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Abstract. Seizures in the context of brain tumors are a 
relatively common symptom, with higher occurrence rates 
observed in glioneuronal tumors and gliomas. It is a serious 
burden that can have a significant impact on the quality of life 
(QoL) of patients and influence the disease's prognosis. Brain 
tumor‑related epilepsy (BTRE) is a challenging entity because 
the pathophysiological mechanisms are not fully understood 
yet. Nonetheless, neuroinflammation is considered to play 
a pivotal role. Next to neuroinflammation, findings on the 
pathogenesis of BTRE have established that certain genetic 
mutations are involved, of which the most known would be 
IDH mutations in gliomas. Others discussed more thoroughly 
in the present review include genes such as PTEN, TP53, 
IGSF3, and these findings all provide fresh and fascinating 
insights into the pathogenesis of BTRE. Treatment for BTRE 
presents unique challenges, mainly related to burdens of poly‑
therapy, debated necessity of anti‑epileptic prophylaxis, and 
overall impact on the QoL. In fact, there are no established 
anti‑seizure medications (ASMs) of choice for BTRE, nor is 
there any protocol to guide the use of these medications at 
every step of disease progression. Treatment strategies aimed 
at the tumor, that is surgical procedures, radio‑ and chemo‑
therapy appear to influence seizure control. Conversely, some 
ASMs have also shown antitumor properties. The present 
review summarizes and retrospectively analyzes the literature 
on the pathogenesis and management of BTRE to provide 
an updated comprehensive understanding. Furthermore, the 
challenges and opportunities for developing future therapies 
aimed at BTRE are discussed.
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1. Introduction

Annually, >300,000 brain tumor cases are diagnosed glob‑
ally, making them the fifth most prevalent type of cancer. 
Meningiomas represent the most prevalent primary benign 
tumors of the central nervous system (CNS). Recent figures 
indicate that 40.8% of all CNS tumors in the USA are menin‑
giomas, constituting 56.2% of all benign tumors, whereas 
gliomas account for 26.3% of all tumors and 50.9% of all 
malignant tumors (1). Brain metastases (BM) constitute a 
distinct category and are the most prevalent form of brain 
tumor, with an incidence ~5‑fold greater than that of primary 
brain tumors (2). Lung cancers, breast cancers and melanomas 
are the most likely to metastasize to the brain (2). The inci‑
dence of seizures varies significantly among different types 
of brain tumors, ranging from 10% to over 80%, contingent 
upon the tumor type (3,4). This is a significant side effect that 
should not be underestimated due to its potential impact on 
the patients' quality of life (QoL). Numerous studies conducted 
throughout the years have endeavored to elucidate the patho‑
physiological mechanisms of brain tumor‑related epilepsy 
(BTRE), yielding various degrees of results. It is generally 
acknowledged that mutations in the isocitrate dehydrogenase 
type 1 (IDH1) and type 2 genes contribute to the development 
of BTRE in gliomas at the molecular level (5,6). In general, 
various mechanisms, including mechanical (compression), 
vascular (imbalance in vascularization), chemical (neurotrans‑
mitter dysregulation), and inflammatory processes, have been 
identified in the pathophysiology of BTRE (7). Neurosurgeons 
frequently prescribe anti‑seizure medications (ASMs) during 
the perioperative period, particularly post‑operatively, despite 
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the absence of studies demonstrating the advantages of this 
practice for seizure‑naïve patients. Current research on BTRE 
has predominantly focused on gliomas and glioneuronal 
tumors, while other tumor forms, including meningiomas and 
BM, have received far less attention. The present review exam‑
ines the pathophysiology of BTRE, encompassing molecular 
mechanisms and genetic implications. Risk factors, the corre‑
lation between epileptogenesis and tumorigenesis, and the 
influence of ASMs on tumor progression were also discussed. 
Finally, some insight was provided into anti‑epileptogenesis, 
which aims to cure epilepsy. The progress made so far and 
the challenges associated with developing novel therapies are 
discussed; and the potential solutions that may be advantageous 
for epilepsy broadly and BTRE specifically are delineated.

2. Pathophysiology of BTRE

The role of neuroinflammation. Inflammation has always 
played a role in epilepsy, as evidenced by the existence of 
febrile seizures. This indicates a mechanism through which 
inflammation induces a hyper‑excitable state in brain tissue. 
Numerous studies have sought to elucidate this mechanism, 
and while the findings remain partially unsatisfactory, the 
principal pathophysiological agents have been identified. 
In neuroinflammation, the microglia and astrocytes secrete 
pro‑inflammatory cytokines (PICs) such as interleukin 1 beta 
(IL‑1β), tumor necrosis factor alpha (TNF‑α) and interleukin 6 
(IL‑6), among others. The overload of PICs in the CNS leads to 
the blood‑brain barrier (BBB) breakdown, resulting in further 
recruitment of PICs from the systemic circulation (8,9). This 
review focuses on the role of IL‑1β, TNF‑α, toll‑like receptor 4 
(TLR4) and High‑mobility group box 1 (HMGB1) in BTRE 
pathophysiology.

Il‑1β can induce hyperexcitability via several mechanisms 
and possesses various receptors, with IL‑1R1 being the most 
involved in epileptogenesis. Upon binding of Il‑1β to IL‑1R1, 
ceramide is generated through the activation of neutral 
sphingomyelinase (N‑SMase). Ceramide stimulates phos‑
phorylation of the NR2B subunit of N‑methyl‑D‑aspartate 
receptors (NMDAR), leading to an increased influx of Ca2+ in 
neuron cells and, subsequently, increased excitability (8). This 
increase in intracellular calcium (Ca2+) may also stimulate 
the overproduction of nitric oxide (NO) through nitric oxide 
synthase. NO induces oxidative stress and cell damage, there‑
fore leading to increased PICs' secretion (10). IL‑1β may also 
induce epilepsy via the synaptic protein synaptophysin (SYN). 
Using rat models, Xiao et al (11) proposed that SYN can regulate 
neurotransmitter release by acting on Ca2+, and discovered that 
IL‑1β increases SYN expression in the hippocampal neurons 
via the activation of the PI3K/Akt/mTOR pathway. In another 
study on temporal lobe epilepsy (TLE), using hippocampal 
tissues from human subjects, researchers demonstrated that 
the complex Il‑1β/IL‑1R1 was responsible for a decrease of up 
to 30% in GABA‑mediated neurotransmission, with protein 
kinase C also contributing to this phenomenon (12).

TNF‑α is secreted by microglial cells and astrocytes 
under physiological conditions to palliate an eventual 
decrease of glutamate, thus maintaining an adequate level 
of neuronal excitability (13). TNF‑α has two receptors, 
TNFR1 and TNFR2, which are considered to have opposing 

functions in epilepsy (14). TNFR1 serves as the proconvulsive 
receptor, evidenced by neuroinflammation where excessive 
TNF‑α‑TNRF1 binding results in increased glutamate levels 
through various mechanisms, such as the upregulation of 
glutaminase in microglia and the upregulation of α‑amino‑ 
3‑hydroxy‑5‑methyl‑4‑isoxazole‑propionic acid receptors 
(AMPAR) (15,16). TNFR1 is also responsible for the neuro‑
toxicity effects of TNF‑α due to its possession of a death 
domain, the TNFR‑associated death domain (TADD), which 
is lacking in TNFR2. TADD facilitates the activation of 
caspase enzymes (caspases 8 and 10), resulting in cell death. 
While studies still remain ambiguous on the predominant 
pathway during TNF‑α activation, some discovered that 
low doses of TNF‑α triggered the TNF‑α/TNFR1 pathway, 
while higher doses were required for anticonvulsant effects 
(TNF‑α/TNFR2 pathway) (17,18). While TNF‑α enhances the 
hyperactivity of AMPAR and NMDAR, it conversely induces 
endocytosis of GABA receptors, increasing GABA absorption 
and thus resulting in hyperexcitability (19‑21).

Another inflammatory mediator with a key role in neuro‑
inflammation would be TLRs. In immunology, TLRs function 
by binding to specific molecules known as damage‑associated 
molecular patterns. One such molecule is the HMGB1, a 
DNA‑binding protein. In pathological conditions, excess 
HMGB1 is produced by glial cells and neurons (among 
others), a reaction that is amplified by cytokines. HMGB1 
acts by binding to molecules known as pattern recognition 
receptors, specifically TLR4 and the receptor for advanced 
glycated end‑products (RAGE). It is considered that TLR4 
has a more significant role in epileptogenesis than RAGE (22). 
Regardless of its binding to RAGE or TLR4, HMGB1 
ultimately induces the release and activation of multiple tran‑
scription factors (23,24), with nuclear factor kappa B (NF‑κB), 
being a prominent factor in both pathways, crucial in inflam‑
matory and immune gene expression. Activated TLR4 can 
also enhance calcium influx in neurons through NMDAR, a 
mechanism that involves N‑SMases (8,25). Moreover, HMGB1 
is involved in the BBB breakdown, either through binding to 
RAGE or TLR4 (26), and studies reported decreased seizure 
activity upon inhibition of the HMGB1‑TLR4 pathway (27). 
HMGB1 protein can also bind to Il‑1β, thereby activating it. 
The latter has similar intracellular domains to TLR4s, and thus 
is involved in similar metabolic pathways (8). Il‑1β and TLR4 
can enhance the activation of pro‑inflammatory genes through 
the stimulation of the NF‑κB transcription factor. NOD‑like 
receptor protein 3 is among the several activated genes. The 
latter activates caspase‑1 via its inflammasome, which medi‑
ates inflammation and is responsible for the production of 
PICs. The synthesized PICs can then activate the Il‑1β/TLR4 
pathway, resulting in a cycle of sustained inflammation, and 
increased seizure risk (28‑31).

Neurotransmitter disbalances. Alternative mechanisms can 
lead to an excessive release of glutamate or inadequate levels 
of GABA. The Xc‑Cystine glutamate antiporter system in the 
brain imports cystine into the cell and in exchange, glutamate 
is released. Glioma cells not only express Xc‑Cystine chan‑
nels but due to mechanical compression and oxidative stress 
on adjacent tissues, there is overexpression of these channels 
on normal cells in an attempt to supply adequate cystine 
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for glutathione synthesis (32). This would ultimately result 
in an excessive release of Glu in the synaptic space (Fig. 1). 
Furthermore, a comparison of glutamate transport between 
normal and malignant astrocytes revealed a significant 
deficiency of sodium‑dependent reuptake channels, namely 
excitatory amino acid transporters 1 and 2 (EAAT1 and 
EAAT2) (33,34). Moreover, research has indicated a complex 
mechanism for glutamate transport from glioma or metastatic 
tumor cells to neurons, utilizing structures similar to synapses 
found in a normally functioning brain (35) (Fig. 2). In another 
study on gliomas, glutamate was found to directly down‑
regulate GABA receptors on astrocytes, resulting in a loss of 
GABAergic inhibition (36). 

3. The role of gene expression in BTRE

IDH1 mutation in low‑grade gliomas and secondary glio‑
blastomas. IDH, comprising 3 isoforms, IDH1, IDH2 and 
IDH3, plays a crucial role in the Krebs cycle, by facilitating 
the conversion of isocitrate to α‑ketoglutarate (α‑KG). In 
anaerobic conditions, lactate dehydrogenase A (LDHA) cata‑
lyzes the synthesis of L‑lactate from pyruvate. LDHA levels 
are increased in most tumor types, and tumor cells utilize the 
enzyme to increase glycolysis and lactate production rates, even 

under optimal aerobic conditions. This phenomenon is known 
as the Warburg effect (37). Missense mutations in the IDH1 
gene in gliomas results in the production of 2‑hydroxygluta‑
rate (2‑HG) from α‑KG (38). 2‑HG is considered to facilitate 
seizures by enhancing mTOR activity for metabolic functions 
such as the production of LDHA (high levels of LDHA were 
observed in IDH1‑mutated tissues treated with 2‑HG) (39). 
The proposed mechanism is that 2‑HG elevates levels of ribo‑
somal protein S6, which plays a role in mTOR signaling (39). 
Other mechanisms by which 2‑HG may induce epilepsy 
remain contentious. A study indicated that 2‑HG, owing to 
its structural resemblance to glutamate, may imitate its func‑
tion by binding to NMDARs, hence enhancing ion influx into 
neuronal cells and increasing seizure susceptibility (6). The 
role of 2‑HG in epileptogenesis is further substantiated by a 
condition known as 2‑hydroxyglutaric aciduria, characterized 
by elevated levels of 2‑HG, with seizures that exacerbate as the 
disease progresses being one of the primary symptoms. 

Tumor suppressor genes PTEN, TP53, NF1 and glioblastoma. 
The aggressive and anarchic growth pattern of glioblastomas 
(GBM) results in genetic mutations that can be detected even 
intratumorally (40). Tumor suppressor genes phosphatase 
and tensin homolog (PTEN), tumor protein p53 (TP53) and 

Figure 1. Neurotransmitters imbalance following neuroinflammation. Illustration of how neuroinflammation ultimately leads to high levels of Glu and low 
levels of GABA in the synaptic cleft. On one hand, the stress induced by the tumor on surrounding tissues triggers a feedback mechanism, activating the 
Xc‑Cystine antiport system in an attempt to produce sufficient glutathione to fight against ROS. TNF‑α ensures an adequate supply of Glu for this antiport 
system by facilitating Glu synthesis via increased activity of glutaminase. Additionally, IL‑β1 can directly upregulate Glu release at synapses, while the complex 
TLR4‑HMGB1 promotes excess influx of calcium and sodium ions, leading to increased release of Glu. On the other hand, TNF‑α also acts on GABAergic 
neurons by promoting the endocytosis of GABA receptors. With no receptors to attach to, there is then a reuptake of the ‘stranded’ GABA neurotransmitters 
in the synaptic space. This imbalance between Glu and GABA at the synapse tips the balance towards hyperexcitability. Created with BioRender.com. GABA, 
gamma‑aminobutyric acid; TLR4, toll‑like receptor 4; HMGB1, High‑mobility group box 1; ROS, reactive oxygen species.
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Neurofibromin 1 (NF1) are affected by these mutations (41,42). 
It has been suggested that these changes promote tumorigenesis 
and subsequent tumor progression, while also contributing to 
epileptogenesis (43). In a healthy organism, PTEN downregu‑
lates the PI3K/AKT/mTOR pathway; however, in the context 
of GBM, a loss‑of‑function mutation in PTEN results in the 
disinhibition of this pathway, leading to excessive mTOR 
signaling (44). The role of PTEN in epileptogenesis was further 
suggested when scientists discovered that the targeted deletion 
of this gene generated seizures in animal models (45,46).

The NF1 gene, however, exerts a negative regulatory 
effect on the Ras (Ras/MAPK and Ras/PI3K) pathways, 
which are additional pathways involved in cell cycle activity. 
In GBM, a loss‑of‑function mutation in the NF1 gene results 
in the disinhibition of the Ras/MAPK pathway, which 
subsequently increases mTOR signaling (47). A study by 
Sabetghadam et al (48) showed that silencing of the NF1 gene 
in rats resulted in lowered seizure thresholds and increased 
severity.

TP53 (also known as P53) mutations in GBM are predomi‑
nantly gain‑of‑function mutations, producing an altered P53 
protein known as mut‑P53. The latter stimulates the activation 
of receptor tyrosine kinases such as MNNG HOS transforming 

gene and EGFR (41), ultimately resulting in cell proliferation. 
The significance of P53 in epileptogenesis remains incom‑
pletely elucidated. Increased expression of P53 has been 
observed in rats and patients with TLE, particularly in the 
hippocampus (49,50). Engel et al (51) observed that following 
the triggering of epilepsy in experimental models, P53 levels 
increased significantly; this increase subsequently activates 
apoptotic and neuronal cell death processes, exacerbating 
imbalances and enhancing hyperexcitability. The study also 
demonstrated that the inhibition of P53 results in more severe 
seizures. This contrasts with the study by Burla et al (52) where 
P53 inhibition resulted in decreased seizures and inflamma‑
tion. Nonetheless, inhibition of P53 has shown neuroprotective 
effects in a variety of conditions, including seizure‑induced 
neuronal cell death (53,54). Further research is required to 
elucidate the role of P53 in epileptogenesis.

IGSF3 Gene mutation in glioma: The potassium hypothesis. 
Some studies showed that astrocytes are involved in potas‑
sium (K+) buffering following synaptic depolarization, via 
inwardly rectifying K+ channels (Kir 4.1) (55). Mutations or 
dysregulation of Kir 4.1 (also known as KCJN10) have been 
linked to seizures in various epileptic syndromes (56,57). 

Figure 2. Illustration of a neuron to tumor synapse. Increased Glu release due to upregulation of AMPA and NMDA receptors by tumor cells leads to 
excitotoxicity and eventually neurons death, which are more likely to be replaced by tumor cells. At the same time, NLGN3, a protein involved in synapse 
formation, is cleaved from its NRXN counterpart and transformed into soluble NLGN3, which can then readily enter the tumor cell cytoplasm and activate 
the mTOR pathway. This results in overexpression of synaptogenic genes in the tumor cell nucleus, leading to even more tumor expansion. Finally, tumor cells 
can also express NMDA and AMPA receptors, and an influx of sodium and calcium ions can trigger a depolarization. All these events lead to tumor progres‑
sion, as dying neurons are replaced by tumor cells, and the expression of genes involved with synapse formation leads to even more connections between 
tumor cells and normal neurons. Created with BioRender.com. AMPA, α‑amino‑3‑hydroxy‑5‑methyl‑4‑isoxazole‑propionic acid; NMDA, NR2B subunit of 
N‑methyl‑D‑aspartate; NLGN3, neuroligin 3; NRXN, neurexin.
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IGSF3 protein is a cell surface protein involved in cellular 
signaling and molecular binding among other functions. A 
recent study by Curry et al (58) found that mutations in IGSF3 
(gain‑of‑function mutation) contributed to neuronal hyperex‑
citability. Following the binding of a mutated IGSF3 to Kir 4.1, 
there is inhibition of the latter's ability to buffer K+, resulting 
in synaptic remodeling and depolarization spreading (58). 
Previous studies linked extracellular K+ concentration to 
ictogenesis (59). This represents a novel research direction 
on the mechanism of epileptogenesis in brain tumors, and 
further studies are encouraged to evaluate the IGFS3 gene as a 
potential therapeutic target in BTRE.

4. Risk factors for seizures in brain tumors

Preoperative risk factors for seizures in brain tumors include 
sex, tumor location and size, and the presence of peritumoral 
edema. Postoperative seizures are primarily associated with 
the extent of resection, the presence of preoperative seizures, 
and again, tumor size and location.

The occipital lobe exhibits the lowest propensity for 
epilepsy, whereas tumors located in the frontal and temporal 
lobes present the greatest seizure risk (60). Similarly, skull base 
tumors are less frequently associated with seizures compared 
with tumors located nearer to the cortex, such as convexity or 
parasagittal/parafalcine tumors.

Nonetheless, certain risk factors vary amongst different 
tumor types. IDH mutations in gliomas increase the incidence 
of seizures in younger patients, as low‑grade gliomas (LGGs) 
are more prevalent in this demographic group. Regarding 
gliomas, a study revealed that high‑grade gliomas associated 
with seizures were generally smaller, whereas low‑grade 
gliomas were typically larger (61). This contrasts with menin‑
giomas, where an increase in size correlates with a higher 
likelihood of seizures (62).

A significant component, other than location and size, asso‑
ciated with seizures in meningiomas is peritumoral edema. At 
a pathophysiological level, peritumoral edema is considered 
to contribute to a reduction in seizure threshold due to excess 
secretion of substances such as VEGF and glutamate (63). The 
male sex is linked to an increased risk of seizures in cases of 
meningiomas and brain metastasis (64,65). This is comprehen‑
sible, as the primary cancers that are most prone to spread to 
the brain are lung cancers and melanomas (66), and men are at 
an increased risk of developing lung cancers due to a greater 
prevalence of smoking and high‑risk employment. The menin‑
gioma case is interesting as the tumor occurs more frequently 
in women than in men, with an approximate 3 to 1 ratio (1).

Brain metastasis exhibits a unique profile with specific risk 
factors exclusive to this category. Multiple metastasis heightens 
the risk of seizures in BM, as it increases the probability of a 
metastasis being located in a susceptible region. Studies have 
also shown that patients with melanoma or lung cancer as their 
primary tumor had an increased risk of developing seizures in 
case of brain invasion (67,68). In the case of melanomas, one 
rationale is that they are among the metastatic tumors most 
prone to induce intracranial hemorrhage and tumor bleeding, 
which is a risk factor for seizures in BM (68,69). Furthermore, 
a previous study by Urban et al (70) examined the impact 
of immune checkpoint inhibitors (ICIs) on epileptogenesis 

associated with brain metastasis. The study highlighted that 
new‑onset status epilepticus occurred more frequently in 
patients receiving ICIs compared with those not undergoing this 
treatment (70), although it is important to note that the majority 
of patients in the ICIs group had melanoma as their primary 
malignancy, while lung cancer was the predominant pathology 
in the non‑ICIs group. Additionally, a retrospective analysis of 
348 patients with brain metastasis by Garcia et al (68) identi‑
fied ICIs as a risk factor for late postoperative seizures. Overall, 
further research on this topic is necessary.

The extent of resection significantly influences the 
incidence of postoperative seizures across all tumor types. 
Complete resection diminishes the likelihood of postoperative 
seizure persistence. ASM prophylaxis has shown no impact 
on the risk of post‑operative seizure, which may explain the 
rationale behind experts' recommendations against its usage 
in seizure‑naïve patients. New‑onset postoperative seizures 
are relatively rare and seem to be more closely associated 
with tumor grade, tumor recurrence/progression, and IDH1 
mutation in glioma cases (71).

5. Seizures prognosis in brain tumors

It is estimated that 60‑90% of patients with preoperative seizures 
due to brain tumors attain seizure freedom post‑surgery, with 
glioneuronal tumors exhibiting the most favorable epilepsy 
prognosis, whereas seizures associated with glioblastomas 
tend to be more refractory and recurrent (4). Furthermore, 
seizures at the onset of disease serve as a favorable prog‑
nostic factor for long‑term survival in brain tumors (72‑74). 
Convexity tumors are more prone to be symptomatic in the 
early stages due to cortical irritation, facilitating earlier detec‑
tion and intervention before progression to an advanced stage; 
total resection is also more attainable in these instances. Plus, 
IDH mutations are predominant in slow‑growing, low‑grade 
tumors, with a favorable prognosis compared with the more 
aggressive, high‑grade ones. However, persistent seizures are 
a negative prognostic factor, as they are often indicative of 
tumor recurrence or progression (74).

De novo seizures are a relatively rare phenomenon after 
brain surgery, and research on this is notably limited. Danish 
researchers conducted a pivotal study revealing that the 
one‑year incidence of de novo post‑craniotomy epilepsy ranged 
from 3.8% in cases of congenital malformation to 27.6% in 
cases of cerebral abscess. The risk for intracranial tumors 
was 15.4%. This correlates with the 12.3% new seizure rate 
reported in the Englot et al (3) meta‑analysis involving 4,709 
meningioma patients in 2015. However, regarding the Danish 
study, the occurrence of de novo seizures varied among tumor 
types, and their incidence increased with time (75). Another 
study focused on meningiomas and de novo postoperative 
tonic‑clonic seizures identified cerebral edema enlargement 
and hemorrhagic transformation of the edema as risk factors 
for the seizures (76). The role of surgery recurrence in 
postoperative de novo seizures remains contentious.

6. Current management of BTRE

Surgery and radio/chemotherapy. Surgery is a mainstay in the 
management of brain tumors and influences seizure freedom, 
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if seizures are part of the disease burden. Gross total resec‑
tion has shown its efficacy in seizure control compared with 
partial resection in LGGs, meningiomas and BM (77,78). In 
GBM, the proliferative characteristics of the tumor may cause 
the diseased tissue to extend beyond the boundaries shown 
on a contrast‑enhanced MRI. Thus, supra‑total resection has 
shown greater efficacy in seizure control in GBM compared 
with gross total resection (79). In addition, a study about the 
relationship between the extent of resection and its impact 
on seizure freedom in temporal lobe LGGs and glioneuronal 
tumors revealed that gross total resection combined with 
hippocampectomy showed a higher seizure freedom rate 
compared with gross total resection alone (80), potentially 
suggesting a new strategy for managing BTRE in that specific 
region of the brain. Further studies are needed.

Over the years, numerous studies have proven the efficacy 
of radiotherapy on seizure control in LGGs (81‑83), alongside 
chemotherapy with temozolomide (84,85). There appears to 
be less of a consensus for glioblastomas, with some studies 
suggesting radiotherapy is beneficial, while others reported an 
increase in seizures post‑radiation (86). The systematic review 
by Wu et al (87) also identified seizures as a side effect of 
radiotherapy in higher‑grade meningiomas (grades II and III), 
however with a low incidence. Acute seizures are a known risk 
associated with brain irradiation resulting from neuronal and 
vascular alterations that may ultimately lead to brain edema 
and can occur several months post‑radiotherapy (88,89). 
The impact of radio/chemotherapy on seizure control in 
patients with brain tumors remains poorly researched, maybe 
accounting for the aforementioned contradictory findings. 
Further research is encouraged to evaluate the risk‑benefit 
ratio of initiating radiotherapy in brain tumor patients with 
epilepsy.

Anti‑seizure medications
Classification and indications. The use of ASMs in the context 
of BTRE poses a unique challenge. In addition to potential 
adverse side effects, the physician should also consider prob‑
able interactions with other anticancer therapies. The ideal 
medications should consequently be those that alleviate both 
of these difficulties. BTRE is categorized as focal seizures, 
with or without secondary generalization (4). Multiple profes‑
sional organizations have advised against the administration 
of ASMs as a prophylactic treatment in seizure‑naïve patients 
with brain lesions and have discredited the need to use ASMs 
for patients undergoing brain tumor surgery in the absence of 
seizures (90). However, it is not consistently implemented in 
practice (91,92).

The International League Against Epilepsy classifica‑
tion of some ASMs is as follows: Levetiracetam (LEV), 
Carbamazepine (CBZ), Phenytoin (PHT) and Zonisamide 
(ZSD) are classified as level A ASMs. At level B, Valproic 
Acid (VPA) is classified; at level C, Gabapentin (GBP), 
Lamotrigine (LMG), Oxcarbazepine (OXC), Phenobarbital 
(PHB), Topiramate (TOP) and Vigabatrin (VGB) are clas‑
sified; and at level D, Clonazepam (CPM) and Primidone 
(PMD) (93). LEV has shown superior efficacy and fewer side 
effects compared with other ASMs for BTRE, establishing it 
as the preferable treatment for monotherapy, in addition to its 
being a class A anticonvulsant (94,95). Moreover, LEV has 

no pharmacological interactions with other drugs and has 
minimal enzymatic activity via cytochrome P450, making it 
suitable for poly‑medicated patients (96). Some commonly 
used ASMs, their side effects, and their role in the manage‑
ment of BTRE are summarized in Table I; whereas the 
mechanism of action of the ASMs predominantly employed in 
BTRE instances is demonstrated in Fig. 3. Refractory seizures 
occur in ~15‑40% of people with epilepsy due to brain tumors 
or other etiologies (97,98). In this case, an adjunctive ASM is 
typically implemented rather than altering the overall treat‑
ment regimen. Polytherapy combines drugs with different 
mechanisms of action to maximize the results. The combina‑
tion of LEV and VPA has shown significant results in cases 
of drug‑resistant seizures (99). It should be highlighted that 
ASM polytherapy should be avoided in patients with BTRE 
wherever possible. It can significantly impact the QoL of 
these patients. Some studies have in fact shown that patients 
on multiple ASMs exhibit a higher prevalence of psychiatric 
comorbidities and more frequently compared with those on 
monotherapy (100,101).

PRN exhibits a noteworthy profile regarding BTRE. 
In the United States, it is utilized in monotherapy against 
focal‑onset seizures, with or without generalized tonic‑clonic 
seizures. AMPA antagonism is a relatively novel concept in 
anti‑epilepsy healthcare, with the first ASMs employing this 
mechanism emerging in the 2nd generation. The majority of 
ASMs available are ion channel blockers or GABA enhancers, 
and over time, there is a possibility for drug resistance to 
occur. Targeting NMDA receptors has so far produced limited 
outcomes, as they facilitate slow and long‑lasting synaptic 
changes, which are essential for learning and memory 
processes. As a result, researchers have shifted their attention 
to AMPA receptor blockade. The most ubiquitous AMPA 
receptor antagonist, PRN, a 3rd generation ASM, holds signifi‑
cant potential. In clinical trials, it has shown minimal adverse 
reactions, with dizziness being the most common (123,124). 
Currently, the clinical dosage of PRN ranges from 2 to 12 mg 
daily, with an increased likelihood of adverse side effects at 
higher doses, while the improvements in efficacy do not appear 
to increase proportionally (124). Although PRN is utilized as 
monotherapy for epilepsy in a few countries, its efficacy in 
BTRE has predominantly been demonstrated when used as 
an adjunctive ASM. A recent study reported promising results 
when using PRN monotherapy in patients with brain tumors, 
although the sample size was limited (118). Future studies with 
larger cohorts are needed.

Drug on drug interactions. Enzyme‑inducing ASMs 
(EIASMs) include PHT, PHB, CBZ, PMD, OXC and TOP. 
VPA functions as an enzyme inhibitor. EIASMs can shorten 
the bioavailability of other ASMs in polytherapy; however, this 
is often not challenging, as the additional drug compensates 
for the diminished efficacy of the others. Yet still, physicians 
should bear these interactions in mind when implementing 
anti‑seizure polytherapy, particularly with ASMs such as 
LMG that pose further challenges in clinical use.

The most sensible area for meticulous monitoring of 
these interactions is chemotherapy. A systematic review by 
Bénit and Vecht (125) estimated that EIASMs could increase 
the clearance of chemotherapeutic agents by 2 to 3‑fold the 
normal rate. Glucocorticoids are also a mainstay in the 
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treatment plan for patients with brain tumor. A study showed 
that dexamethasone (DXM) bioavailability was only 33% in 
neurosurgical patients on phenytoin, whereas it was 84% in 
those not receiving any ASMs (126). The inverse effect also 
occurs; DXM as an enzyme inducer can reduce PHT levels 
while also increasing it through a protein‑binding mecha‑
nism (88). VPA is still routinely used in BTRE monotherapy 
and exhibits notable drug interactions, such as increasing the 
toxicity of nitrosoureas, cisplatin and etoposide (103). Inversely, 
cisplatin reduces the bioavailability of VPA, possibly affecting 
seizure control (127). All these challenges have resulted in the 
emergence of new classes of ASMs with minimal enzymatic 
activity, encouraging physicians to choose these over older 
generations. The chemotherapeutic drug temozolomide also 
presents an effective profile in glioma treatment due to its 
dearth of pharmacologic interactions with ASMs, as it is not 
metabolized by hepatic enzymes.

Comorbidities. Patients with brain tumors often present 
additional health complications that require extra precautions 
while using ASMs. Furthermore, the management of comor‑
bidities may occasionally benefit from certain anti‑seizure 
medications. Patients with brain tumors who also experi‑
ence migraine headaches may benefit from VPA, ZSD and 
TOP (128,129). In the mentally disabled, ASM monotherapy 
should be prioritized whenever feasible due to the higher 
susceptibility of this population to the adverse effects of 
ASMs (130). Patients with behavioral issues should avoid 
LEV, Brivaracetam, PRN and TOP. VPA appears to be well 

tolerated in patients with psychiatric problems such as anxiety, 
depression, or psychosis, but LEV should be avoided in this 
group (130).

Concerning infectious comorbidities, anti‑tuberculosis 
drugs Isoniazid and Rifampicin exert opposing effects on the 
metabolism of VPA (131). Numerous studies present conflicting 
results on the impact of VPA on viral load in patients with 
HIV (132‑134). Further studies with larger cohorts are needed 
to evaluate potential interactions between VPA and antiretro‑
viral drugs. In patients with HIV, LEV should be prioritized, 
with TOP as a second line option (130).

Seizures resulting from brain tumors during pregnancy 
are thankfully a rare phenomenon. PHT is a highly terato‑
genic ASM, responsible for the Fetal Hydantoin Syndrome; 
it should be considered a last‑line option of treatment during 
pregnancy. Studies suggest that VPA is also responsible for 
numerous birth defects. In a large French cohort study by 
Blotiere et al (135), they investigated the risk of developing 
23 distinct malformations due to prenatal exposure to 10 
different ASMs; VPA emerged as the most teratogenic, with 
TOP also identified as a significant risk factor. ASMs suitable 
for BTRE monotherapy, such as LEV, OXC and the adjunct 
ASM LMG, were the least likely to cause birth defects (135). 
These results corroborated the findings of a previous study 
on the same topic (136). Furthermore, VPA would also be 
responsible for developmental and cognitive impairments 
in children born to mothers who received this ASM during 
pregnancy (137,138).

Figure 3. Mechanisms of action of select ASMs. Levetiracetam inhibits the SV2A, a transmembrane protein regulating the role of calcium in inducing 
neurotransmitter vesicle fusion with the cell membrane. Valproic acid inhibits voltage‑gated calcium and sodium channels on presynaptic neuron. Topiramate 
and Perampanel exert their influence through AMPA receptors antagonism on post‑synaptic neurons. Oxcarbazepine, Lacosamide and Topiramate can also 
act by blocking sodium channels on pre‑synaptic neurons. An old ASM, phenobarbital, enhances the activity of GABA receptors on post‑synaptic neurons to 
potentiate inhibitory signal transmission. Created with BioRender. ASMs, anti‑seizure medications; SV2A, synaptic vesicle protein 2A; AMPA, α‑amino‑3‑
hydroxy‑5‑methyl‑4‑isoxazole‑propionic acid; GABA, gamma‑aminobutyric acid; NMDA, NR2B subunit of N‑methyl‑D‑aspartate.
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Antitumor effect of ASMs. Some of the mechanisms under‑
lying epileptogenesis are also involved in tumor growth and 
progression. Tumor‑to‑neuron synapses act bidirectionally; 
the tumor increases neuronal excitability by upregulating 
AMPA receptor activity and glutamate release, while neurons 
release a mitogen known as neuroligin‑3, which stimulates 
tumor growth through the activation of the PI3K‑mTOR 
pathway (35,139,140). Further evidence of this mechanism 
was shown when AMPA receptor antagonist Perampanel 
(PRN) successfully slowed down tumor growth (140). Another 
growth mechanism is considered to involve NMDA receptors, 
as blockade of these receptors was successful in mitigating 
tumor growth in another study (141). This then presupposes 
that tumor treatment should influence epileptic activity, and 
vice‑versa. Over the years, studies have emerged about the 
potential role of ASMs in improving survivability in brain 
tumor patients, to varying degrees of results. The majority of 
the studies have focused on LEV and VPA, due to their greater 
potential.

LEV has been shown to inhibit O6‑Methylguanine‑DNA 
Methyltransferase (MGMT), a DNA repair enzyme involved 
in the proliferation of cancer cells (142). A few retrospective 
studies concluded that LEV improved survival in patients 
undergoing chemotherapy with temozolomide for glioblas‑
toma (143,144). However, a meta‑analysis and a prospective 
randomized control trial, both featuring larger sample sizes 
and more curated statistical methodologies, found no evidence 
supporting the efficacy of LEV as an antineoplastic agent in 
patients with GBM (145,146). The differences in outcome 
across these studies suggest the potential influence of addi‑
tional factors, such as the molecular profile of the GBM 
(MGMT methylated vs non‑methylated; IDH‑mutant vs. 
IDH‑wild type). This presents a promising avenue for future 
research.

The role of VPA as an antineoplastic agent is less 
controversial than that of LEV, and it is the most extensively 
researched in this context, possibly due to the initial identifica‑
tion of potential beneficial effects of ASMs on survival in brain 
tumors involving this drug (147). Survival rate is increased 
when combining VPA with temozolomide for glioblastoma 
management (85,148,149). VPA can act as a histone deacety‑
lase inhibitor (HDACI), particularly at high doses (150,151). 
HDACIs are a new group of anticancer agents that induce 
cell cycle arrest and eventually apoptosis in cancer cells. 
Another hypothesis is that VPA, through its enzyme inhibitory 
activity, increases the bioavailability of temozolomide, hence 
augmenting its chemotherapeutic efficacy (149).

Other ASMs have displayed antitumor effects, mostly in a 
preclinical setting. Salmaggi et al (152) and Lange et al (153) 
investigated the influence of PRN on tumor growth in vitro. Both 
studies concluded that PRN limits tumor growth by promoting 
cell apoptosis (152,153). Interestingly, Lange et al (154) discov‑
ered no advantage in survival improvement regarding the role 
of PRN on tumor progression in vivo (154). Brivaracetam and 
Lacosamide (LCM) have also demonstrated antineoplastic 
properties in in vitro experiments (155). Additionally, studies 
indicated that LCM and CBZ exhibit HDAC inhibition 
activity (156,157), suggesting a similar mechanism to VPA 
in inhibiting tumor growth; this requires further exploration. 
Other studies have shown the antiproliferative effects of LMG 

and PHT on breast cancers (158,159). Future studies could 
help determine if these two ASMs should be prioritized for 
seizures resulting from BM related to a breast tumor.

Withdrawal of ASMs. There is no consensus on the timing 
of discontinuation of ASMs in patients with BTRE, neces‑
sitating cooperation between the patient and their physician. 
Factors influencing ASM withdrawal include patient prefer‑
ence, cognitive or significant side effects, polypharmacy, and 
sedation or fatigue. Notable risk factors for postoperative 
seizures include a history of preoperative seizures, tumor 
progression, incomplete surgical resection and tumor location, 
particularly in the temporal, insular and frontal lobes.

In a prospective observational study, Koekkoek et al (160) 
proposed that the cessation of ASM medication should be 
evaluated based on tumor progression risk. The study revealed 
that 26% of patients who discontinued ASMs experienced 
recurrent seizures, with 58% of these individuals exhibiting 
tumor progression. In another study by Das et al (161), the 
effects of ASM discontinuation were examined in patients 
who underwent surgery for LGGs and meningiomas. Among 
the 111 patients who either had their medications withdrawn 
or never initiated anti‑seizure therapy, only 9.9% experienced 
seizures. Notably, postoperative seizures occurred in 28% of 
patients who maintained uninterrupted ASMs treatment (161). 
This highlights the clinician's decision to continue ASMs in 
patients with risk factors for postoperative seizures.

The timing of withdrawal is also important. For 
non‑tumor‑related epilepsy, epileptologists suggest it is 
safe to discontinue ASMs after 1 year of seizure freedom; 
nevertheless, this choice varies significantly across clini‑
cians (162,163). Research on tumor‑associated epilepsy is 
limited. In a study by Jiang et al (164) on seizure relapse in 
glioma patients, 28 patients experienced relapse, with 20 of 
them (71.4%) relapsing within 6 months following the with‑
drawal of ASMs. All patients included in the study were on 
anti‑seizure medication for at least 2 years postoperatively 
prior to withdrawal (164). In summary, withdrawal remains a 
contentious topic with no consensus; it is hoped that future 
studies could help guide practitioners in decision‑making 
about discontinuation of ASMs.

7. New avenues for the management of BTRE

There is ongoing research focused on new targets for the 
development of ASMs. While the majority of this research is 
centered on primary epilepsy, certain mechanisms described 
in the physiopathology section of the present review are 
relevant to epilepsy due to causes other than brain tumors. 
This suggests that prospective new molecules resulting from 
these studies may still be beneficial to patients suffering from 
BTRE. Some new molecules, under investigation, and targeting 
mechanisms outlined in the pathophysiology section of this 
review are discussed below. Ongoing initiatives are being 
made to cure epilepsy by directly targeting epileptogenesis to 
alter the disease process or develop preventive measures.

Targeting new pathways
Targeting isocitrate dehydrogenase and glycolysis. Generally, 
tumor cells utilize more energy than normal for their metabo‑
lism compared with normal cells. With IDH mutation, glioma 
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cells mostly utilize glycolysis for ATP production, rather than 
the Krebs cycle (Warburg effect), and they upregulate GLUT1 
and GLUT3 transporters expression to further augment energy 
production (165). 2‑deoxy‑D‑glucose (2DG), a glycolysis 
inhibitor, is currently the focus of several preclinical trials 
for the treatment of various cancers, including GBM (166). 
PET imaging studies with radiolabeled 2DG have shown 
increased glucose utilization in epileptic brain regions during 
the ictal phase of seizures, correlating with increased neuronal 
activity (167). This suggests a possible anti‑seizure effect of 
2DG. Both the acute and chronic anti‑seizure effects of 2DG 
were evidenced in a study by. Stafstrom et al (168), whilst 
another study found that long‑term administration of the drug 
was pro‑convulsant (169). A proposed rationale for these 
contradictory results was that 2DG, by blocking glucose entry 
into cells, could lead to seizures, as hypoglycemia‑induced 
seizures are a well‑documented phenomenon (169). 
Additionally, some cardiac side effects have been reported in 
preclinical trials involving 2DG (170), further undermining its 
safety profile for clinical application.

Ivosidenib is an IDH1 inhibitor approved for treating acute 
myeloid leukemia. Its efficacy as an ASM is currently confined 
to a limited number of case reports, with seizure control being 
a secondary objective in one instance (171,172). It is antici‑
pated that these reports will stimulate further interest in the 
function of this molecule as an anti‑seizure agent and result in 
more comprehensive and definitive research.

Targeting the agents of neuroinflammation. HMGB1 
overexpression during neuroinflammation leads to down‑
stream activation of PICs such as TLR4, and other factors 
such as receptor for RAGE and NF‑κB. It is then stipulated 
that the HMGB1/TLR4/RAGE/NF‑κB signaling pathway is 
responsible for the overexpression of P‑glycoprotein (P‑gp), 
a transporter protein associated with drug‑resistant epilepsy 
(DRE) (173,174). This has led to various studies on HMGB1 
blockage for the treatment of DRE, including the development 
of the monoclonal antibody anti‑HMGB1 mAb, which has 
proved its anti‑seizure potential in animal models (175‑177). 
Anti‑HMGB1 mAb has also shown its efficacy in a variety of 
CNS diseases, some of which may entail seizures (178).

BBB breakdown secondary to neuroinflammation posi‑
tions astrocytes as well as PICs as potential new targets for the 
development of new ASMs. VX‑765 (Belnacasan), an inhibitor 
of interleukin converting enzyme/caspase‑1, which subse‑
quently inhibits IL‑1β and HMGB1 downstream, has shown 
anti‑seizure efficacy (179), and possesses a favorable clinical 
profile (180). In other studies, the antagonism of TLR4 and 
IL‑1R1 with Anakinra, a second‑line drug used in the treat‑
ment of rheumatoid arthritis, diminished seizure activity in 
animal models (27,181,182), presumably via decreased expres‑
sion of NMDA glutamate receptors. Anakinra has mostly 
been utilized in the care of febrile infection‑related epilepsy 
syndrome in humans, yielding positive results (183‑185). Most 
of the evidence derives from case reports; hence, studies with 
larger cohorts may be warranted. Elsewhere, research has shown 
that the activation of the ALK5/TGF‑β signaling pathway in 
astrocytes, facilitated by albumin following BBB breakdown, 
promotes seizures via excitatory synaptogenesis (186). The 
mechanism involves the overactivity of this pathway, which 
inhibits K+ buffering by decreasing Kir 4.1 channel function 

and glutamate reuptake abilities of astrocytes (187). The 
ALK5/TGF‑β pathway then constitutes another target for the 
development of novel anti‑seizure medications.

Another prospect for inhibition in the fight against seizures 
and epilepsy is the complement receptor C5ar1. Complement 
activation is a critical occurrence in inflammation, and the 
study by Benson et al (188) found that pro‑inflammatory 
receptor C5ar1 was upregulated in rats following induced 
status epilepticus. Utilizing the C5ar1 inhibitor PMX35, they 
effectively diminished both the frequency and severity of 
acute and chronic seizures (188). The proposed mechanism 
posits that the inhibition of C5ar1 results in a decreased release 
of PICs, including TNF‑α and IL‑1β.

The mTOR pathway inhibitors. The mammalian target of 
rapamycin (mTOR) plays a crucial role in several phases of the 
cell cycle and is primarily composed of two subunit complexes: 
mTORC1 and mTORC2. The complex mTORC1 facilitates the 
overexpression of AMPA receptors in vitro (189). mTOR inhibi‑
tors, such as rapamycin, have shown antiepileptic properties in 
animal models across multiple studies (190,191). Nonetheless, 
other studies have indicated that rapamycin exhibits inconsis‑
tency in its efficacy against seizures (192,193). The extensive 
range of mTOR signaling targets in the brain may explain 
the inconsistent findings among these studies. Everolimus, 
a rapamycin derivative, utilized in the treatment of some 
cancers, has shown efficacy in refractory seizures (194,195), 
and is currently used for the management of seizures in patients 
with tuberous sclerosis complex (196). Other mTOR inhibi‑
tors currently studied for their anti‑seizure effects include the 
immunosuppressant mycophenolate, novel drugs PQR620 
and PQR530, as well as natural compounds curcumin and 
resveratrol (197‑201). PQR620 and PQR530 showed enhanced 
efficacy compared with rapamycin and everolimus for the 
management of seizures due to their expedited penetration of 
brain tissues (199).

Improving experimental models and approach to develop‑
ment of new ASMs. Researchers mostly rely on animal models 
to elucidate the pathogenesis of epilepsy and develop new 
drugs. Given that BTRE seizures are classified as focal with 
secondary generalization, the animal model most suitable for 
research is the kindling epilepsy model (202). However, the 
predominant models for ASM screenings are the pentylene‑
tetrazol and maximum electroshock models (acute models). 
Experiments with these two models were unable to demon‑
strate the antiepileptic characteristics of LEV, characteristics 
that were ultimately identified using the kindling model (202). 
Due to financial constraints, the kindling model is not widely 
utilized; yet, to develop new therapeutic agents targeted specifi‑
cally at BTRE, it is imperative to devise new, more economical 
models that function similarly to the kindling model.

All ASMs attain their objective by diminishing neuronal 
excitability in the brain, and given that this activity is crucial 
for normal cerebral functions, most ASMs are associated 
with a plethora of adverse side effects. Side effects may result 
in non‑compliance with treatment, incurring significant 
costs and serving as a primary factor for breakthrough of 
seizures (203,204). The prolonged administration of these 
drugs necessitates careful consideration of adverse effects. For 
development of new ASMs, the efficacy is consequently at risk 
of being jeopardized by safety concerns. The development of 
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agents that specifically target cell populations or circuits may 
enhance efficacy and improve tolerance (205). A previous study 
concentrated on this strategy, yielding promising results (206). 
Furthermore, researchers have long endeavored to develop 
therapies that target epileptogenesis, which, in the context of 
BTRE, could facilitate the establishment of preventive care 
and/or disease‑modifying therapies (DMTs). The objective 
is to integrate different drugs with different mechanisms of 
action (some may not necessarily be ASMs), to simultane‑
ously target multiple pathways involved in epileptogenesis, 
and to delineate pertinent circuits (207). The Search Tool for 
Interacting Chemicals is an extensive database that encom‑
passes known and predicted interactions between chemical 
molecules and proteins across numerous species (208), and 
is utilized to determine optimal pairings. Studies using this 
methodology yielded combinations demonstrating prom‑
ising outcomes, including LEV/TOP, LEV/TOP/GBP and 
LEV/Atorvastatin/Ceftriaxone (209,210). Notably, none of 
these combos succeeded in retaining the neuroprotective 
effect associated with the individual administration of some 
of the drugs (209,210). Nevertheless, further research would 
significantly aid in identifying new combinations.

8. Discussion and conclusion

BTRE remains a crucial public health concern, with its 
pathophysiological mechanisms not yet fully elucidated. 
Neuroinflammation significantly contributes, as do genetic 
mutations. Mechanical compression of tumors can induce 
stress that results in the release of PICs from glial cells. These 
PICs not only alter the electrical activity of the brain through 
changes in ion channel traffic and receptor expression modula‑
tion, but they can also trigger the BBB's rupture to amplify 
inflammation. The risk of seizure development varies with the 
type of brain tumor, with prevalent risk factors encompassing 
tumor location, size, histopathology and level of resection.

Currently, no cure for epilepsy exists, and available treat‑
ments are solely symptomatic, aimed at alleviating seizures. 
LEV, a modulator of neurotransmitter release through synaptic 
vesicle 2A binding, is currently the recommended drug for 
BTRE. Other agents are rapidly emerging as monotherapy 
alternatives, with PRN receiving special attention. The 
minimal drug‑drug interactions, selectivity for AMPARs, and 
antitumor properties represent an appealing profile. Numerous 
anti‑seizure drugs are presently undergoing various stages of 
development, some with new mechanisms of action and others 
aimed at restructuring already existing ASMs (204).

In recent years, research aimed at discovering a cure 
for epilepsy has achieved minimal yet significant progress. 
Anti‑epileptogenesis has recently been a focal center of discus‑
sions on epilepsy therapy. Focused on prevention and disease 
modification, the achievement of anti‑epileptogenesis by drug 
combinations would signal a significant scientific breakthrough. 
Especially for BTRE, the prospects are intriguing: Preventive 
ASM therapy in a meningioma patient with large peritumoral 
edema, a patient with IDH1 mutated glioma, or a melanoma 
patient with multiple brain metastasis. However, research on 
preventive anti‑seizure therapy is impeded by prolonged experi‑
ment durations due to the necessity of monitoring the onset of 
epilepsy (or its absence, indicating successful prevention), which 

may last for numerous years (207,211). Consequently, most 
endeavors in this research area are directed towards disease 
modification, with the aspiration of finding a cure. DMT may 
also mitigate the adverse side effects associated with ASMs, 
whose risk escalates with prolonged usage.

New therapies require evaluation, necessitating the use of 
animal models. Efforts have been made to create new models, 
and the pursuit of developing more cost‑effective and efficient 
alternatives aimed at BTRE may be vital for this patient popu‑
lation. Organizations such as the Epilepsy Therapy Screening 
Program (ETSP), a division of the National Institute of 
Neurological Disorders and Stroke in the USA, have played 
a significant role in this field. The ETSP allows researchers 
globally to evaluate new compounds through its diverse array 
of animal models tailored for various circumstances (212,213). 
Animal models developed for epilepsy prevention and disease 
modification research have recently been incorporated into the 
ETSP catalog (204).

Finally, epileptogenesis and tumorigenesis are closely inter‑
connected processes, wherein seizures induce neuronal cell 
death via excitotoxicity, subsequently leading to the replace‑
ment of dead neurons with tumor cells for tumor proliferation. 
It is hoped that future studies will facilitate the development 
of a new therapeutic approach that simultaneously slows down 
tumor progression and prevents seizures.
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