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Abstract: Tumors of the central nervous system (CNS) are severe and refractory diseases with poor
prognosis, especially for patients with malignant glioblastoma and brain metastases. Currently,
numerous studies have explored the potential role of bacteria and intestinal flora in tumor devel-
opment and treatment. Bacteria can penetrate the blood–brain barrier (BBB), targeting the hypoxic
microenvironment at the core of tumors, thereby eliminating tumors and activating both the innate
and adaptive immune responses, rendering them promising therapeutic agents for CNS tumors. In
addition, engineered bacteria and derivatives, such as bacterial membrane proteins and bacterial
spores, can also be used as good candidate carriers for targeted drug delivery. Moreover, the intestinal
flora can regulate CNS tumor metabolism and influence the immune microenvironment through
the “gut–brain axis”. Therefore, bacterial anti-tumor therapy, engineered bacterial targeted drug
delivery, and intervention of the intestinal flora provide therapeutic modalities for the treatment of
CNS tumors. In this paper, we performed a comprehensive review of the mechanisms and therapeutic
practices of bacterial therapy for CNS tumors and discussed potential future research directions in
this field.

Keywords: central nervous system tumor; bacteria; tumor microenvironment; targeted delivery;
intestinal flora

1. Introduction

Tumors of the central nervous system (CNS) are a major cause of cancer-related
mortality, affecting approximately 23 per 100,000 people [1]. Currently, brain tumors are
primarily treated with surgery followed by chemoradiotherapy. However, the prognosis
remains unfavorable with a high recurrence rate, especially for malignant tumors such
as glioblastoma (GBM) [1]. While recent advances in targeted therapies, such as anti-
EGFR and CAR-T, have shown promise for patients with brain tumors, the effectiveness of
these treatments is often hindered by the challenges of penetrating physical barriers and
managing immune-related adverse effects [2].

In 1813, Vautier et al. documented an unexpected phenomenon: the atypical tumor
regression in cancer patients afflicted with gas gangrene due to Clostridium perfringens
infection [3]. In 1866, W. Busch et al. observed that cancer patients experiencing erysipelas,
a streptococcal skin infection, occasionally exhibited tumor regression. His pioneering
efforts led to the first recorded successful application of Streptococcus pyogenes as a bac-
terial preparation for tumor therapy [4]. In 1891, William B. Coley noted an analogous
occurrence in malignant sarcomas, prompting the development of a therapeutic bacterial
vaccine known as Coley’s toxin. This concoction, comprising heat-inactivated streptococcal
and Serratia marcescens organisms, demonstrated preliminary yet promising efficacy in the
management of sarcomas and lymphomas during that era [5]. However, a period of dor-
mancy occurred due to the elusive nature of its mechanism and safety concerns. In 1976,
bacterial therapy in cancer treatment resurged when researchers explored the use of live
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bacterial agents. This was exemplified by the application of the bacille Calmette-Guérin
vaccine as a therapeutic strategy for bladder cancer, harnessing the potential of Mycobac-
terium bovis in tumor management [6,7]. Since then, an expanding corpus of research has
compellingly demonstrated the therapeutic potential of bacterial interventions in com-
bating neoplastic diseases. Notably, this promising trend extends to the management of
CNS malignancies, challenging conventional paradigms and opening new avenues for
cancer therapy [8]. Utilizing gene editing technologies and the fundamentals of tumor
immunology, researchers have evaluated the therapeutic potential of live bacteria for the
management of CNS tumors, with a particular focus on their ability to deliver agents
with precision [9]. Additionally, specific microbial communities in the gut ecosystem have
been identified to regulate CNS tumor occurrence and progression through metabolic and
immune pathways, which are referred to as the “gut–brain axis” [10].

Therefore, the present microbe-based therapeutic strategies for treating brain neo-
plasms are characterized by three principal modalities [11], including the direct inoculation
of bacteria into the tumor milieu to achieve targeted cytotoxicity, the exploitation of bac-
teria’s intrinsic tropism for hypoxic tumor niches to facilitate the delivery of therapeutic
compounds, thereby inducing indirect tumor cell demise, and the manipulation of the
gut microbiota to enhance the efficacy of brain tumor therapies. This review discusses
the critical roles of bacteria in the treatment of CNS tumors from the three perspectives
mentioned above and proposes potential future directions.

2. Bacterium-Mediated Anti-Tumor Mechanisms and Their Application in CNS Tumors

Bacteria primarily exert their anti-tumor activity in CNS tumors by indirectly modu-
lating the immune system, as confirmed in various tumor models [12]. Researchers have
made extensive efforts to introduce attenuated bacteria or their components into the site of
CNS tumors [13] to evaluate their anti-tumor effects and explore novel opportunities for
brain tumor patients.

2.1. Mechanisms Underpinning Bacterial Anti-Tumor Efficacy

Bacteria exert their antineoplastic influence predominantly through the modulation
of tumor-associated immune processes. The antigens and metabolites derived from these
microorganisms can activate immune cells, thereby enhancing the body’s immune surveil-
lance against neoplastic growth. Additionally, the fine-tuning of bacterial diversity is a
critical component in the repertoire of bacterial-mediated antineoplastic activities, offering
a nuanced approach to cancer therapy.

2.1.1. Bacterial Activation of Immune Cells for Anti-Tumor Response

Bacteria are instrumental in fine-tuning the host’s anti-tumor immune response by
directly activating immune cells and indirectly influencing the metabolic landscape of the
tumor microenvironment (TME). For instance, Bifidobacterium species have been shown to
enhance the immune response by increasing the populations of CD4+ T cells, CD8+ T cells,
and natural killer (NK) cells. This enhancement is further characterized by increased pro-
duction of interferon-gamma (IFN-γ) and interleukin-2 (IL-2) within the TME, concurrent
with downregulation of tumor necrosis factor-alpha (TNF-α) and interleukin-10 (IL-10),
thereby fortifying the host’s anti-tumor defenses [14]. In a parallel study, the bacterium
Helicobacter hepaticus (Hhep) was found to amplify the anti-tumor immune response by
inducing the proliferation of Hhep-specific T follicular helper (Tfh) cells and fostering
the development of tertiary lymphoid structures (TLSs), which in turn suppresses tumor
growth [15]. Beyond activating immune cells, bacteria also alter the TME’s metabolic
profile, thereby sculpting the host’s immune response and the trajectory of tumor progres-
sion. Notably, certain gut commensal bacteria, such as Ruminococcus gnavus and Blautia
producta, can restore the immune surveillance capabilities of CD8+ T cells by degrading
lyso-glycerophospholipids within the TME [16], indirectly bolstering the host’s anti-tumor
immune response through metabolic intervention.
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2.1.2. Bacterial Production of Metabolites for Tumor Suppression

The metabolites produced by bacteria emerge as important contributors to tumor
suppression. Studies have uncovered that certain bacterial peptides can be presented by
the human leukocyte antigen (HLA) molecules on glioblastoma cells, effectively engaging
tumor-infiltrating T cells (TILs) and peripheral blood memory cells in the specific recogni-
tion and targeting of tumor cells [17]. Moreover, bacteria are capable of generating cyclic
di-AMP, a potent stimulator of the interferon gene, which in turn activates monocytes
within the tumor to produce type I interferons (IFNs). This cascade enhances the acti-
vation and functionality of immune cells, including NK cells and dendritic cells (DCs),
thereby amplifying the body’s anti-tumor immune response [18]. In a groundbreaking
discovery, Kovács P et al. identified that lithocholic acid, a bacterial metabolite, activates
Takeda G protein-coupled receptor 5 (TGR5) and constitutive androstane receptor (CAR)
by modulating the expression of nuclear factor-2 (NRF2) and Kelch-like ECH associating
protein 1 (KEAP1). This activation leads to increased oxidative stress in tumor cells, which
can suppress tumorigenesis [19]. Collectively, these findings underscore the multifaceted
and profound impact of bacterial production of metabolites on the inhibition of tumor
occurrence and progression.

2.1.3. The Anti-Tumor Effects of Changes in Bacterial Diversity

Bacteria, as integral constituents of microbial communities within host tissues, can
profoundly influence the immune response against tumors through shifts in their com-
position. Research has consistently shown that augmented alpha diversity within the
tumor microbiota correlates with improved patient outcomes and an enhanced anti-tumor
immune profile. In individuals with an adverse prognosis, the tumor microbiota is often
dominated by Clostridium and Enterobacteriaceae, whereas a more favorable prognosis is
associated with an abundance of Proteus genus and Streptomyces [20]. This suggests that the
spectrum of bacterial diversity can directly modulate the immune landscape against cancer.
Higher bacterial diversity within tumors has been linked to an upsurge in the presence of
immune-activating CD8+ T cells and a reduction in immunosuppressive elements such as
regulatory T cells and myeloid-derived suppressor cells. Furthermore, the diversity of the
gut microbiota exerts a significant influence on the tumor microbiota’s composition. By
strategically manipulating the gut microbiota’s diversity, it is conceivable to bolster the
anti-tumor immune response, regulate the tumor microbiota’s makeup, and consequently
impede tumor progression [20]. Thus, the modulation of microbiota structure emerges as a
potential mechanism through which bacteria can exert their antineoplastic effects.

To date, the interplay between CNS tumors and bacteria remains an underexplored
frontier in research. Brain malignancies, including gliomas, are characterized by a com-
plex tumor microenvironment populated by a diverse array of immune cells, cytokines,
and tumor cells. By drawing parallels and applying analogous research methodologies,
there is potential to uncover more profound insights into the mechanisms governing
these interactions.

2.2. Bacteria-Mediated Anti-Tumor Therapy Strategies in CNS Tumors

Recognizing the anti-tumor properties of bacteria, researchers have dedicated consid-
erable effort to integrating attenuated bacteria and their components into the CNS tumor
microenvironment. This approach aims to explore their potential for both directly killing
tumors and indirectly facilitating tumor elimination by activating immune cells. These
efforts involve the strategic injection of engineered bacteria or bacterial fractions.

2.2.1. Attenuated Bacteria for CNS Tumor Treatment

S.t-DpGFlaB is an engineered Salmonella typhimurium with the expression of heterol-
ogous Vibrio vulnificus flagellin B (FlaB) and the inability to synthesize guanosine 50-
diphosphate-30-diphosphate (DppGpp S) [21,22]. The absence of DppGpp S inhibited en-
dotoxin expression and reduced toxicity. The FlaB protein can recruit neutrophils and
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repolarize M2 macrophages into M1 macrophages [23]. Mi Z et al. found the injected
S.t-DpGFlaB could bind to the blood–brain barrier (BBB) endothelial cell line GRP94 with
the outer membrane protein A (OmpA), transit the BBB, and actively target the glioma in
mice [8]. Moreover, S.t-DpGFlaB could reshape the immune microenvironment in glioma
by releasing the FlaB proteins, recruiting immune cells, and repolarizing macrophages [13].
Huang J et al. employed precise genetic engineering techniques to modify the expression
of diaminopimelic acid (DAP), an essential protein synthesized in the cell wall of Salmonella
typhimurium, producing another strain named Salmonella YB1 [24]. In this new strain, the
gene responsible for DAP expression is under the control of the pepT promoter, which is acti-
vated under hypoxic conditions. This regulation ensures that DAP is expressed exclusively
in hypoxic environments, thereby promoting the proliferation of Salmonella typhimurium
within the hypoxic tumor microenvironment while avoiding toxicity in oxygen-rich tis-
sues [25]. This characteristic enables Salmonella YB1 to effectively target tumors under
hypoxic conditions and selectively grow at these sites, as demonstrated by its proven
efficacy against breast cancer [24].In a study involving mice harboring human glioblastoma
U87 MG, intravenous administration of Salmonella YB1 was observed to significantly inhibit
glioblastoma growth and showed a lower incidence of systemic toxicity in the tumor-
bearing mice [25]. Simultaneously, Salmonella YB1 [24] was reported to decrease glutathione
peroxidase-4 expression, induce mitochondrial atrophy, and increase malondialdehyde
and ROS production in glioma cells, leading to iron death in glioma cells [25]. Moreover,
the growth-inhibitory effect induced by Salmonella YB1 can be prominently counteracted
by the iron death inhibitor Fer-1, providing further evidence that it induces glioblastoma
cell growth inhibition, at least partially, via the iron death mechanism. This discovery
opens up new avenues for research, suggesting that synergistic anti-tumor effects could be
realized by combining Salmonella YB1 with agents like the iron death inducer Erastin or
other therapeutic approaches that facilitate iron death, such as sorafenib and photodynamic
therapy. Therefore, engineered bacteria, such as Salmonella typhimurium, can directly inhibit
CNS tumors or indirectly suppress their growth by activating immune cells, showcasing
broad prospects for application in the field of brain tumor treatment, especially gliomas.

2.2.2. Anti-Tumor Effects of Bacterial Components

Bacterial components play a significant role in the field of eradicating brain tumors.
Bacterial toxins are toxic proteins produced by bacteria that can promote the invasion of
bacteria into the host, establish the ecological niche required for bacterial survival, and
regulate the cell cycle, protein synthesis, and cytoskeleton [26]. The promising aspect
lies in the ability of bacterial toxins to exert a lethal effect on host cells through specific
invasion mechanisms and potent toxicity, making them a potential drug for targeting brain
tumor cells.

Cytotoxic necrotizing factor 1 (CNF1), a bacterial virulence factor derived from E.
coli, can activate Rho GTPases and inhibit GTP hydrolysis, leading to cytotoxicity [27].
Vannini et al. demonstrated that CNF1 can inhibit the proliferation and migration of
glioblastoma cells and promote their senescence and death in vitro. Moreover, in in vivo
experiments, CNF1 extended the survival of tumor-bearing mice, surpassing the survival of
the Temozolomide (TMZ)-treated group [28]. Interestingly, CNF1 was also able to maintain
the structure and function of peritumoral neurons [29]. For example, the physiological
characteristics of peritumoral pyramidal neurons and the length of neural dendrites were
improved by CNF1, preserving the function of cortical networks [29]. However, the
presence of the BBB necessitates intracranial injection of CNF1, thereby restricting its
broader application. Vannini et al. subsequently designed and constructed a chimeric
protein, namely CTX-CNF1 [30]. Chlorotoxin (CTX) is a 36-amino acid peptide [31] derived
from the venom of the scorpion Leiurus quinquestriatus that is capable of crossing through the
BBB and targeting gliomas. This chimeric protein system, when administered systemically,
achieves precise targeting of glioblastoma and utilizes CNF1 to exert its anti-tumor effects.
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Therefore, the CTX-CNF1 protein chimeric system is an ideal candidate for the biotherapy
of CNS tumors, despite the need for further safety evaluation.

Bacteriocins synthesized by bacterial ribosomes have also been found to exhibit in-
hibitory effects on glioblastoma. Reports have shown that Moxidectin (MOX), a bacteriocin
derived from Streptomyces cyanogriseus, can inhibit gliomas by activating the caspase-
3/caspase-9 cascade and inhibiting cyclinD1, inducing cell apoptosis, and blocking the
cell cycle at the G0/G1 phase [32]. Moreover, a recent study found that MOX promotes
autophagy in glioma cells by inhibiting the AKT/mTOR signaling pathway in a dose-
dependent manner [33]. The effect of MOX-induced apoptosis can be attenuated by
autophagy inhibitors, demonstrating that MOX-induced autophagy can also increase
apoptosis. Another bacteriocin, ivermectin, which has a similar structure to MOX, also
has anti-tumor effects. Researchers reported that ivermectin promotes apoptosis in human
brain microvascular endothelial cells to inhibit tumor angiogenesis, inhibits mitochondrial
respiration to induce mitochondrial dysfunction, and promotes oxidative stress to inhibit
glioma growth in vitro and in vivo [34]. Similarly, doramectin, which belongs to the aver-
mectin family along with ivermectin, can trigger the caspase cascade via the endogenous
apoptotic pathway and induce mitochondrial damage to generate ROS, which further
induces cell necrosis via the RIPK1/RIPK3/MLKL signaling axis [35]. In conclusion, bac-
teriocins tend to inhibit glioma growth through multiple pathways, including apoptosis,
autophagy, and necrosis, which shows great potential in anti-tumor applications.

Given the evidence, the use of attenuated bacterial strains and their derivatives shows
great promise in cancer therapy, especially for brain tumors. These agents have been
shown to elicit a robust anti-tumor response by activating key cellular processes such
as apoptosis, autophagy, and ferroptosis. Despite these promising findings, additional
preclinical studies must be conducted to thoroughly assess the safety profile of such
innovative therapeutic approaches.

3. Bacterium-Mediated Drug Delivery in the Treatment of CNS Tumors
3.1. Advantages of Bacteria and Bacterial Components as Delivery Vectors
3.1.1. Bacterial Capacity for Penetrating the BBB

A key advantage of employing bacteria as drug carriers is their inherent capacity
to penetrate the BBB, an obstacle that frequently hinders the delivery of conventional
pharmaceuticals to CNS tumor sites. Recent studies have elucidated various pathways
through which bacteria and their constituents can penetrate the BBB, including intracellular
transport, paracellular diffusion, and co-transport mechanisms [36,37]. For instance, Neisse-
ria meningitidis has been shown to harness the Opca protein to engage with fibronectin on
brain microvascular endothelial cells (BMECs), thereby gaining entry into the brain [38].
Similarly, Escherichia coli can exploit the membrane protein GRP94 on BMECs, utilizing
the paracellular route to cross the BBB [39]. A particularly intriguing bacterial compo-
nent with BBB-crossing potential is the outer membrane vesicle (OMV). These vesicles,
containing lipopolysaccharide (LPS), are specifically recognized by toll-like receptors on
neutrophils [40], leading to their engulfment. The neutrophil–OMV complex then actively
navigates toward the endothelial junctions, employing a series of rolling, adhesion, and
crawling movements, which ultimately enable their passage across the BBB [41]. Conse-
quently, the use of bacteria and their components as drug carriers presents a promising
avenue for the targeted delivery of therapeutics to the brain, circumventing the impedi-
ments posed by the BBB and offering new hope for the treatment of CNS malignancies.

3.1.2. Harnessing the Precision of TME Targeting

Bacteria possess an extraordinary ability to selectively target the immunosuppressive
microenvironment of tumors [42]. This targeting capability is particularly evident in certain
anaerobic bacteria and their derivatives. For instance, facultative anaerobic bacteria like
Salmonella typhimurium strain VNP20009 and Salmonella typhimurium exhibit a preference
for the hypoxic core of tumors, enabling them to selectively colonize the tumor microen-
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vironment following systemic injection [43,44]. Similarly, anaerobic C. novyi NT spores
actively seek out the hypoxic environment within tumors [45]. Furthermore, Salmonella
typhimurium A1 has been observed to be confined to necrotic areas of the tumor, where
abundant nutrients support bacterial growth and proliferation [46]. Moreover, the immuno-
suppressive microenvironment of tumors, which is characterized as an immune-privileged
site, protects bacteria against immune cell clearance, a process that occurs in normal tissues.
This feature endows bacteria with enhanced specificity and targeting capabilities within
the tumor microenvironment [47]. In the context of glioblastoma tumors, the hypoxic
and immunosuppressive regions, typically located in the highly tumorigenic core, play a
crucial role [48]. Therefore, bacteria-mediated targeted therapy holds immense potential
for combating malignant brain tumors [47].

3.1.3. Penetration of Bacteria into the Deep Regions of Tumors

The motility conferred by bacterial flagella facilitates the penetration of bacterial vec-
tors into the neoplastic microenvironment, allowing access to quiescent cell populations
within tumors that are often refractory to traditional chemotherapeutic agents [49]. This
innate capability of bacteria presents a promising route for the targeted delivery of ther-
apeutics to the core regions of solid tumors, where conventional treatments frequently
fall short. Intriguingly, bacterial flagella not only enhance the penetration of therapeutics
into the tumor’s interior but also adeptly capture tumor antigens, ferrying them to the
periphery. This crucial action triggers the activation and maturation of DCs, subsequently
bolstering immune responses specific to the tumor antigens [50], thus opening new avenues
for immunotherapeutic strategies.

3.1.4. Biocompatibility of Attenuated Bacteria

Although bacteria are known to provoke adverse immune reactions, their potential
as therapeutic agents is enhanced through the precise inactivation or genetic excision of
virulence factors, thereby neutralizing their toxicity [51]. Furthermore, the employment of
indigenous, symbiotic bacteria such as Bifidobacterium bifidum [52] offers a novel approach
to compound delivery. In this context, the utilization of attenuated, non-pathogenic bacteria
emerges as a viable biocompatible platform for drug delivery, expanding the horizons of
microbial-based therapeutics.

3.1.5. Genetic Programmability and Modifiability by Biological and Chemical Methods
of Bacteria

The benefits of using bacteria as drug carriers arise from their versatility, including the
application of diverse techniques such as genetic engineering, bioconjugation, utilization
of bacterial outer membrane vesicles, and encapsulation through bacterial ghost technol-
ogy [53–55]. First, bacteria can be genetically engineered through plasmid introduction to
express specific anti-tumor peptides and proteins, enabling them to bind as ligand-specific
receptors overexpressed on tumor surfaces. This approach facilitates the loading of gene
drugs [56]. Additionally, drugs can be bioconjugated to bacteria by chemically attaching
them to the bacterial surface using covalent linkages. The presence of free thiol and amine
groups in the bacterial cell wall allows for effective surface modification and drug delivery
to tumor sites [57]. Moreover, the incorporation of polymers like polydopamine, which
acts as a bridge between bacteria and drugs, enables drug attachment onto the bacterial
surface [58]. Notably, nanoscale bacterial outer membrane vesicles and bacterial ghosts,
which are inactive hollowed-out bacteria, offer alternative strategies for drug encapsu-
lation [59]. Various approaches—including physical ultrasound methods, non-covalent
binding, surface modification, self-assembly, and membrane fusion strategies—facilitate
drug entry into these carriers [59,60]. Collectively, these diverse bacterial loading methods,
which integrate chemistry, biology, materials science, and engineering, underscore the
immense potential of bacteria as versatile and modifiable drug delivery platforms.
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3.2. Bacteria and Their Components as Drug Delivery Platforms for the Treatment of CNS Tumors

The presence of the BBB and the tumor-specific microenvironment are the main
reasons for the poor efficacy of chemotherapeutic drugs for CNS tumors. Bacteria and
their components can not only target the BBB and brain tumor-specific acidic hypoxic
microenvironments according to their biological features but also carry chemotherapeutic
drugs, photosensitizers, or other drugs to achieve tumor-targeted delivery [61]. The
following bacteria and their derivatives were used as delivery platforms: bacteria, bacterial
outer membrane vesicles (OMVs), bacterial membrane proteins, bacterial spores, and
bacterial toxins.

3.2.1. Bacteria

Bacteria can be used as a drug delivery system for wrapping anti-tumor drugs to
form a bacteria–drug capsule. Bacteria can pass through the BBB via phagocytosis, infil-
tration of endothelial cells, or the paracellular pathway [62,63]. Sun R et al. constructed
a nanosystem containing glucose polymers and photosensitive indocyanine green (ICG)
silicon nanoparticles (GPICG-SiNPs) [11]. GPICG-SiNPs can be endocytosed by E. coli and
Salmonella typhimurium with the bacteria-specific ATP-binding cassette (ABC) transporter
on the surface [64,65]. This bacteria–drug capsule system, named Trojan bacteria, can
penetrate the BBB and target GBMs (Figure 1). Under irradiation with an 808 nm laser,
photosensitive ICG is activated to destroy bacteria and burn the tumors. Interestingly,
the antigens released from bacteria and tumors can further activate innate and adaptive
immunity to promote phagocytosis and infiltration of CD8+ T cells to kill the tumors,
prolonging the survival of mice with GBM in situ [11].
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Figure 1. Photothermal immunotherapy of brain tumors mediated by attenuated bacteria: (a) bacteria
form the Trojan Bacterial System by endocytosis of nanoparticles via the ABC transporter; (b) the
Trojan Bacterial System crosses the BBB and targets brain tumors, where bacterial lysis triggers an
immune response under exogenous near-infrared light irradiation. Reproduced with permission [11].
Copyright 2022, Springer Nature. Abbreviations: SiNP, silicon nanoparticle; GP, glucose polymer;
ICG, indocyanine green; Trojan EC, Trojan Escherichia coli 25922; ABC, ATP-binding cassette; Trojan
VNP, Trojan Salmonella typhimurium VNP20009; GBM, glioblastoma; BBB, blood–brain barrier; iDC,
immature dendritic cell; mDC, mature dendritic cell; NK cells, natural killer cells.

In addition, bacteria can also carry gene-based medicines, such as plasmids, as drug
delivery vectors. Wen M et al. utilized ppGpp-deficient Salmonella typhimurium to deliver a
plasmid-expressing tissue inhibitor of metalloproteinases 2 (TIMP-2) to gliomas. Induced
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by L-arabinose, Salmonella typhimurium was able to express TIMP-2, which can inhibit the
expression of invasion-associated protein matrix metallopeptidase 2 [56]. This system can
inhibit the growth of glioma cells and significantly prolong the survival of U87MG/Fluc-
bearing nude mouse [66]. Attenuated Salmonella typhimurium could colonize, accumulate,
and reproduce in the microenvironment for 14 days and is undetectable in other normal
tissues, indicating that attenuated Salmonella typhimurium is a safe and efficient vector
targeting tumors. Delivery of gene-based medicine has always been a challenge in the
clinical practice of gene therapy. Attenuated bacteria may be a potential vector for gene-
based drugs, such as small interfering RNA, short hairpin RNA, and antisense nucleotides.
in after the specific treatments

3.2.2. Outer Membrane Vesicles

OMVs secreted by bacteria are spherical carriers that possess a bilayer lipid membrane.
They are of a nanometer scale and can be used as drug-carrying vehicles [67,68]. The toxicity
of chemotherapeutic agents can be reduced by the encapsulation of OMVs. Moreover,
neutrophils possess the innate ability to selectively recognize and phagocytose OMVs
due to their bacterial antigens and pathogen-associated molecular pattern characteristics,
thereby protecting the body from the toxic effects of bacterial invasion [69,70]. Mi Z
et al. utilized OMVs produced by S.t-DpGFlaB [21] to encapsulate doxorubicin (DOX) to
construct a drug delivery nanosystem, OMVs/DOX, that could target glioma [13]. OMVs
are emerging as promising delivery vehicles, particularly for diseases characterized by
inflammatory environments. Leveraging the power of immune cells, OMVs can home in
on affected areas, thereby minimizing the systemic toxicity associated with chemotherapy.

3.2.3. Bacterial Membrane Proteins

Bacterial-detoxified membrane proteins, which are highly invasive, are potential
candidates for drug delivery. E. coli can attach to the BBB endothelial cells and cross
the BBB with its outer membrane protein [36], which can be a candidate for brain drug
delivery carrier by the detoxification of lipopolysaccharide (LPS). Embelin (EMB) can
inhibit the secretion of neuroserpin in brain metastases [71]. Zhou M et al. encapsulated
EMB by detoxifying the outer membrane protein of E. coli (Omp@EMB) [72], which initiated
cytophagy through activation of the membrane protein GRP94, facilitating the passage
of the BBB, entry into brain metastatic breast cancer cells (BMBCCs), and releasing EMB
(Figure 2). Moreover, this system could also restore fibrinolytic activity by inactivating
the cell adhesion molecule L1 (L1CAM), which would contribute to inhibiting tumor
angiogenesis and inducing apoptosis in BMBCCs [72].

It has been shown that Neisseria meningitidis can cross the BBB through the Opca
protein [36,73,74], which can recognize fibronectin in microvascular endothelial cells in
the brain. However, the toxicity of Neisseria meningitidis limits its application. Researchers
extracted and modified the Opca protein with MnO2 and subsequently wrapped it in the
chemotherapeutic agent methotrexate (MTX) to form a new nanosystem, MTX@MnO2-
Opca [38], mimicking the invasion of Neisseria meningitidis into the brain. This system was
reported to penetrate the BBB, accumulate, and release MTX in gliomas. In addition, MnO2
catalyzed H2O2 in the TME, releasing O2 to alleviate the hypoxic environment. It also
serves as a sensitizer for MTX to reverse drug resistance (Figure 3).
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MTX to form a bionic nanotherapeutic system; (b) The bionic nanosystem crosses the BBB, tar-
gets brain tumors, and uses the catalytic effect of MnO2 to alleviate the hypoxic environment
inside the tumor and reverse the tumor’s resistance to MTX. Reproduced with permission [38].
Copyright 2022, Wiley-VCH. Abbreviations: MTX, methotrexate; MnO2, manganese dioxide; Opca,
outer membrane invasion protein; EDC/NHS, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-
hydroxysuccinimide; BBB, blood–brain barrier; H2O2, hydrogen peroxide.

3.2.4. Bacterial Spores

Bacterial spores are a promising drug delivery system that can induce anti-tumor
immunity and target tumors. Spores are inactive bacteria that do not function in oxygen-
rich areas but proliferate in anoxic environments [75,76]. Solid brain tumors contain hypoxic
areas, which are immunosuppressive microenvironments that are resistant to chemotherapy
and targeted therapy [77,78].

Currently, the most widely studied spore is C. novyi NT [79], which is motile and
sensitive to hypoxia signals [80]. Researchers knocked out the α toxin gene of C. novyi NT
to form an attenuated, spore-composed Gram-positive strain [79]. Research has shown
that systematic injection of C. novyi NT into mice leads to spore production and extensive
proliferation within the tumor, resulting in oncolysis and activation of the body’s immune
response. Therefore, researchers have applied spores for the delivery of drugs [81–83].
Zhu L et al. coated C. novyi NT with the functional peptide melittin hydrogel scaffold
and loaded them with metformin to form MRM-coated spore nanoparticles [84]. This
nanosystem can actively target and penetrate the hypoxic and immunosuppressive mi-
croenvironments of GBM. In addition, from a mechanistic perspective, bacterial spores
play the role of an “immune cells trainer” in the immune microenvironment of GBM [85],
promoting DC maturation, M1 polarization of macrophages, activation of CTLs and mem-
ory T cells, as well as stimulating IFN-γ secretion, making significant contributions to
innate and adaptive immune anti-tumor responses. Therefore, in targeted therapy for CNS
tumors, bacteria spores act not only as the “navigations” for targeting tumors but also
as the “bombs” for eliminating tumors, which show favorable prospects in the targeted
therapy of CNS tumors.

3.2.5. Bacterial Toxins

Bacterial toxins can serve as effective ligands for the precise targeting of tumors and
the BBB, facilitating the delivery of therapeutic drugs directly to the tumor site. Cholera
Toxin Subunit B (CTB) is a component of the cholera toxin deficient in virulence. The
ganglioside GM1 is a glycosphingolipid expressed in gliomas and cerebrovascular endothe-
lial cells. It also serves as an extracellular receptor that can be targeted [86]. Guan J et al.
constructed a poly (lactic-co-glycolic acid)-coated nanosystem of CTB and paclitaxel (PTX)
(CTB-NP/PTX), which was found to target the BBB and gliomas, ablating tumor neovascu-
larization and releasing PTX to eliminate gliomas [87].

The engineered bacterial delivery system (EBDS) presents a promising and innovative
approach for treating brain tumors, with the potential to become a future treatment option.
By leveraging the unique capabilities of bacteria and their components, this system can
precisely target and deliver drugs to the site of the brain tumor, offering a novel therapeutic
strategy. This approach addresses certain limitations associated with conventional drugs by
circumventing the BBB and selectively homing in on the brain tumor, thereby minimizing
systemic toxicity and treatment resistance. However, the EBDS still faces several challenges
that need to be addressed. Ensuring the safety and efficacy of the system is a paramount
concern. Additionally, the development and production of this system pose technological
and cost-related challenges that warrant attention. As technological advancements and clin-
ical insights deepen, the EBDS is anticipated to significantly improve treatment outcomes
for brain tumor patients, paving the way for exciting new avenues in brain tumor therapy.
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4. Gut Bacteria and CNS Tumors

Gut bacteria mainly consist of Firmicutes and Bacteroidetes phyla [88]. They are influ-
enced by diet, lifestyle, and drugs. Like the genetic locus, the intestinal flora of each indi-
vidual is unique and easily editable. The development of fecal microbiota transplantation
(FMT) and engineered bacteria has made it possible to artificially edit the intestinal flora,
leading to novel therapies for various diseases. Gut bacteria communicate bi-directionally
with the brain via the gut–brain axis [89], interfering with cognition [90] and influencing the
development of nervous system diseases including Parkinson’s disease (PD), Alzheimer’s
disease (AD) [91–93], and the progression of intracranial tumors [94,95]. Gut bacteria
influence the progression and metastasis of intracranial tumors by regulating metabolism
and TME. In this section, we summarize the mechanisms by which gut bacteria affect CNS
tumors and their potential therapeutic perspectives.

4.1. Gut Bacteria and Tumor Progression

In the intricate dance of cellular transformation, brain tumors orchestrate a metabolic
symphony that facilitates their unbridled proliferation [96]. Gut bacteria could profoundly
influence the body’s metabolism and modulate the growth and invasiveness of brain
tumors through the metabolic pathways [10,97–101], which are summarized below. We also
delved into the role of bacterial exosomes in tumorgenesis and the intriguing phenomenon
of reverse causality.

4.1.1. Short-Chain Fatty Acids

Short-chain fatty acids (SCFAs), which include butyrate, propionate, and acetate, are
volatile fatty acids with straight or branched chains of up to five or six carbons and are
primarily produced by gut bacteria through the fermentation of food [102]. Firmicutes
are one of the major sources of butyrate in the gut [103], while the Anaplasma phylum
produces mainly propionate. SCFAs are important in the immune response, enhancing the
potential of CD8+ T-cells to convert into memory cells [104] and recruiting neutrophils by
modulating the cytokine CXCL1/8 [105].

Researchers reported that the proportion of Firmicutes in the gut was significantly
lower in patients with malignant brain tumors compared to those with benign tumors and
healthy controls, while the Anaplasmosis phylum was more abundant in patients with
benign brain tumors [94,97,106]. This suggests that SCFA-producing probiotics, along with
SCFAs, are valuable tools for the treatment and diagnosis of brain tumors [107]. SCFAs can
penetrate the BBB, promote the activation and maturation of microglia [108], and reverse
global defects in microglia in germ-free mice (GFs), suggesting that SCFAs produced by
bacteria are crucial in the construction of the intracranial immune microenvironment.
In addition, SCFAs, as histone deacetylase inhibitors, can reduce vascular endothelial
growth factor (VEGF) secretion and decrease angiogenesis in gliomas [109]. SCFAs can
inhibit the proliferation of glioma cells through up-regulation of the cell-cycle-regulating
proteins p21, p27, and p53 [110]. SCFAs can also reduce the invasiveness of gliomas,
despite the fact that the exact mechanism has not been elucidated [110]. SCFAs also
play a role in synergistic therapy and efficacy sensitization, including synergizing with
curcumin and quercetin to induce apoptosis in GBM cells [111,112], enhancing glioma
sensitivity to herpes simplex virus thymidine kinase (HSV-TK)/ganciclovir gene therapy
by promoting a bystander effect in glioma cells [113], and increasing the sensitivity of
glioma to radiotherapy [114]. Consequently, SCFAs and SCFA-producing probiotics are
potential targets for brain tumor therapies.

4.1.2. Arginine

Arginine is a semi-essential amino acid derived from exogenous uptake and endoge-
nous citrulline conversion mediated by argininosuccinate synthetase and argininosuccinate
lyase. Gut bacteria produce polyamines and nitric oxide (NO) through the catabolism
of arginine. Arginine metabolism is an important metabolic pathway affecting tumor
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progression [115]. In malignant tumors, DNA synthesis, energy metabolism, and protein
synthesis are more active, and the demand for exogenous arginine is increased. As a
result, malignant tumors, especially those deficient in argininosuccinate synthetase (ASS),
are especially sensitive to arginine deficiency. Arginine deprivation therapy was shown
to increase the sensitivity of GBM to radiotherapy [115,116]. Therefore, intestinal flora
are expected to kill tumors by reducing blood arginine levels. In addition, metabolites
of arginine, including polyamines and NO, can penetrate the BBB and profoundly in-
fluence the TME. Polyamines, which are highly basic compounds, promote the survival
of myeloid cells and myeloid-driven immunosuppression in the acidic and hypoxic mi-
croenvironments of gliomas [117,118]. NO in the immune microenvironment can induce
immunogenic cell death, normalize tumor vessels, and promote sensitivity to chemothera-
peutic agents [119–123]. Therefore, the strategic modulation of arginine metabolism by gut
bacteria emerges as a promising avenue for the suppression of tumor growth.

4.1.3. Tryptophan

Tryptophan, an indispensable amino acid, exists in two forms: it can be found free
or complexed with albumin, and it is the free form that can traverse the BBB [124]. Fir-
micutes, Anaplasma, Actinobacteria, Clostridia, and Aspergillus are involved in tryptophan
metabolism and produce a range of metabolites, such as kynurenine, 3-Hydroxykynurenine,
3-Hydroxyanthranilic acid, alpha-amino-beta-carboxy-muconate-epsilon-semialdehyde,
quinolinic acid, and aminomuconic semialdehyde [125,126]. Free tryptophan and its deriva-
tives can participate in TME immunoregulation and tumor proliferation, suggesting that
gut bacteria could affect TME through tryptophan metabolism. In glioma, tryptophan is
catabolized to kynurenine by tryptamine 2,3-dioxygenase (TDO), after which kynurenine
is further converted to quinolinic acid. The level of TDO is positively correlated with
the proliferation index of brain tumors, suggesting that tryptophan metabolism mediates
tumor progression [127]. Aryl hydrocarbon receptor binding with kynurenine catalyzed
by TDO could inhibit anti-tumor immune effects and reduce the infiltration of CD8+ im-
mune cells, increasing the invasiveness of gliomas. Quinolinic acid is another derivative
of tryptophan produced by gut bacteria. Despite its inability to cross the BBB, quinolinic
acid has been found to accumulate in gliomas [126]. Quinolinic acid affects the TME of
gliomas by acting on N-Methyl-D-aspartic acid (NMDA) receptors and the forkhead box O1
(Foxo1)/peroxisome proliferator-activated receptor γ (PPARγ) signaling pathway, inducing
a tumor-supportive phenotype in macrophages. The manipulation of tryptophan and its
metabolic derivatives presents a compelling target for the development of therapeutic
strategies against brain tumors.

4.1.4. Glutamate

The primary source of glutamate (Glu), a crucial neurotransmitter, is dietary intake.
Glu and its metabolic derivatives, such as α-ketoglutarate, have been implicated in the
complex process of brain tumorigenesis. α-ketoglutarate can be converted from Glu with
the regulation of bacilli in the gut [128]. The production of α-ketoglutarate induces DNA
methylation, while the DNA methylation of key genes, for example, isocitrate dehydro-
genase (IDH)1/2, leads to dysregulation of the epigenetic status of tumors, promoting
brain tumors [96]. These insights pave the way for innovative therapeutic strategies that
leverage the gut–brain axis, targeting Glu metabolism within the gut microbiome as a novel
approach to combating brain tumors.

4.1.5. Lactate

Lactate is a byproduct of aerobic glycolysis. In the gut, it is predominantly produced
by lactic acid bacteria (LAB), which are part of the transient gut microbiome derived from
food sources [129]. In glioma, a combination of Lactobacillus plantarum and Bifidobacterium
bifidum has been shown to inhibit glioma growth by suppressing the phosphoinositide 3-
kinase/serine-threonine kinase (PI3K/AKT) pathway [130]. This suggests that LAB-based
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microbial formulations or their metabolic byproducts, such as lactate, could be potential
therapeutic options for glioma treatment [131]. However, some researchers indicated
that lactate accumulated in gliomas could induce regional metabolic reprogramming and
activate oxidative metabolism to protect GBM cells from nutrient deprivation-mediated
cell death [132,133]. The contradictory roles of lactate in glioma growth currently lack a
clear explanation, highlighting the need for further research to elucidate the impact of gut
microbiota and lactate on the development of brain tumors.

4.2. Gut Bacteria and Tumor Therapy (Table 1)
4.2.1. Chemotherapeutic Drugs Can Promote a Balanced Intestinal Flora

TMZ, a first-line chemotherapeutic agent for glioma, is traditionally believed to induce
alkylated DNA lesions to combat tumors. However, emerging studies [10,95] suggest
that TMZ can also ameliorate imbalances in the intestinal flora caused by gliomas. These
restorative effects include increased diversity, the resurgence of Firmicutes, and alterations
in the metabolism of amino acids, oligopeptides, bile acids, and SCFAs in the gut. Nev-
ertheless, the current study did not directly elucidate whether the impact of TMZ on the
intestinal flora of glioma patients synergistically influences its efficacy, which represents
a potential direction for further investigation. It is plausible that TMZ could facilitate the
activation and maturation of intracranial microglial cells by inducing the reestablishment
of subpopulations, such as Firmicutes, in the intestinal flora. An increased abundance of
Firmicutes leads to increased production of metabolites, such as SCFAs, thereby combating
tumors [103].

Table 1. Examples of clinical trials in gut microbiota and cancer clinical trials on the role of gut
microbiota in cancer therapy.

Main ID Malignancy Objective Intervention Study Type

NCT05373381 High-grade glioma

To evaluate adherence to
sHFLC + KetoPhyt diet

and changes in
gut microbiota

sHFLC + KetoPhyt diet single arm, unblinded

NCT03278249 glioma To evaluate the efficacy of
the ketogenic diet

Modified Atkins
Ketogenic Diet single arm, unblinded

NCT02939378 recurrent
glioblastoma

To evaluate the efficacy
and safety of ketogenic diet

adjuvant to CRT
Ketogenic Diet parallel assignment, open label

NCT02302235 glioblastoma

To evaluate the efficacy
and safety of ketogenic diet
adjuvant to radiotherapy

and TMZ

Ketogenic Diet single arm, unblinded

NCT03838601

Locoregionally
advanced

oropharyngeal
squamous cell

carcinoma

To evaluate the safety,
tolerability, and
engraftment of

combination therapy

MET-4 plus CRT single arm, unblinded

NCT04264975 solid cancer To evaluate the effect
of FMT FMT single arm, unblinded

NCT06039644 breast cancer

To evaluate the effect of
probiotics on meliorating

the side effects of
chemotherapy in

breast cancer

Probiotic double-blind, randomized,
controlled trial

Abbreviations: CRT, chemoradiotherapy; FMT, fecal microbiota transplantation; MET-4, microbial ecosys-
tem therapeutics; sHFLC, supplemental high-fat low carbohydrate; TMZ, temozolomide. Data from
https://clinicaltrials.gov/.

https://clinicaltrials.gov/
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4.2.2. Gut Bacteria Can Enhance Sensitivity to Therapy

The gut microbiota has a substantial impact on the development of tumors. It can
either promote or suppress tumor growth through a range of metabolic functions and
interactions with immune factors and cells. Currently, one of the major challenges in the
application of chemotherapeutic drugs lies in understanding the varying effects of these
drugs on different subtypes of the same tumor cells. Determining which molecules or
characteristics are closely associated with drug sensitivity is crucial for enhancing the
efficacy of existing chemotherapy. Interestingly, several studies, particularly those fo-
cused on intracranial tumors, have uncovered the previously underestimated influence of
intestinal flora on tumor sensitivity to drugs. These studies demonstrated a notable differ-
ence in the β-diversity of intestinal flora between the TMZ-sensitized and non-sensitized
groups. The non-sensitized group exhibited a higher abundance of Bacteroides, Allopre-
votella, Muribaculum, and Desulfovibrio, while the sensitized group had a higher abundance
of Akkermansia [10]. These two groups differed significantly in steroid and tryptophan
metabolic pathways, as well as in macrophage and cytotoxic T lymphocyte infiltration [10].
Previous research has indicated that broad-spectrum antibiotic cocktail (ABX) therapy
can lead to tumor-promoting effects by reducing cytotoxic NK cell subsets and impairing
microglial function in the intracranial tumor microenvironment [100,134]. These findings
are consistent with the results of the aforementioned studies, highlighting the crucial role
of the intestinal flora as a target for sensitizing chemotherapeutic agents. The modulation
of the intracranial immune microenvironment by the intestinal flora appears to mediate
anti-tumor effects and influence chemotherapeutic drug sensitivity.

4.2.3. Targeting the Intestinal Flora as a Novel Approach for Intracranial Tumor Therapy
Fecal Microbiota Transplantation

FMT has emerged as a crucial validation approach in animal experiments, as it has
the potential to inhibit tumor development, mitigate resistance to chemotherapeutic drugs,
and alleviate adverse events. Several ongoing clinical trials focus on FMT as a treatment for
intracranial tumors or as a strategy to reduce drug toxicity. An illustrative example is the
ability of FMT to reverse melanoma resistance to anti-PD-1 therapy [135]. Given that the
intestinal flora comprises a complex network of interconnected bacteria, FMT represents
a simpler method for modifying the patient’s intestinal flora compared to approaches
involving phage therapy, genetic modification, or small molecules. Consequently, FMT
holds promise as one of the earliest therapeutic interventions applied in clinical settings to
target the intestinal flora in tumor patients.

Probiotics

Oral probiotics represent an alternative approach to modifying the intestinal flora.
Based on previous research highlighting the ability of intestinal flora to impede the growth
of intracranial tumors, probiotics hold great promise as an ideal method for modifying
intestinal flora [136,137]. Currently, there are ongoing clinical studies investigating the use
of probiotics to modify the intestinal flora. For instance, Ashley A. Hibberd et al. observed
an increase in butyrate-producing flora in the feces, tumor mucosa, and non-tumor mucosa
following oral probiotics given to patients with colon cancer. This finding suggests that
utilizing probiotics to improve the composition of the intestinal flora in tumor patients is
effective [138]. However, this study did not further substantiate the role of probiotics in
prolonging the survival of patients with tumors. Another study demonstrated that the
combination of oral Lactobacillus casei with epirubicin prolonged recurrence-free survival in
bladder cancer patients [139]. In conclusion, probiotics are prospectively to be applied in
clinical practice to modulate the intestinal flora in oncological patients.

Diet

The composition of the intestinal flora is influenced by diets [136,140], leading to
individual variability, which poses challenges in studying intestinal flora consistently
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across different illnesses. Interestingly, obese mice have an increased ratio of Firmicutes
to Bacteroides in their intestinal flora [141]. In patients with intracranial malignant tumors,
the abundance of Firmicutes was significantly lower than that in patients with benign
tumors and in the healthy population [94]. Treatment with TMZ restored the abundance
of Firmicutes in the intestines of patients with gliomas [10,95]. These findings raise the
possibility that obesity might unexpectedly serve as a protective factor for glioma patients.
However, this inference contradicts the findings of several existing studies, such as the work
of Tze et al., who stated that obesity is a risk factor for hepatocellular carcinoma. Therefore,
additional direct evidence is needed to understand the effects of obesity on intracranial
tumors. Dietary fiber may also have a protective effect on patients with intracranial
tumors. Studies have shown that dietary fiber improves progression-free survival in
melanoma patients [142]. Moreover, a high-fiber diet promotes the growth of bacteria
that produce SCFAs [143]. These SCFA-producing bacteria play a role in intracranial
glioma eradication through the activation of microglia and other pathways. A ketogenic
diet could increase Akkermansia and parabobacteriodes to remodel the gut microbiota [144],
which explains its effects on reducing glioma growth [145]. Dietary intervention stands
as a compelling strategy to reshape the intestinal flora, thereby harnessing its potential
influence on tumor therapy.

5. Concluding Remarks and Prospects

CNS tumors present formidable clinical challenges with a dearth of effective therapeu-
tic strategies. The advent of bacteriotherapy, however, has sparked a surge of interest due
to its promising outcomes in preclinical studies for oncological applications. This review
synthesizes the burgeoning field of bacterial-mediated therapy for CNS tumors, focusing
on three perspectives: the direct oncolytic action of bacteria, the use of bacteria as vectors
for targeted delivery of therapeutic agents to the TME, and the strategic modulation of
the gut microbiota to influence the metabolic and immunological milieu of CNS tumors,
thereby exerting a suppressive effect on tumor progression.

The domain of CNS tumor therapy is currently dominated by preclinical explorations,
with bacteriotherapy emerging as a novel approach. Inspired by the bactericidal properties
observed in non-CNS malignancies, investigators have endeavored to harness bacteria
to directly target and destroy CNS tumor cells. Yet, the cytotoxicity of bacteria alone
falls short of the threshold for complete tumor eradication, highlighting the need for a
synergistic approach with additional therapeutic agents at the tumor site. The BBB poses
a formidable barrier, restricting the ingress of numerous compounds into the CNS tumor
milieu. Nonetheless, select bacteria have demonstrated an innate capacity to breach the
BBB and penetrate into the core of tumors, positioning them as potential vectors for drug
delivery. Concurrently, the modulation of the gut microbiota offers a pathway to regulate
the immune and metabolic landscape of brain tumors, presenting a new frontier in ther-
apeutic intervention. Despite the promise, the clinical translation of bacteriotherapy for
CNS tumors is fraught with challenges, with safety paramount among them. Although
bacteria are engineered to be non-virulent and inactivated physically, rigorous animal test-
ing and preclinical trials are essential to ascertaining their safety before human application.
Moreover, the enrollment criteria for clinical trials involving intestinal flora often overlook
critical variables such as diet and lifestyle, which could compromise the integrity of the
research findings. Thus, the development of refined inclusion and exclusion criteria is
critical for steering future investigations and trials. It is worth noting that the intratumoral
microbiome of brain tumors represents an emerging field in bacterial therapy for CNS
tumors. By employing techniques such as metagenomics, clarifying the significance of
the intratumoral microbiome in the temporal and spatial progression of CNS tumors is
crucial for the development of subsequent therapeutic strategies. The key objective is
to enhance patient care and prognosis. The burgeoning role of bacteria in brain tumor
research opens vast avenues for scientific discovery, with the potential to revolutionize
clinical management standards for CNS tumor therapy.
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