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ABSTRACT
Gliomas are the most ordinary primary virulent brain tumours and commonly used clinical treatments include tumour resection, 
radiation therapy and chemotherapy. Although significant progress has been made in recent years in progression-free survival 
(PFS) and overall survival (OS) for patients with high-grade gliomas, the prognosis for patients remains poor. Chemoresistance 
refers to the phenomenon of decreased sensitivity of tumour cells to drugs, resulting in reduced or ineffective drug efficacy, and is 
an important cause of failure of tumour chemotherapy. Exosomes, a type of extracellular vesicle, are secreted by cancer cells and 
various stromal cells in the tumour microenvironment (TME) and transfer their inclusions to cancer cells, increasing chemore-
sistance. Furthermore, depletion of exosomes reverses certain detrimental effects on tumour metabolism and restores sensitivity 
to chemotherapeutic agents. Here, we summarised the correlation between exosomes and resistance to chemotherapeutic agents 
in glioma patients, the mechanisms of action of exosomes involved in resistance and their clinical value. We aimed to afford new 
thoughts for research, clinical diagnosis and intervention in the mechanisms of chemoresistance in glioma patients.

1   |   Introduction

Gliomas are originated from undifferentiated glial or neural pro-
genitor cells and are the most usual elementary tumours of the 
nuclear nervous system, characterised by invasive growth, rapid 
progression, difficulty in complete resection, frequent recurrence 
and poor prognosis [1, 2]. The aetiology of glioma is not entirely 
understood, and genetic opportunities and ionising radiation are 
deemed to be causative factors [3, 4]. Based on the World Health 
Organisation (WHO) standard, low-grade gliomas (LGG) com-
prise WHO grades 1 and 2, high-grade gliomas (HGG) comprise 
WHO grades 3 and 4, and glioblastomas (GBM) comprise the 

majority of WHO grade 4 gliomas and are the most lethal and 
recurrent [5]. GBM comprises the majority of WHO grade 4 and 
is the most lethal and recurrent [5, 6]. Current clinical treatments 
for glioblastoma involve surgical resection, radiation treatment, 
chemotherapy, molecular targeted treatment and supportive 
care [7–11], but patient prognosis remains poor. However, pa-
tient prognosis remains bad, with a median subsistence time for 
gingival GBM of only about 1 year and a 5-year survival rate of 
no more than 10% [12, 13]. Temozolomide (TMZ), the first-line 
chemotherapeutic agent used in combination with postopera-
tive radiation therapy, is still insufficient to improve prognosis, 
and patients eventually develop TMZ resistance [14, 15]. Other 
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targeted therapies or combinations of therapies for glioma have 
not made significant progress: tyrosine kinase inhibitors target-
ing the EGFR alone or in combination with TMZ failed to sig-
nificantly improve prognosis [16]. pI3K and mTOR inhibitors 
and vascular endothelial growth factor inhibitors were similarly 
ineffective [17, 18]. Therefore, exploring the mechanisms of gli-
oma resistance to chemotherapy is critical to improving glioma 
outcomes and is a current focus of basic glioma research.

Exosomes are nano-sized extracellular microparticles encased 
in a lipid bilayer of 30–150 nm, derived primarily from the mul-
tivesicular body and released into the extracellular surrounding 
upon fusion of the multivesicular body with the cell membrane 
[19, 20]. Exosomes are secreted by almost all cell kinds, tumour 
cells are included, and are present in supernatants of cultured 
cells and in different kinds of body fluids, including blood, sa-
liva, urine, breast milk, cerebrospinal fluid and amniotic fluid 
[21, 22]. Exosomes contain various types of molecules, lipids, 
proteins are included, DNA, mRNA and noncoding RNA, and 
by transporting and transporting these substances, they play a 
crucial character in the exchange of information between cells 
and in functional changes in the recipient cells [23]. Thus, exo-
somes can exchange products with other cells by mediating 
specific intercellular communication, eliminate unwanted out-
comes from cells and activate signalling pathways in fusing or 
interacting cells [24, 25]. Studies have shown that exosomes are 
involved in the constitution and advancement of a variety of can-
cer processes, reconstruction of the tumour microenvironment, 
angiogenesis, immune flee, dissemination and metastasis are 
included [26, 27]. Tumour cell-derived exosomes may interact 
with immune cells in the tumour microenvironment to aid in 
tumour cell immune escape and improve tumour advancement 
and therapeutic obstruction in cancer cells [28, 29]. In late years, 
the study of exosomes in tumour therapy and drug resistance 
has become an emerging hotspot.

This paper outlined the mechanisms of exosomes involved in 
glioma drug resistance and their value in targeted therapy, and 
provided new ideas for future research on targeted therapy of 
glioma.

2   |   Overview of Exosomes

2.1   |   The Biogenesis and Biological Properties 
of Exosomes

Cells of various organisms, including all eukaryotes and some 
prokaryotic cells, can release vesicles into the extracellular envi-
ronment [30]. Exosomes are a type of small extracellular vesicle 
with nucleotidase activity and 40–100 nm in diameter [20, 31]. 
The endocytosis pathway during exosome formation is com-
pleted by a highly dynamic membrane involved in internalisa-
tion of extracellular ligands and cellular components, which are 
then recycled or degraded toward the plasma membrane. Early 
endosomes mature into late endosomes, which accumulate in 
the lumen during the process. Because of their morphological 
characteristics, they are often referred to as multivesicular endo-
somes or multivesicular bodies. In most cells, the multivesicular 
bodies fuse with lysosomes and are precisely degraded. However, 
multivesicular bodies with certain characteristics, including 

CD63, a lysosome-associated membrane protein, and other pro-
teins normally found in recent endosomes, can also fuse to the 
plasma membrane and release their substances into the extracel-
lular environment [32–34]. Exosomes involve cell-specific pro-
teins, lipids and nucleic acids that can act as signalling molecules 
to other cells and vary their function [35, 36]. The cell membrane 
of exosomes is sufficient in cholesterol, sphingolipids, ceramides, 
lipid rafts and phosphatidylserine, which protect internal pro-
teins like cytokines and growth factors and biologically active 
substances such as lipids, coded and non-coded RNA from re-
gression and dilution in the extracellular surrounding and fa-
cilitates the long-distance conveyance of these matters through 
tissue fluids and blood flow. Ligands allow efficient binding to 
receptor cells [37, 38]. The biogenesis of exosomes and microves-
icles was displayed in Figure 1.

2.2   |   Challenges in Exosome Isolation 
and Standardisation of Protocols

Exosomes can be isolated from various biological fluids, includ-
ing blood, cerebrospinal fluid (CSF) and cell culture superna-
tants. However, the techniques used for exosome isolation vary 
widely. Common methods include ultracentrifugation, size ex-
clusion chromatography (SEC), density gradient centrifugation 
and immunoaffinity capture [39–42]. Each method has its own 
advantages and limitations, particularly in terms of yield, purity 
and time efficiency. Ultracentrifugation, while the most widely 
used, often results in contaminants such as proteins or larger 
vesicles, which can affect the accuracy of subsequent analyses. 
Size exclusion chromatography offers a more gentle method 
with less potential for contamination, but it often yields smaller 
amounts of exosomes, which can be a limitation for high-
throughput studies or clinical applications.

Moreover, exosome quantification remains a significant chal-
lenge. While nanoparticle tracking analysis (NTA) and dynamic 
light scattering (DLS) are commonly used to determine the size 
and concentration of exosomes [43, 44], these methods can be 
imprecise, particularly when working with heterogeneous pop-
ulations of exosomes. Additional techniques such as western 
blotting for specific exosomal markers (e.g. CD63, CD81 and 
TSG101) and electron microscopy for visual confirmation are 
also employed [45], but these require substantial technical ex-
pertise and can be resource-intensive.

To address these challenges, there is a growing need for the 
standardisation of exosome isolation protocols, including clear 
guidelines on sample collection, processing and storage [46]. 
Furthermore, the development of more robust and automated 
methods for exosome isolation and quantification could greatly 
enhance the reproducibility and reliability of exosome-based re-
search. Standardisation would not only ensure more consistent 
results across different research groups but also pave the way 
for clinical adoption, where precision and reproducibility are 
critical. The isolation and standardisation methods of exosomes 
were displayed in Table 1.

Finally, improvements in exosome characterisation are essen-
tial to fully realise their potential in therapeutic applications. 
The complexity of exosome cargo—ranging from proteins 
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to RNAs—requires a multi-faceted approach to profiling. 
Advances in high-throughput sequencing and proteomics will 
be crucial in fully characterising exosome contents, which will, 
in turn, improve their clinical utility, particularly for person-
alised medicine in glioma treatment.

2.3   |   The Biological Function of Exosomes in 
Cancers

As research on exosomes continues to advance, the role of exo-
somes in tumour pathological processes continues to be un-
covered. Exosomes secreted by tumour cells can improve the 
formation of the tumour microenvironment (TME) and promote 
cancer cells avoid immune supervision and tumour cell growth 
[47, 48]. Besides, exosomes secreted by tumour cells can also 

induce neovascularization, thereby ensuring access to nutrition 
and helping tumour cells continue to proliferate [49, 50]. Tumour 
tissue is composed of tumour cells and several types of stromal 
cells, creating a specific microenvironment for tumour growth. 
Fibroblasts are the main component of stromal cells and are the 
main source of collagen and other extracellular matrix (ECM)-
related proteins [51]. When activated by exosomes, fibroblasts 
differentiate into cancer-associated fibroblasts (CAFs), leading 
to collagen over-deposition and ECM remodelling [52, 53]. The 
initial impact of cancer-associated fibroblasts on tumour develop-
ment depends primarily on the abnormal secretion of various pro-
teins from exosomes, hepatocyte growth factor (HGF), tumour 
necrosis factor-α (TNF-α), interleukin 6 (IL-6) and transforming 
growth factor-β (TGF-β) are included. Exosomes are tumour 
cell-derived proteins that carry immunosuppressive molecules 
and directly or indirectly transmit these substances to immune 

FIGURE 1    |    The biogenesis of exosomes and microvesicles. Exosomes exert various cellular functions through intercellular communication. 
Exosome biogenesis involves endocytosis and the formation of multivesicular bodies (MVBs). Exosomes are indented inwardly by endocytosis in the 
mother cell to form MVBs. MVBs contain multiple intraluminal vesicles (ILVs), which are fused to specific parts of the cell membrane of the mother 
cell and are released outside the cell as exosomes in the form of vesicular exocytosis. Microvesicles are secreted from the plasma membrane by vesic-
ulation and release from the plasma membrane, and their shedding can be driven by different stimuli (e.g. increase in intracellular calcium ions). The 
process of microvesicle formation is relatively simple, with outward bud secretion from the cell membrane into the extracellular matrix, and its bio-
genesis is achieved mainly by altering the distribution of phospholipids within the plasma membrane and the contractility of cytoskeletal components.
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cells, inhibiting immune cell function and promoting tumour 
cell migration and proliferation [54, 55]. Tumour angiogenesis, 
growth and metastasis require blood vessels to supply oxygen 
and nutrients, and exosomes are also involved in the regulation 
of pathological angiogenesis [56, 57]. Exosomes are involved in 
the epithelial-mesenchymal transition (EMT) process, conveying 
mesenchymal-related feedback between tumour cells and the 
microenvironment and adjusting signal transduction in receptor 
cells [36, 58].

3   |   Exosomes Can Regulate the Microenvironment 
of Glioma

The glioma microenvironment is consisted of a variety of cells, 
containing tumour cells, perivascular cells, extracellular ma-
trix, intrinsic immune cells, T lymphocytes, neurons and astro-
cytes [8, 59, 60]. In particular, exosomes derived from glioma 
cells can promote tumour cell growth by affecting other cells, 
thereby inducing changes in the properties of the tumour cells 
themselves [61–63]. Gliomas interact with surrounding noncan-
cerous cells and maintain a microenvironment conducive to 
tumour growth, tumour invasion, angiogenesis, immunosup-
pression and tumour drug resistance [64, 65]. Multiple modes of 
transduction are involved in this process, including soluble fac-
tors and gap junctions. Biomolecules transported and released 
by tumour cell exosomes include not only soluble proteins, but 
also a variety of coding and non-coding RNAs and proteins that 
change gene presentation in recipient cells, induce phenotypic 
changes in recipient cells and extracellular matrix remodelling, 
and contribute to tumour cell growth [66, 67].

3.1   |   Angiogenesis

In the glioma microenvironment, exosomes can regulate multiple 
processes like tumour cell diffusion, subsistence and migration 
by adjusting angiogenesis in the tumour microenvironment. The 
glioma stem cell-derived exosome miR-26a promotes angiogene-
sis in glioma microvascular endothelial cells [68]. miR-9 improves 
tumorigenesis and angiogenesis in human gliomas and is drived 
by MYC and OCT4 [69]. Exosomal microRNA-148a-3p promotes 
tumour angiogenesis by inhibiting ERRFI1 activation of the 
EGFR/MAPK signalling pathway in glioma [70]. Glioma cells can 
eliminate miR-204-3p inhibition by upregulating SUMOylation 
to promote angiogenesis under hypoxic conditions, making the 
SUMOylation inhibitor TAK-981 a possible glioma therapeutic 
agent [71]. Angiogenesis is one of the fundamental processes for 
tumour growth. Exosomes regulate angiogenesis through multi-
ple signalling pathways (such as the PI3K/AKT, MAPK and JAK/
STAT pathways), providing the necessary nutritional supply to the 
tumour microenvironment and accelerating tumour progression. 
Exosomal miRNAs play a critical role by directly or indirectly reg-
ulating these key signalling pathways.

3.2   |   Tumour Metastasis

There are several related mechanisms of exosome action in tu-
mour metastasis, including intercellular signalling, changes in 
the tumour microenvironment, cell adhesion and migration. T
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Studying the mechanism of action of exosomes in tumour me-
tastasis can identify new drug targets and therapeutic strategies 
to inhibit tumour metastasis or improve therapeutic efficacy. 
Exosomal circARID1A can participate in regulating the migra-
tion and invasion of GBM by regulating miR-370-3p/TGFBR2 
[72]. Exosome-mediated conveyance of circWDR62 can improve 
TMZ obstruction and virulent tumour growth and metastasis 
by targeting the glioma miR-370-3p/MGMT axis in  vitro and 
in  vivo [73]. Additionally, miRNAs and circRNAs carried by 
exosomes play a vital role in tumour cell migration and metas-
tasis. They regulate different signalling pathways and target 
genes, not only promoting the spread of tumour cells but also 
enhancing tumour drug resistance.

3.3   |   Tumour Immunity

Immune cells and associated cytokines in the tumour micro-
environment play a notable part in tumour progress and ad-
vancement. Studies have suggested that tumour cell-derived 
exosomes have anti-tumour immune effects, primarily through 
direct inhibition of immune cells or by regulating the expression 
of associated cytokines that promote tumour immune escape, 
and play an crucial part in tumour progress and advance-
ment. The tumour-associated macrophage-derived exosome 
LINC01232 induces immune escape in gliomas by downreg-
ulating surface MHC-I expression [74]. Exosome miR-1246 
in glioma patient fluid could promote MDSCs disaffinity and 
activation in a double specificity phosphatase 3 (DUSP3)/ex-
tracellular signal-regulated kinase (ERK)-dependent manner 
[75]. miR-1298-5p was enriched in CSF exosomes and inhibited 
glioma advancement in in vitro and in vivo experiments. miR-
1298-5p promotes glioma development by improving the im-
munosuppressive effects of bone marrow-derived suppressor 
cells (MDSCs) [76]. rBP-J OE Co-culture and overexpression of 
circBTG2 in Mφ-Exos inhibited glioma cell growth and inva-
sion, whereas circBTG2-knockdown promoted tumour growth 
in vivo [77]. Exosomes are also involved in regulating tumour 
immune escape and the tumour immune microenvironment, 
which may enhance the tumour cells' resistance to immuno-
therapy through interactions with various immune pathways 
(such as JAK/STAT, PI3K/AKT, etc.).

4   |   Exosomes Are Involved in Chemoresistance of 
Glioma in Distinct Cells

Exosomes may be involved in the generation and spread of 
drug resistance by carrying and transporting substances such 
as drug resistance-associated proteins, genes and compounds 
[78]. Drug resistance-associated proteins and genes are passed 
from cell to cell with the help of exosomes, which may lead 
to the spread and inheritance of drug resistance [79, 80]. 
These exosomes may originate from tumour cells that produce 
drug resistance or from other cells in the surrounding drug-
resistant microenvironment. Studies have shown that the drug 
resistance of cells can be influenced by modulating the release 
and content of exosomes [81, 82]. Certain drugs can inhibit the 
production of exosomes or alter their contents, thereby reduc-
ing cellular resistance. TMZ is currently the first-line clinical 
chemotherapeutic agent and is a new type of alkylating agent 

with an imidazolium tetrazine ring that crosses the blood–
brain barrier very easily, with oral bioavailability reaching 
100%, and a new type of It is an alkylating agent and is widely 
used because it reaches 100% oral bioavailability, crosses the 
blood–brain barrier very easily, and has few clinical side ef-
fects [83, 84]. However, TMZ resistance seriously affects the 
efficacy of TMZ chemotherapy in the treatment of glioma 
patients, a problem that needs to be urgently resolved in the 
treatment of glioma [85, 86]. Previous studies have shown that 
TMZ resistance in gliomas is the result of a variety of mecha-
nisms and factors, involving a variety of regulatory molecules. 
Current studies indicate that possible molecular mechanisms 
of TMZ resistance in gliomas are mainly DNA damage repair, 
abnormally high expression of multidrug resistance-related 
proteins, altered apoptotic signalling pathways, tumour stem 
cell mediation and alterations in the tumour immune micro-
environment [87–89] (Figure 2).

Research has shown that different cells can regulate chemoresis-
tance in gliomas by transmitting exosomes (Table 2). Wang et al. 
[90] found that R-EXO-T/D has multiple advantages, including 
nano-embryo size with better blood–brain barrier (BBB) perme-
ability, accumulation of tumour-localised homologous impacts 
and boosted antitumor activity that blocks TMZ resistance and 
induces immune answer. Zeng et  al. [91] found that phosphor-
ylated MET is only detected in the PTPRZ1-MET fusion gene 
(ZM fusion gene) ZM exosomes. ZM exosomal gene expression 
was altered and not only induced epithelial-mesenchymal tran-
sition in non-ZM fusion GBM cells and usual person astrocytes, 
but also decreased an exosome-dependent phenotype defined 
by GBM cell transfer and aggression, neurosphere proliferation 
and angiogenesis and in GBM cells conferred TMZ obstruction 
effectors. These results suggest that exosomes mediate GBM inva-
siveness and that ZM fusion exacerbates this effect. Yu et al. [92] 
adxised that normal human astrocytes (NHA) are transformed 
into response astrocytes (RAS), that the ratio of O6 methylgua-
nine DNA methyltransferase (MGMT) mRNA to non-reactive 
NHA is significantly increased in exosomes (EXO) released from 
the RAS, and that RAS-EXO is MGMT passive glioma cells, and 
a TMZ resisted phenotype are obtained in vitro and in vivo by 
interpretation of exogenous exosomal MGMT mRNA. This mech-
anism suggests that MGMT-negative glioma cells can be spared 
from TMZ-induced apoptosis by functional intercellular transfer 
of glioma-associated NHA via exosomal MGMT mRNA. Yu et al. 
[93] found low expression of MiR-199a but high expression of 
AGAP2 in glioma tissues and cells. Exosome-mediated MSC de-
livery of miR-199a to glioma cells inhibited glioma cell diffusion, 
aggression and transfer. Overexpression of miR-199a by MSCs 
gave rise to a prominent rise in chemosensitivity to TMZ and 
suppressed tumour rise in vivo. MSC-derived exosomal miR-199a 
downregulates AGAP2 and inhibits glioma progression. Yin et al. 
[94] found that EV-packaged miR-30b-3p (EV-miR-30b-3p) could 
target RHOB and leads to reduced apoptosis and raised diffusion 
in vitro and in vivo. This mechanism suggested that miR-30b-3p 
in CSF or as a possible biomarker to predict TMZ obstruction, and 
targeting EV-miR-30b-3p was a underlying therapeutic strategy 
for GBM. Li et al. [95] found that exosomes take up lnc-TALC and 
transport it to tumour-associated macrophages (TAMs), where it 
acts as a promoter of M2 polarisation in microglia. c5 promotes 
restore of TMZ-induced DNA injure causing chemotherapy rejec-
tion, while enhanced efficacy of C5 a-targeted immunotherapy 
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acts as a limiting effect on lnc-TALC-mediated TMZ resistance. 
The mechanism by which lnc-TALC delivered by exosomes re-
models the GBM microenvironment and renders tumours less 

sensitive to TMZ chemotherapy was demonstrated, suggesting 
that lnc-TALC-mediated crosstalk between GBM cells and mi-
croglia plays an inhibitory role in the efficacy of chemotherapy. 

FIGURE 2    |     Legend on next page.
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Wang et al. [96] found that HOTAIR in GBM cells competitively 
binds to miR-526b-3p, significantly reducing the ability of miR-
526b-3p to bind EVA1 and increasing EVA1 expression. HOTAIR 
encapsulating serum EVs significantly increased tumour raise 
and TMZ obstruction in  vivo by attenuating miR-526b-3p-
mediated suppression of EVA1. GBM-serum EV-encapsulated 
HOTAIR, or miR-526b-3p downregulation and upregulation of 
EVA1 enabled a significant increase in GBM progression and 
chemotherapy resistance via upregulation of EVA1. Yang et  al. 
[97] found that knockdown of PTRF increased proliferation and 
significantly decreased apoptosis of GBM cells after TMZ treat-
ment. Increased efflux of TMZ by PTRF via EVs resulted in a sig-
nificant increase in TMZ resistance. CQ therapy after sequential 
TMZ treatment effectively improved the efficacy of TMZ against 
GBM due to increased intracellular TMZ concentration ([TMZ]i). 
Improvement. Wu et al. [98] found that exosomes originated from 
hypoxic glioma cells improved propagation and inhibited apopto-
sis of glioma cells treated with TMZ, which was inhibited by the 
miR-106a-5p inhibitor TMZ increased PTEN and Bax levels and 
attenuated p-Akt levels in glioma cells TMZ increased PTEN and 
Bax levels and attenuated p-Akt levels in glioma cells. Exosomal 
miR-106a-5p in hypoxic glioma cells was shown to significantly 
lessen the susceptivity of glioma cells to TMZ by downregulating 
PTEN. Liu et al. [99] showed that circCABIN1 can regulate the 
presentation of olfactomedin-like 3 (OLFML3) via spongy miR-
637. Elevated expression of OLFML3 activated the ErbB signal-
ling pathway, ultimately resulting in stem reprogramming and 
TMZ obstruction. circCABIN1 and OLFML3-targeted artificial 
exosomes in GBM ectopic mice significantly increased TMZ tar-
geting and antitumor activity.

5   |   Exosomes Are Involved in the Transmission of 
Chemotherapy Resistance in Gliomas

During tumour development, the degree of heterogeneity 
varies, that is, different tumour cells in the same tumour tis-
sue have different sensitivities to chemotherapeutic agents. 
Recently, it is becoming more clear that exosomes also play a 
crucial part in the exchange of information between tumour 
cells. Tumour cells can be classified into resistant and sen-
sitive cells according to their sensitivity to chemotherapeu-
tic agents, and discrepancies in sensitivity of tumour cells to 
chemotherapeutic agents can be transmitted from cell to cell 
by this mechanism, causing the procurement of resistance in 
sensitive cells [100, 101]. Research has shown that chemother-
apy resistant glioma cells can also regulate the resistance of 
chemotherapy sensitive cells by delivering exosomes (Table 3). 
Yang et al. [102] discovered that miR-221 expression was dra-
matically upregulated in both glioma tissues and exosomes. 
suppression of miR-221 expression in SHG-44 cells notably 
constrained cell propagation, transfer and TMZ obstruction, 

while treatment of SHG −44 cells, treatment promoted their 
malignant transformation. In conclusion, the RELA/miR-221/
DNM3 regulatory axis is a potential diagnostic and treated 
aim for glioma. Zeng et  al. [103] found that restoring miR-
151a expression inhibited XRCC4-mediated DNA restore, giv-
ing rise to increased sensitivity of TMZ-resistant GBM cells. 
TMZ chemotherapy obstruction in recipient TMZ-sensitive 
cells was conferred by TMZ-resistant GBM cells in an exo-
somal miR-151a deletion-dependent pattern. Restoration of 
exosomal miR-151a in donor TMZ-resistant cells removed the 
spread of chemotherapy resistance by donor TMZ-resistant 
cells. The miRNA profiles of CSF-derived exosomes reflected 
the potential chemotherapy resistance status of GBMs based 
on the presentation level of miR-151a. Yin et  al. [104] found 
that TMZ resistance was propagated by the process of uptake 
of biologically active miR-1238 in exosomes shed from TMZ-
resistant cells into TMZ-sensitive cells. Exosomal miR-1238 
may afford chemotherapy resistance in the tumour microenvi-
ronment. These outcomes indicate that circulating miR-1238 
is a clinical biomarker and a hopeful therapeutic aim for TMZ 
obstruction in GBM. Zhang et al. [105] found that SBF2-AS1 
acts as a ceRNA for miR-151a-3p and inhibits its endogenous 
target, X-ray restore complementation 4 (XRCC4), resulting in 
enhanced DSB repair in GBM cells. High levels of SBF2-AS1 
in exosomes of TMZ-resistant GBM cells allowed TMZ resis-
tance to spread in GBM cells undergoing chemotherapy GBM 
cells enriched exosomes by secreting oncogenic lncSBF2-AS1, 
which reorganises the tumour microenvironment and upgrade 
chemotherapy rejection in GBM cells. Yang et al. [106] found 
that (Dio)-stained exosomes are taken up by glioma cells, that 
uptake of Dio-stained rExo by U251s cells is more pronounced 
than that of Dio-stained sExo, and that Gap27 attenuates 
cellular uptake of rExo43. rExo significantly increased IC50 
values, colony formation and Bcl-2 expression in U251s cells 
in response to TMZ, but caused significant increases in Bax 
and cleaved caspase-3 expression. Caspase-3 expression was 
decreased. rExo enhanced U251s cell migration, while Gap27 
inhibited cell migration by rExo. Wang et  al. [107] showed 
that A172R-derived exosomes could promote proliferation 
and TMZ resistance in susceptible GBM cells, that depletion 
of exosomal miR-25-3p partially inhibited the effects induced 
by exosome transfer in A172R cells, and that overexpression of 
miR-25-3p caused a prominent raise in proliferation and TMZ 
rejection in susceptible GBM cells. knockdown of FBXW7 
promoted proliferation and TMZ resistance in GBM cells. Wei 
et al. [108] found that exosomal MIF induced TMZ obstruction 
in sensitive cells by enhancing cell diffusion and constrain-
ning apoptosis upon TMZ exposure. Upregulation of metal-
loproteinase inhibitor 3 (TIMP3) and inhibition of the PI3K/
ACT signalling pathway and knockdown of MIF resulted in 
a significant increase in susceptivity of drug-resistant glioma 
cells to TMZ. Exosomal MIF enhanced tumour growth and 

FIGURE 2    |    The potential mechanism of temozolomide (TMZ). The primary mechanism of action of temozolomide is to cause cell death by dam-
aging the DNA structure of tumour cells. It is an alkylating agent capable of intensifying the DNA damage response, leading to DNA instability, 
which in turn causes multiple forms of cell death within tumour cells. Briefly, in the cytoplasm TMZ can be converted to MTIC to produce methyl 
diazo cations that transfer their methyl groups to the N7 and O6 sites of guanine and to the N3 site of adenine. TMZ adducts confer mutations in DNA 
immobilised by O6 methylguanine-DNA methyltransferase (MGMT), mismatch repair (MMR), and base excision repair (BER) in TMZ-sensitive 
cells produced DNA double-strand breaks (DSBs) and triggered programmed cell death.
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TMZ obstruction of glioma cells in vivo, while IOS-1 (an MIF 
inhibitor) significantly increased glioma sensitivity to TMZ 
in  vivo. Rehman et  al. HSSP-modified BMSCExo also deliv-
ered STAT3-targeting siRNA to TMZ-resistant gliomas and re-
stored TMZ sensitivity. Chen et al. [109] found that miR-27a-3p 
presentation was higher in LN229r cells. miR-27a-3p-silenced 
LN229r cells showed decreased IC50 values and proliferation 
rates and increased apoptosis rates. increased propagation of 
LN229r cells and decreased apoptosis could be achieved by EV 
treatment, while the opposite trend was observed for EVs si-
lenced with miR-27a-3p. Thus, it is argued that GBM-derived 
EVs are internalised by GBM cells and release miR-27a-3p into 
GBM cells, resulting in higher expression of miR- 27a-3p, tar-
geting BTG2 and improving TMZ obstruction. Jiang et al. [110] 
showed that LINC00473 explored the key role of TMZ in che-
motherapy resistance and GBM. The results of qPCR analysis 
suggested that LINC00473 levels are raised in TMZ-resistant 
cells after CREB activation, indicating that LINC00473 im-
proves chemotherapy resistance in GBM cells by upregulating 
MGMT presentation. linc00473 binds to CEBPα to regulate 
MGMT expression and verified that exosomal LINC00473 
transfers chemotherapy resistance from cell to cell and that 
high expression of LINC00473 in exosomes transfers chemo-
therapy resistance to GBM cells in the adjacent TMZ.

Unlike traditional linear RNA, circRNA is a special type of 
non-coding RNA without a 5′-terminal cap and a 3′-terminal 
poly (A) [111, 112]. The generation pathway of circRNA con-
sists of three subclasses, and the most popular circRNA is 
exon-derived circular RNA (ecRNA), which only contains 
exons and completely lacks introns [113–115]. Two mecha-
nisms have been proposed for the biogenesis of ecRNA, in-
cluding exon skipping and direct reverse splicing. During the 
process of exon skipping, downstream exons rotate and skip 
one or several exons to connect upstream exons, resulting in 
functional mRNA with exon skipping. At the same time, the 
jumping exons form a lasso precursor containing both exons 
and introns, which is then removed to form circRNA. The pro-
cess of removing introns from the lasso is completed through 
standardised splicing. In contrast, direct reverse splicing first 
produces alternative splicing RNA and lasso intermediates, 
which are then more easily regulated by intron pairing mech-
anisms [116]. Recent studies have shown that direct reverse 
splicing may be the main mechanism for the formation of 
ecRNA. After biosynthesis, ecRNA must migrate to the cy-
toplasm in order to exert its regulatory effect. Another type 
of circRNA composed solely of introns, known as intron cir-
cular RNA (ciRNA), typically has the 3′ end of the exon shed 
into a loop [117]. It mainly exists in the nucleus and is mainly 
involved in regulating the transcription of its parent genes. 
CiRNA biogenesis requires a common motif, which consists of 
7 nt GU rich elements near the 5′ splice site and 11 nt C rich el-
ements near the branching site. This motif may be specifically 
involved in the formation of circRNAs, as it is not rich in con-
ventional introns or other types of circRNAs. The biological 
process of ciRNA is regulated by its splicing mechanism me-
diated by eukaryotic spliceosomes. CiRNA is a circular intron 
that is cyclized at the 2 ′-5′ linkage of the branching point and 
degraded from the 3′ end to the branching point. Therefore, 
they possess characteristics of resistance to branching and 
degradation, thus possessing high stability. Compared with 

other linear RNAs and non-coding RNAs (ncRNAs), circRNA 
has several unique characteristics [118–120]. Most of these 
unique features are generated due to the presence of exons, 
while a small portion are generated due to introns and intron 
fragments. Generally speaking, the tissue-specific and devel-
opmental stage specific expression patterns of circRNA are 
similar to the corresponding linear mRNA targets, with ex-
pression levels more than 10 times that of linear mRNA. At 
the same time, circRNA also exhibits evolutionarily conserved 
sequence characteristics across different species. And due to 
the lack of 5 ′-3′ polarity in circRNA and its covalent closed 
loop structure without a polyadenylate tail, it helps to resist 
RNA exonuclease degradation. This is also why circRNAs are 
more stable than linear RNAs. CircRNA can exert stable bio-
logical effects because the average half-life of circRNA in most 
species is longer than its linear counterpart [121, 122]. The ca-
nonical and non-canonical translation processes of circular 
RNA and mRNA was showed in Figure 3.

Research has shown that exosomal circRNA also plays an im-
portant regulatory role in chemotherapy resistance in gliomas. 
Han et  al. [123] demonstrated that circ-HIPK3 could target 
miR-421 and both were passively connected in glioma tissues. 
miR-421 suppressed cell growth and TMZ resistance by over-
expressing ZIC5. This experimental mechanism suggests that 
exosomal circ-HIPK3 enhances cell advancement and TMZ re-
sistance in TMZ-resistant gliomas by regulating the miR-421/
ZIC5 axis. Ding et  al. [124], proved that circ_0072083 knock-
down of TMZ inhibited drug resistance in drug-resistant cells 
by reducing IC50, propagation, transplantation, aggression, 
xenograft tumour raise and increasing apoptosis. Release of 
exosome circ_0072083 from drug-resistant glioma cells was fa-
cilitated by the Warburg effect; rejection of subtle cells to TMZ 
was significantly enhanced by exosome circ_0072083 from 
drug-resistant glioma cells. Exosome circ_0072083 is claimed 
to regulate miR-1252-5-mediated degradation and demethyl-
ation, increasing NANOG and promoting glioma resistance to 
TMZ. Geng et al. [73] found that circWDR62 is transported be-
tween TMZ-resistant and TMZ-sensitive glioma cells through 
exosomes. circWDR62, an exosome of TMZ-resistant cells, 
made receptor-sensitive cells TMZ-resistant and significantly 
increased the propagation, transplantation and aggression of 
these cells resulting in increased proliferation, transfer and ag-
gression of these cells. The mechanism of this research argues 
that exosome-mediated circWDR62 can promote TMZ resis-
tance and virulent transformation of gliomas in vitro and in vivo 
by targeting the miR-370-3p/MGMT axis. Li et al. [125] showed 
that circ_0043949 was highly expressed in TMZ-resistant GBM 
samples and cells, and suppression of circ_0043949 could reduce 
the IC50 of TMZ and decrease TMZ resistance. Circ_0043949 
was enriched in TMZ-resistant GBM cell-derived exosomes and 
its expression was significantly upregulated in exosomes, and 
circ_0043949 in exosomes increased TMZ obstruction of TMZ-
resistant GBM cells in a xenograft model.

Exosomes play a central role in mediating chemotherapy re-
sistance in gliomas through the transfer of various molecu-
lar components, including miRNAs, lncRNAs and circRNAs. 
These exosomal components regulate key molecular path-
ways, such as DNA repair mechanisms (e.g. XRCC4), apopto-
sis signalling and PI3K/AKT pathway activation, to promote 
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drug resistance. The molecular pathways activated by exoso-
mal components not only provide insight into the mechanisms 
of chemoresistance but also represent potential therapeutic 
targets for reversing resistance and improving treatment out-
comes in glioma patients.

6   |   Exosome-Based Therapies: Engineering 
and Delivery System Improvements in Glioma 
Treatment

To tackle the challenge of glioma chemoresistance, research-
ers have focused on engineering exosomes to improve their 
therapeutic potential. One promising strategy involves sur-
face modification of exosomes. By attaching targeting ligands 
to the surface of exosomes, they can be directed specifically 
to glioma cells or areas of the tumour that are resistant to 
treatment. This targeted approach enhances the specificity of 
drug delivery and reduces the systemic toxicity often associ-
ated with conventional chemotherapy. In addition to surface 

modifications, improvements in exosome cargo loading have 
garnered significant attention. Exosomes can be loaded with 
a variety of therapeutic agents, such as siRNAs, chemothera-
peutic drugs or gene-editing tools. These engineered exosomes 
can deliver the drugs directly to tumour cells, bypassing barri-
ers like the BBB and reducing the off-target effects that often 
limit the efficacy of traditional therapies [126, 127]. For ex-
ample, loading exosomes with siRNA targeting specific drug 
resistance genes in glioma cells could help reverse chemore-
sistance by silencing the expression of resistance-associated 
proteins [128]. Furthermore, recent advances in optimising 
exosome production and purification methods are crucial for 
scaling up their clinical application. Standardising exosome 
isolation techniques and improving their stability will be es-
sential for developing commercially viable exosome-based 
therapies. As these technical hurdles are overcome, exosome-
based therapies hold great promise for enhancing the effec-
tiveness of current treatment modalities in glioma and other 
cancers, providing a more precise, less invasive alternative to 
traditional chemotherapy.

FIGURE 3    |    The canonical and non-canonical translation processes of circular RNA and mRNA. (A) Non-canonical reverse splicing of linear 
RNAs forms circular RNAs. (B) Typical alternate splicing leading to the production of linear mRNAs. (C) Internal ribosome entry site (IRES)-
mediated cap-independent mechanism of circRNA translation. (D) Methylation of the sixth nitrogen in the adenosine in the UTR upstream of the 
AUG triplex of circRNAs in eukaryotic cells (m6A modification) initiated translation. (E) circRNAs encode novel isoforms or proteins with novel 
functions. (F) Typical 5′-cap-dependent mechanism of translational initiation of messenger mRNAs. (G) Processes by which linear mRNAs encode 
peptides/proteins.
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By addressing the challenges related to exosome engineer-
ing, targeting and delivery, future research could lead to the 
development of exosome-based therapies that not only over-
come chemoresistance but also offer personalised treatment 
options for glioma patients. These innovations represent a sig-
nificant step forward in cancer therapy, combining the preci-
sion of nanomedicine with the natural biological properties of 
exosomes.

7   |   Integration of Exosomal Profiling Into Clinical 
Practice for Glioma Treatment

Incorporating exosomal profiling into routine clinical practice, 
particularly for glioma patients undergoing chemotherapy, could 
offer several key advantages. One of the most exciting prospects 
is the use of exosomes as a form of liquid biopsy. Liquid biop-
sies, which involve sampling bodily fluids such as blood, CSF 
or urine, are non-invasive methods that can provide real-time 
insights into the molecular changes occurring in the tumour. 
Exosomal profiling from these fluids could be used to monitor 
the early development of chemoresistance, track therapeutic 
responses and even predict treatment outcomes. For instance, 
by analysing exosomal miRNA or protein signatures, clinicians 
may be able to identify whether glioma cells are acquiring resis-
tance to common chemotherapeutic agents, such as TMZ [129]. 
This could inform adjustments in treatment plans, ensuring 
that patients receive the most effective therapies based on the 
specific molecular landscape of their tumours. Moreover, exo-
somal biomarkers could enable the detection of minimal resid-
ual disease, helping to monitor remission and detect potential 
relapse before clinical symptoms appear. Integrating exosomal 
profiling into clinical decision-making could also support the 
move toward more personalised treatment strategies [130]. 
Since exosomes carry cargo reflective of the tumour's genetic 
and epigenetic landscape, their analysis could provide valuable 
insights into the heterogeneity of gliomas and the individual 
molecular mechanisms driving drug resistance in each patient. 
This personalised approach would allow for more precise tar-
geting of therapeutic interventions, improving both patient out-
comes and quality of life.

However, translating exosomal profiling from laboratory re-
search into clinical practice is not without its challenges. Issues 
related to standardisation of exosome isolation and charac-
terisation methods, as well as the need for large-scale clinical 
validation studies, must be addressed. Additionally, regulatory 
considerations around the use of exosome-based diagnostics 
and therapies need to be carefully navigated to ensure safety 
and efficacy.

8   |   Discussion and Prospects

Cancer is not only caused by a great number of virulent cells, 
but is also a tangle some systemic manifestation in which var-
ious cell kinds are involved in tumour homeostasis, including 
fibroblasts, adipocytes, immune cells and cells of the tumour 
vasculature [28, 131]. Antitumor resistance due to various phys-
iological acts has long been an interference to tumour therapy 
[132]. Despite significant advances in antitumor drugs, the 

development of rejection often contributes to failure of tumour 
therapy. Excepting for living chemotherapy and new immuno-
therapies, there is an exigent need to exploit new approaches to 
remove tumour advancement and recurrence due to drug resis-
tance. Chemoresistance is also a common trouble in the cure 
of gliomas, where tumours do not shrink or continue to grow 
despite the patient receiving several cycles of chemotherapy. 
There are many reasons for chemotherapy resistance, including 
natural resistance of tumour cells to chemotherapy drugs, in-
sufficient drug concentrations in tumour tissue and increased 
drug metabolism by tumour cells. Current research suggests 
that chemotherapy resistance in gliomas is due to problems 
with drug absorption, transport, metabolism and excretion by 
tumour cells [133, 134]. In addition, factors such as genetic mu-
tations in tumour cells, abnormalities in apoptotic mechanisms, 
and alterations in the tumour microenvironment may also affect 
sensitivity to chemotherapeutic agents [135, 136]. To overcome 
chemotherapeutic drug resistance in gliomas, new chemother-
apeutic agents can be developed or more effective drug combi-
nations can be found to improve tumour cell sensitivity to the 
drugs. In addition, targeted therapeutic approaches such as gene 
therapy and immunotherapy can also be used to address various 
components of the above mechanisms.

Exosomes have been found to play a prominent part in mediating 
resistance to tumour chemotherapy by delivering contents such 
as nucleic acids and proteins. The mechanisms by which exo-
somes mediate tumour resistance to chemotherapy are primar-
ily revealed by acting on recipient cells, for example, by inducing 
the formation of a premetastatic ecological niche [137]. They are 
also mediated by decreasing intracellular drug concentrations, 
for example, by increasing drug efflux. Exosomes can also shift 
drug-resistant phenotypes from drug-resistant cells to vulnera-
ble cells [138]. In addition, exosomes can modulate tumour drug 
resistance by restructuring the tumour microenvironment, in-
cluding increasing tumour cell immune escape and promoting 
tumour angiogenesis. Exosomes have the distinct underlying to 
seize the actional sophistication of cancer and can be used to 
detect various biological parts linked to tumour drug resistance 
real-time, but current comprehending of exosome physiology, 
release, transport, internalisation and transport mechanisms is 
finite, and more comprehensive studies of the interaction and 
alteration mechanisms between exosomes and receptor cells 
are needed. Despite these challenges, exosomes may be used as 
candidate biomarkers for forecasting and supervising therapeu-
tic efficacy in tumour patients and as possible targets or vectors 
for reversing drug resistance, and will play a crucial character 
in the exploration, forecast and remedy of future tumour It will 
play an prominent character in the exploration, forecast and 
remedy of future tumours.

The burgeoning domain of combinatorial therapy holds signif-
icant potential, especially through the utilisation of exosomes-
microscopic vesicles-as vectors for immune-modulating agents. 
These exosomes can be engineered to deliver immune checkpoint 
inhibitors or other immunotherapeutics, potentially enhancing 
the immune system's ability to detect and eradicate glioma cells. 
For instance, exosomes equipped with PD-1/PD-L1 inhibitors 
might disrupt the mechanisms tumours use to circumvent im-
mune surveillance. This precision-targeted approach ensures 
the direct administration of therapeutics to the tumour site, 



13 of 18

thereby augmenting immunotherapy efficacy and mitigating 
adverse effects [139]. Additionally, exosome-based modalities 
can be synergistically paired with other targeted treatments for 
increased therapeutic potency. Gliomas often exhibit distinctive 
genetic aberrations that can be precisely targeted. By bioengi-
neering exosomes to carry siRNAs or CRISPR-Cas9 systems, we 
can potentially suppress or modify genes linked to chemoresis-
tance, thus rendering tumour cells more susceptible to chemo-
therapy and possibly reversing resistance phenotypes.

A paramount challenge in glioma treatment is the BBB, which 
impedes the delivery of many pharmacological agents to the brain 
[140]. Exosomes, due to their nanoscale dimensions and ability to 
traverse biological barriers, offer a promising solution. Designed 
to convey chemotherapeutic agents or genetic payloads, they can 
efficiently deliver these compounds to glioma cells within the 
brain, thereby overcoming BBB limitations and enhancing drug 
bioavailability [141]. To successfully integrate exosome-based 
combinatorial therapies into clinical practice, several hurdles 
must be surmounted, such as standardising exosome isolation, 
ensuring reproducibility and addressing regulatory concerns. 
Advances in high-throughput sequencing and proteomics will be 
critical for analysing exosomal content and understanding their 
roles in drug resistance and immune modulation. In summation, 
the amalgamation of exosome-based strategies with combinato-
rial therapies offers a comprehensive approach to overcoming 
glioma drug resistance and improving patient outcomes [142]. By 
leveraging and customising the intrinsic properties of exosomes, 
we can develop more effective, targeted and personalised ther-
apeutic strategies for glioma patients, potentially ushering in a 
paradigm shift in the current glioma treatment paradigm as re-
search continues to advance [143].

While preclinical studies have demonstrated that exosomes 
can carry chemoresistance-related biomarkers and therapeutic 
molecules, there is a lack of ongoing clinical trials that aim to 
use exosomes in real-world settings for glioma patients. This re-
search gap is a notable shortcoming, as it prevents the transla-
tion of laboratory findings into practical, clinical applications. 
Furthermore, the clinical validation of exosomal biomarkers, 
such as miRNAs or proteins associated with chemoresistance, 
is still in early stages. Until larger, well-structured clinical trials 
are conducted, the potential of exosomes in managing glioma 
chemoresistance will remain largely theoretical. The absence 
of focused clinical trials also highlights the broader challenge 
of bridging the gap between benchside discoveries and bedside 
applications in the field of cancer therapeutics. Moving for-
ward, clinical trials that explore exosome-based therapies and 
diagnostic tools for gliomas need to be prioritised. These trials 
should focus on not only the efficacy of exosome-targeted drug 
delivery systems but also on their role in identifying patients 
likely to respond to specific chemotherapies based on exosomal 
molecular signatures.

This paper outlines the biological role and potential molecular 
mechanisms of exosomes in adjusting tumour drug resistance in 
gliomas. To date, however, studies on exosomes and glioma drug 
resistance have been mainly limited to the in vitro level, and no 
relevant studies in clinical cases have been reported. Translating 
experimental results at the cellular level into clinical trials remains 
the most challenging task. On the one hand, the prospect of using 

exosomes therapeutically, which mainly involves the exchange of 
extracellular information and the control of targeted delivery of 
drugs, requires more detailed studies to clarify the specific mecha-
nisms of exosome secretion and delivery. Meanwhile, the delivery 
efficiency of exosomes needs to be further improved.

9   |   Conclusion

This review focuses on the molecular mechanisms of exosome-
mediated chemotherapy resistance in glioma, but also recog-
nises that research on exosomes and chemotherapy resistance is 
still in its early stages. Detailed studies of the molecular mecha-
nisms of exosome-mediated chemoresistance in glioma will be of 
great significance for the development of new chemotherapeutic 
agents, enhancement of glioma cell sensitivity to chemothera-
peutic agents, and improved survival of glioma patients.
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