

are harmful to the human body and benefit from microbial

constraints. Once their quantity increases significantly, they can

affect the immune system and cause diseases (11).

The gut microbiota plays a role in the growth and development

of GBM (12), through various mechanisms. For example, the

metabolites produced by intestinal bacteria promote the

proliferation and migration of GBM cells and accelerate tumor

growth and spread (13). Research has shown that in GBM,

metabolites of gut microbiota such as 5-hydroxytryptamine,

Norepinephrine, Glutamine, and lipopolysaccharide binding

proteins (LBP) can promote the proliferation and migration of

GBM cells, while dopamine, lipopolysaccharides (LPS) play the

opposite role (14–16) (Figure 1). In addition, the composition and

abundance of the gut microbiota can affect the activation and

function of immune cells, thereby affecting the immune response

to tumors. For example, dysbiosis of the gut microbiota can lead to

immune system dysfunction, reduce the immune response to

tumors, and promote tumor growth and progression (17)

(Figure 2). Furthermore, the gut microbiota can influence GBM

development by influencing the expression of host genes.
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Metabolites of the gut microbiota can interact with host cell genes,

thereby affecting their expression and function. This can affect the

proliferative, differentiative, and invasive abilities of GBM cells,

affecting tumor development (18) (Figure 3). Understanding the

relationship between gut microbiota and GBM will aid our

understanding of the pathogenesis of GBM, which will help

develop diagnostic and therapeutic strategies based on the gut

microbiota to improve the therapeutic efficacy of GBM.
3 The mutual regulatory effect
between gut microbiota and the
tumor microenvironment of GBM

There is an interactive regulatory effect between gut microbiota

and the tumor microenvironment (TME) of GBM, involving

multiple levels such as immune regulation, metabolic regulation,

neuroendocrine communication, and dietary intervention.

Immune system regulation: Some beneficial strains in the gut

microbiota, such as lactobacilli and bifidobacteria (19), enhance the
Frontiers in Immunology 03
function of immune cells, especially the anti-tumor activity of T cells

and macrophages, by producing SCFAs such as butyrate, propionate,

and acetate (20). At the same time, these metabolites can promote the

infiltration of immune cells in the TME, enhancing their recognition

and attack ability against tumor cells (21). Imbalance of gut microbiota

may lead to an increase in immunosuppressive cells, such as regulatory

T cells (Tregs) and myeloid suppressive cells (MDSCs), as well as

tumor associated macrophages (TAMs) leaning towards M2 type

(immunosuppressive) (22). These immunosuppressive cells may

weaken the anti-tumor immune response in the TME (23–25).

Conversely, restoring gut microbiota balance may reduce the number

or function of these immunosuppressive cells, thereby improving the

TME (26).

Metabolites and signaling pathway regulation: Metabolites

produced by gut microbiota can reach the brain through blood

circulation, affecting the metabolism and signal transduction of

GBM cells (27). For example, certain metabolites such as bile acids

and indole compounds may activate specific signaling pathways

within GBM cells, affecting tumor cell proliferation, migration,

angiogenesis, and immune escape ability (28, 29). The chronic
FIGURE 2

Effect of gut microbiota on immune cells in GBM (The gut microbiota stimulates the body to release antigens, which are taken up and processed by
APC, presented to T cells, or directly acts on T cells, causing the PD-1/TCR receptors on the surface of T cells to bind to the corresponding ligands
on the surface of GBM, inhibiting the proliferation of GBM cells).
FIGURE 1

Effect of gut microbiota metabolites on GBM (The various metabolites of gut microbiota are secreted into the bloodstream through the intestinal
mucosal epithelium. Regulating changes in GBM cells through blood circulation or affecting neurotransmitter function.).
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low-grade inflammatory state caused by imbalance of gut

microbiota can lead to an increase in the levels of systemic

inflammatory mediators (30), which may penetrate the brain

through the blood-brain barrier (BBB), promote the sustained

inflammatory response in the TME, and further exacerbate tumor

progression and immune suppression (9).

The neuroendocrine communication regulation of the gut brain

axis: gut microbiota can affect neurotransmitters (31). The synthesis

and metabolism of aminobutyric acid, as well as the secretion of

hormones such as cortisol and insulin, affect the function of

neurons and glial cells in the brain through blood circulation,

indirectly affecting the homeostasis of the GBM TME (16).

Dysfunction of gut microbiota may affect the migration of

immune cells to the brain by regulating neuroendocrine signals

(32). For example, intestinal derived cytokines may stimulate the

CXC ligand 12 / CXC receptor 4 (CXCL12/CXCR4) axis, promoting

immune cell recruitment to the tumor site (33).

Dietary and therapeutic response: Dietary components directly

affect the composition and activity of gut microbiota, thereby affecting

the host’s nutritional metabolism (34). Specific dietary patterns, such as

those rich in dietary fiber, antioxidants, or anti-inflammatory foods,

may enhance the body’s response to chemotherapy drugs, radiation

therapy, or ICI therapy by optimizing the gut microbiota, reducing

therapeutic toxicity (35–37). The gut microbiota is involved in the

biological transformation of drugs, including anti-tumor drugs (38).

Some strains may alter the bioavailability, efficacy, or toxicity of drugs

through enzymatic reactions, affecting the treatment efficacy and

tolerance of patients (39).

Potential role of microbiome therapy: Fecal microbial

transplantation (FMT) from healthy donors to GBM patients

aims to restore gut microbiota balance, enhance anti-tumor

immunity, and improve the TME (40, 41). Preliminary preclinical

and clinical studies have explored its application in GBM treatment.

By orally administering specific probiotics or prebiotics (such as

dietary fiber, inulin, etc.) to regulate gut microbiota, promote

beneficial bacterial growth, and inhibit harmful bacterial

communities, it may indirectly improve the TME and overall

therapeutic effect of cancer patients (42).

In depth study of these interaction mechanisms is expected to

provide scientific basis for the development of new GBM treatment
Frontiers in Immunology 04
strategies, especially by combining existing treatment methods with

gut microbiota regulation technologies.
4 Relationship between the gut
microbiota, gut-brain axis, and GBM

The gut-brain axis comprises the bidirectional communication

between the central nervous system and intestinal nervous system

(43). Initially, researchers believed that the destruction of the gut

microbiota would only produce pathological and physiological

phenomena in the local gut, such as irritable bowel syndrome

(44). However, recent studies have shown that dysbiosis of the

gut microbiota not only causes pathological and physiological

phenomena in the intestine but also leads to central

nervous system lesions (45). Extensive preclinical studies using

sterile and wild-type mice have confirmed that alterations in

the gut microbiome can lead to abnormal brain signaling and

behavior (46).

The gut microbiota gut-brain axis refers to the interaction and

influence between the gut microbiota and the brain, which plays an

important role in the occurrence and treatment of GBM (16).

Metabolites of the gut microbiota can act on the autonomic

nervous system and neuroendocrine axis, regulating brain function

and behavior. This interaction can affect the growth and development

of GBM and may effect the cognition and emotions of patients (47)

(Figure 4). The effect of the gut microbiota gut-brain axis on GBM is

multifaceted. First, gut microbiota can influence GBM progression by

regulating the expression of neurotransmitters. For example, gut

microbiota can regulate the expression of dopamine and serotonin.

However, dopamine can activate the expression of epidermal growth

factor receptor (EGFR) and promote the phosphorylation of

mitogen-activated protein kinase by binding to the highly

expressed dopamine receptor 2 in GBM cells, thereby promoting

the progression of GBM. In addition, most serotonin in the body is

metabolized by the gut microbiota, and excessive secretion of 5-

hydroxytryptamine can promote the proliferation of gliomas by

activating the protein phosphorylation signaling pathway (48).

Second, GBM disrupts the blood-brain barrier during development,

allowing circulating immune cells and inflammatory mediators, such
FIGURE 3

Effect of gut microbiota on GBM by affecting the expression of host genes (The gut microbiota produces various metabolic products, stimulating
epigenetic changes in the body, leading to some gene mutations and causing proliferation and differentiation of GBM cells).
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as T cells, macrophages, B cells, IL-6, IL-8, and other inflammatory

mediators, to enter the brain (49). However, immune cells are

inhibited in an inhibitory environment. M2 macrophages secrete

IL-10, EGF, and vascular endothelial growth factor (VEGF), which

inhibit T cell proliferation and promote tumor growth and

angiogenesis, leading to GBM progression (50). Inflammation is an

important factor that promotes GBM progression. Munoz et al.

confirmed that H-Ras isoforms upregulated the expression of IL-6

and IL-8 in GBM cells, promoting their survival, invasion, and

proliferation (51). Third, metabolites related to the gut microbiota,

such as SCFAs, affect the function of nuclear transcription factor-kB
(NF-kB) in tumor cells and immune cells. A portion of circulating

SCFAs can enter the central nervous system, especially when the

blood-brain barrier is disrupted. Moreover, the abnormal activation

of the B pathway activates survival genes, leading to the activation of

signal transducer and activator of transcription 3 (STAT3) and

increased invasiveness of GBM cells (52). In addition, SCFAs can

downregulate STAT1 and histone deacetylase to inhibit INF-g,
whereas Indoleamine 2, 3-dioxygenase-1 (IDO-1) can induce

tumor growth factor-b (TGF-b). Helper T cell-1 (Th1) and Th2

release triggers dysregulation, which is beneficial for the M2c

phenotype of microglia and inhibits cytokine production,

lymphocyte proliferation, and T cell differentiation, thereby

promoting tumor growth (53).
5 Role of the gut microbiota and gut-
brain axis in ICI therapy

The interplay between gut microbiota and ICIs is extremely

complex. The gut microbiota not only directly regulates the activity

and function of immune cells to affect the efficacy of ICIs but also

regulates the immune system of the body through the gut-brain axis,

affecting ICI efficacy against tumors (54). Routy et al. found that

dysbiosis of the gut microbiota can lead to tumor resistance to ICI

therapy (55). FMT from ICI-responsive tumor patients into sterile or

antibiotic-treated mice can improve the antitumor effect of the

programmed cell death protein 1 (PD-1) blockade, whereas FMT

from unresponsive patients does not show any improvement in
Frontiers in Immunology 05
antitumor activity (56). Importantly, the FMT response overcame the

resistance of patients with melanoma to PD-1 therapy (57). A close

relationship has been observed between the gut-brain axis and ICIs of

tumors; however, the specific underlying mechanisms are not yet clear.

Research has shown that the gut microbiota can downregulate

granulocyte-macrophage colony-stimulating factor signaling

through the gut-brain axis, leading to significant expression of

reactive oxygen species in activated immature myeloid cells,

thereby increasing the inhibitory activity of MDSCs on T cells

and enhancing ICI therapy (58). The gut microbiota promotes the

development of Foxp3 Tregs and improves intestinal barrier

function through the gut-brain axis, thereby inhibiting the

secretion of multiple pro-inflammatory Th17 cells. FOXP3

+regulatory T cells are a subset of CD4+ Th cells that serve as

checkpoints for immune activation and are crucial for peripheral

autoimmune prevention (59). The SCFAs produced by the gut

microbiota activate cellular receptors and affect cellular metabolism.

They can also enter the central nervous system through the BBB and

activate protein receptors such as free fatty acid receptor 3 (FFAR3)

and FFA2/FFAR2, leading to the secretion of cytokines and

chemokines and the regulation of cellular programs, supporting

their role as immune response enhancers and anti-inflammatory

agents (60). Antigen epitope tailband measurement protein 1 and

proteasome subunits in Hirae Enterococcus b-Type 4 tumor

antigens also exhibit high similarity, which can activate CD8+ T

cells and improve the effectiveness of PD-1 blockade therapy (61).
6 Role of the gut microbiota and gut-
brain axis in regulating ICI therapy
for GBM

Over the years, researchers have found that the brain has

immune functions and functional lymphatic vessels, challenging

the view that the brain is an immune-privileged organ (62). It was

always believed that GBM is in an immunosuppressive state with

poor efficacy of ICI therapy. However, Chen et al. showed that ICI

therapy (anti-cytotoxic T-lymphocyte antigen 4,CTLA-4) can

generate antitumor immune responses in GBM, which can
FIGURE 4

Interaction between gut microbiota and GBM (There are three ways in which gut microbiota interacts with the brain. 1) Immune regulation; 2)
Directly acting through the blood-brain barrier; 3) Regulate through metabolites.).
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produce IFN-g. CD4+ T cells and phagocytic microglia promote the

phagocytic function of microglia and enhance their effectiveness in

ICI therapy. This study provides new ideas for the application of ICI

therapy in GBM (63).

Recent studies have shown that the gut microbiota plays an

important role in ICI therapy for GBM and that appropriate

microbial activity can reduce immune suppression in glioma

models and improve the response to ICI therapy. Multiple studies

have confirmed that specific gut microbiota induce the function of

CD8+ T cells through the gut-brain axis to enhance the efficacy of

ICIs. For example, melanoma patients with a higher relative

abundance of gut microbiota show increased antigen presentation,

improved CD4+ and CD8+ T cell function in the peripheral blood

and TME, and enhanced antitumor effects of ICIs (64). Another

study showed that Firmicutes and Actinobacteria are abundant in

FMT and PD-1 blockade responses. The combination of FMT and

PD-1 blockade stimulates mucosal-associated invariant T and CD56

+CD8+ T cells in peripheral bloodmononuclear cells and upregulates

the expression of human leukocyte antigen class II genes CD74 and

granzyme K on CD8+ T cells at the tumor site to improve the

therapeutic effect of ICIs (65).

Inosine, a metabolic product of the intestinal microbiota, can

significantly enhance the ability of tumor cells to present tumor

antigens. Therefore, cytotoxic immune cells can easily recognize and

kill tumor cells, thereby exerting antitumor effects (66). Further

mechanistic studies have shown that in inosine-treated tumor cells,

IFN-g and TNF-a significantly increased the activation of signaling

pathways. The cytotoxicity of tumor-specific T and NK cells can be

activated by promoting the release of perforin and granzyme, and

IFN-g can enhance antigen presentation and promote the antitumor

effect mediated by inosine. Inosine also enhances the inherent

immunogenicity of tumors by directly binding and inhibiting the

ubiquitin-activating enzyme, ubiquitin-like modifier activating

enzyme 6, rendering tumor cells sensitive to T cell-mediated

cytotoxicity. Additionally, inosine can enhance the efficacy of ICIs

by acting on adenosine 2A receptors on T lymphocytes (67–69).

Furthermore, SCFAs can exert multiple effects through the gut-

brain axis, including the enhancement of ICIs. The SCFAs

propionic acid activates the cell cycle inhibitor p21 through G

protein-coupled receptor 43 and downregulates apoptosis inhibitor

protein, inhibiting cancer cell proliferation, inducing cell apoptosis,

and enhancing the antitumor effect of ICIs (55). SCFAs can inhibit

DNA binding 2-dependent IL-12 signaling; promote the antitumor

cytotoxicity of CD8 T cells; provide energy to immune cells; regulate

glycolysis, the tricarboxylic acid (TCA) cycle, and fatty acid

oxidation of antitumor effector cells; and improve the efficiency of

ICIs (70).
7 Dilemma of the gut microbiota in
the treatment of GBM

Basic research has shown that gut microbiota plays a certain

role in the treatment of GBM, but it also faces many dilemmas,

including the complexity and individual differences of gut

microbiota, unclear mechanisms of action, limitations of
Frontiers in Immunology 06
intervention methods, drug interactions, clinical translation

difficulties, drug resistance and recurrence issues, and challenges

of interdisciplinary collaboration and integration (71–73).

The complexity and individual differences of gut microbiota:

Gut microbiota is a complex ecosystem composed of trillions of

microorganisms, and its composition and function vary from

individual to individual, influenced by various factors such as

genetic background, dietary habits, living environment, and

disease status (71). This highly individualized characteristic poses

a challenge in designing GBM treatment strategies based on gut

microbiota intervention, requiring precise identification of specific

bacterial species or microbiota structures that have a critical impact

on treatment outcomes, and considering how to achieve

personalized adjustments among different patients (12).

The mechanism of action of gut microbiota is not yet fully

understood: Although previous studies have shown that gut

microbiota can indirectly affect the occurrence, development, and

treatment response of GBM by regulating the immune system,

affecting drug metabolism, and producing bioactive substances, the

specific details, upstream and downstream relationships, and causal

relationships of these mechanisms need to be further elucidated.

Especially in tumor ICI therapy, the interaction mechanism

between gut microbiota and ICIs is complex, and their

mechanisms of action in reshaping the TME and activating anti-

tumor immune responses still need further research (13).

Limitations of interventions for gut microbiota: Changing the

state of gut microbiota to assist GBM treatment typically involves

methods such as prebiotics, probiotics, synbiotics, and FMT.

However, the evidence for the effectiveness and safety of these

methods in GBM patients is not yet sufficient. The colonization

effect and long-term stability of probiotics are uncertain. The

selection and dosage of prebiotics require precise regulation. The

effectiveness of synbiotics depends on the synergistic effect of

multiple components and is difficult to standardize. FMT may

face difficulties in donor screening, suboptimal post-transplant

bacterial colonization, and potential risks of disease transmission.

In addition, the dynamic changes in gut microbiota may lead to

unstable intervention effects (41–43).

Interaction between gut microbiota and drugs: The gut

microbiota can metabolize certain chemotherapy drugs and

targeted drugs, changing their in vivo concentration, bioavailability,

and toxicity (74, 75). The efficacy and toxicity of chemotherapy drugs

such as temozolomide may be influenced by gut microbiota

metabolism (76). However, predicting and regulating these

interactions to optimize drug efficacy and reduce side effects

remains challenging, especially in GBM where patients typically

require multiple drug combinations, increasing the complexity of

drug microbiota interactions (77).

Clinical transformation challenges of gut microbiota: Although

basic research has revealed the potential value of gut microbiota in

GBM, translating these findings into clinical practice still faces

many challenges. This includes the need to design rigorous clinical

trials to validate the effectiveness and safety of gut microbiota

interventions, establish standardized methods for gut microbiota

detection and analysis, and address ethical, regulatory, and patient

acceptance issues.
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Drug resistance and recurrence of GBM: GBM has the

characteristics of high invasiveness, easy recurrence, and tolerance

to traditional treatment methods. Although the gut microbiota may

affect the response of tumors to treatment, it is currently unclear how

to effectively overcome the therapeutic resistance of GBM or prevent

and delay tumor recurrence by regulating the microbiota (78).

Multidisciplinary collaboration and integration: The

interdisciplinary field of gut microbiota and GBM involves

multiple disciplines such as oncology, immunology, microbiology,

pharmacology, etc., requiring close collaboration among

interdisciplin-ary experts to jointly promote research progress

and clinical applications. However, in practical operation, there

may be difficulties in disciplinary barriers, allocation of research

resources, and standardization of research methods.

Based on the above difficulties, continuous scientific research,

technological innovation, and in-depth interdisciplinary

cooperation are needed to solve these problems, in order to truly

bring survival benefits to patients with GBM through

gut microbiota.
8 Summary and perspective

The gut microbiota has a significant effect on ICI therapy for

GBM. The gut microbiota regulates the function, metabolism, and

inflammatory response of the immune system through the gut-brain

axis, affecting the efficacy and safety of ICIs for GBM. First, the gut

microbiota can affect the function of the immune system, thereby

affecting ICI therapy for GBM. The intestinal microbiota enhances

the immune system by stimulating the activation and proliferation of

immune cells, thereby improving the efficacy of ICI therapy. Second,

the gut microbiota can affect the immunemicroenvironment of GBM

by regulating the infiltration and activation of immune cells, thereby

affecting the efficacy of ICIs. The immune microenvironment refers

to the composition and state of immune cells, the matrix, and

cytokines around tumors, which play an important regulatory role

in tumor growth and spread. Third, gut microbiota can affect the

nutritional and metabolic status of patients with GBM, thereby

affecting the efficacy of ICI therapy. Intestinal microbiota

participate in nutritional and metabolic processes in the human

body, including vitamin synthesis and amino acid metabolism. The

nutritional and metabolic statuses of patients can be improved by

regulating the composition and activity of the gut microbiota, thereby

enhancing the therapeutic effects of ICIs.

The regulation of the gut microbiota through the gut-brain axis

in ICI therapy for GBM is a complex process that requires further

research to gain a deeper understanding of its specific mechanisms
Frontiers in Immunology 07
and effects. Currently, relatively little research is available on the

mechanism and efficacy of the gut microbiota in GBM, and further

research is required to verify its specific effects and potential

therapeutic value. Simultaneously, neural therapy targeting the

gut microbiota must consider individual differences and

safety issues.
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