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Abstract

Background

Glioblastoma is characterized by neovascularization and diffuse infiltration into the adjacent

tissue. T2*-based dynamic susceptibility contrast (DSC) MR perfusion images provide use-

ful measurements of the biomarkers associated with tumor perfusion. This study aimed to

distinguish infiltrating tumors from vasogenic edema in glioblastomas using DSC-MR perfu-

sion images.

Methods

Data were retrospectively collected from 48 patients with primary IDH-wild-type glioblas-

toma and 24 patients with meningiomas (Edemas-M). First, we attempted histological verifi-

cation of cell density, Ki-67 index, and microvessel areas to distinguish between non-

contrast-enhancing tumors (NETs) and edema (Edemas) which were obtained from stereo-

tactically fused T2-weighted and perfusion images. This was performed for evaluating

enhancing tumors (ETs), NETs, and Edemas. Second, we also performed radiological verifi-

cation to distinguish NETs from Edemas. Two neurosurgeons manually assigned the

regions of interests (ROIs) to ETs, NETs, and Edemas. The DSC-MR perfusion imaging-

derived parameters calculated for each ROI included the cerebral blood volume (CBV),

cerebral blood flow (CBF), and mean transit time (MTT).

Results

Cell density and microvessel area were significantly higher in NETs than those in Edemas

(p<0.01 and p<0.05, respectively). Regarding radiological analysis, the mean CBF ratio for

Edemas was significantly lower than that for NETs (p<0.01). The mean MTT ratio for Ede-

mas was significantly higher than that for NETs. The receiver operating characteristic
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(ROC) analysis showed that CBF (area under the curve [AUC] = 0.890) could effectively dis-

tinguish between NETs and Edemas. The ROC analysis also showed that MTT (AUC =

0.946) could effectively distinguish between NETs and Edemas.

Conclusions

DSC-MR perfusion images may prove useful in differentiating NETs from Edemas in non-

contrast T2 hyperintensity regions of glioblastoma.

Introduction

Glioblastoma is the most common type of malignant brain tumor [1,2]. The prognosis of glio-

blastoma is extremely poor, with a median survival of 14.6 months, even with standard treat-

ments, such as chemoradiotherapy [3]. The extent of surgical resection is a known prognostic

factor for survival in patients with newly diagnosed glioblastoma [4]. Adding a resection-infil-

trating tumor beyond the contrast-enhancing margin-preserving function is associated with

the possibility of longer survival [5–8]. Owing to the highly infiltrative nature of glioblastoma,

systematic reviews have demonstrated a positive correlation between supratotal resection and

overall survival in glioblastoma [5–8]. However, the current preliminary results aiming for

resection with maximum safety, although promising, provide no clear radiological or anatomi-

cal definition regarding the extent of tumor resection that can be performed without the

occurrence of new postoperative neurological deficits.

T2-weighted images of regions beyond the contrast-enhancing region in glioblastoma may

represent different histopathological conditions, such as vasogenic edema or peritumoral infil-

tration [9]. In terms of incomplete surgical resection for infiltrating tumors, the peritumoral

area predominantly contains infiltrating tumor cells and directly affects patient outcomes [10].

Microvascular proliferation is a crucial histological feature of glioblastoma. Glioblastoma is

characterized by active neovascularization surrounded by the tumor border zone with diffuse

infiltration into the adjacent brain tissue. T2*-based dynamic susceptibility contrast (DSC)

MRI is a clinical imaging technique that non-invasively assesses the microvascular status of

glioblastoma [11,12]. Although, several studies have been conducted to compare non-enhanc-

ing peritumoral areas of glioblastomas and MR perfusion metrics, the non-enhancing peritu-

moral was analyzed without distinguishing between infiltrating tumors and edema [13–16].

On the other hand, a few studies have been conducted to discriminate between non-enhancing

tumor and perilesional edema using machine learning algorithms with various imaging

parameters comprising DSC-MRI. To date, there is still no current consensus on a clinically

usable method for reliably differentiating non-enhancing tumor from perilesional edema on

perfusion imaging [17–19].

We aimed to assess the characteristics of the non-enhancing peripheral area in glioblas-

toma, radiologically and pathologically, and differentiate between non-contrast-enhancing

tumors (NETs) and vasogenic edema (Edemas) to increase the diagnostic accuracy based on

the histopathological differences in these surrounding areas on T2-weighted images using

DSC-MR perfusion images.
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Materials and methods

Study design and patient selection

This retrospective study was approved by the Clinical Research Review Committee of Osaka

University (Approval No.: 22302). All participants provided informed written consent. The

present research, and all methods contained within, was conducted in accordance with the

Declaration of Helsinki. We accessed data from medical records for research purposes between

October 18, 2022, and April 28, 2023. During this process, we had access to information that

could identify individual participants.

Forty-eight patients with histologically confirmed primary IDH-wild-type glioblastoma

(according to the 2021 World Health Organization International Histological Classification of

Tumors) who underwent tumor resection at our institution between January 2017 and January

2023 were included in the study (male: female, 31: 17; median age, 65.6 years) (Fig 1). DSC-MR

perfusion images and conventional MR pulse sequences were acquired for all patients pre-surgi-

cally. Peritumoral brain edema in patients with meningioma was defined as vasogenic edema in

previous reports [20–22]. We referred to these reports and measured meningioma as a reference

subset for comparison of vasogenic edema. Data from 24 patients with WHO Grade1 meningi-

oma who presented evaluable edema in MRI and underwent tumor resection after preoperative

embolization between January 2019 and January 2023 were also collected as control data (male:

female, 10: 14; median age, 63.0 years) (Edemas-M). They also underwent DSC-MR perfusion

imaging and conventional MR pulse sequence pre-embolization.

Fig 1. The process of patient selection for inclusion in the study. We retrospectively collected the medical records of 75 patients diagnosed with IDH-

wildtype glioblastoma between January 2017 and January 2023 at our institution. Of those 75 patients, 27 were excluded from the study due to tumors with

unsatisfactory images and/or prior radiotherapy before MRI examination, leaving 48 eligible for radiological analysis. In 14 of these cases, stereotactic

sampling was performed. During the review period, local recurrent analysis was also conducted. Of the 48 patients, 36 were excluded from the recurrent

analysis due to recurrent tumors with unsatisfactory images, biopsy or partial resection, lack of recurrence, or no follow-up. Additionally, we retrospectively

collected the medical records of 58 patients diagnosed with meningioma between January 2017 and January 2023 at our institution. Of those 58 patients, 38

were excluded from the study due to tumors with unsatisfactory images, Grade 2/3 meningioma, or infratentorial tumors.

https://doi.org/10.1371/journal.pone.0316168.g001
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Magnetic resonance imaging

All images, including axial T1-, T2-, T2*-weighted images, Fluid Attenuated Inversion Recov-

ery, contrast-enhanced T1-weighted sequence (T1Gd), and diffusion tensor imaging (DTI)

were obtained using a 3-T MR unit (DISCOVERY MR 750, GE Healthcare, Milwaukee, WI,

USA) with a 32-channel head coil. DSC-MRI was performed using gradient-echo EPI

(GRE-EPI) during contrast agent administration. The imaging parameters were: 2000-milli-

second TR/20.9-millisecond TE, 60˚ flip angle, 3906.2-Hz pixel bandwidth, 220 × 220mm

FOV, 1.719 × 1.719 × 5-mm voxel size, and a 1-mm interslice gap. Considering each section,

40 images were obtained at intervals equal to the TR. After approximately 8 time points, 0.1

mmol/kg of meglumine gadoterate (Guerbet Japan, Tokyo, Japan) was injected at a rate of 3

mL/s, immediately followed by a 30-mL saline flush. DTI was acquired using a single-shot

echo planar imaging technique with TE = 80 and TR = 10,000. Diffusion gradient encoding in

25 directions with b = 2,000 s/mm2 and an additional measurement without the diffusion gra-

dient (b = 0 s/mm2) was performed [23].

Image postprocessing

The images were postprocessed using a dedicated software package Synapse Vincent (Fuji

Medical Systems, Tokyo, Japan). MRI perfusion images were analyzed qualitatively using rain-

bow color scale maps of cerebral blood flow (CBF), cerebral blood volume (CBV), and mean

transit time (MTT). Next, postprocessing of the acquired images into CBF, CBV, and MTT

maps was performed quantitatively. DTI was also acquired qualitatively apparent diffusion

coefficient (ADC) values using an ADC map. This software used the deconvolution method as

previously reported [24–27].

Imaging analysis

Imaging analysis was performed using Synapse Vincent in the perfusion mode. Two neurosur-

geons (Hi.K. and Y.O. with 8 and 21 years of experience in neuroradiology, respectively) dis-

cussed and classified the non-enhancing T2-weighted hyperintense area into NETs, namely

infiltrating tumors, and Edemas based on a previous report [28] using morphological MRI fea-

tures. NETs are characterized by gray matter involvement, eccentricity, relatively mild T2

hyperintensity, and focal parenchymal expansion, whereas Edemas are characterized by spared

gray matter, relative concentricity around enhancing lesions, marked T2 hyperintensity, and a

more diffuse mass effect in cases of marked Edemas [28].

A region of interest (ROI) of 2 mm diameter, comparable to the diameter of the biopsy tis-

sue, was set manually in each of the Edema, NET, and enhancing tumor (ET) regions, and the

values of cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT),

and ADC were calculated. The ROI of identical size was also set manually in contralateral nor-

mal area for each ROI for Edema, NET, and ET. The diseased-to-normal ratios were calculated

by dividing the values of CBV, CBF, MTT, and ADC for the NET, Edema, and ET by those val-

ues of contralateral normal area (Fig 2). At the maximum one, ROI of each type was placed in

each of the 48 patients with glioblastoma.

Surgery for stereotactic multiple sampling evaluation

The location for the tumor biopsy was determined preoperatively on the contrast-enhanced

T1-and T2-weighted images. The contrast-enhanced T1- and T2-weighted images were trans-

ferred to Brainlab (Brainlab, München, Freistaat Bayern, Germany) or Stealthstation (Medtro-

nic, Dublin, Ireland), and the biopsy target for histopathological examination was planned.
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We used a stereotactic multiple sampling evaluation for gliomas as previously described [29].

The location of tumor biopsy was determined in a similar manner to open biopsy. Standard

craniotomy was performed under general anesthesia in all patients. Multiple sampling biopsy

was performed on ETs, NETs, and Edemas, targeted for resection immediately after craniot-

omy to minimize the error caused by brain shifting. Although multiple tissue samplings were

performed in some cases, real-time navigation was performed to confirm the position of each

biopsy site (Table 1).

Histopathological analysis

Hematoxylin and eosin staining and immunohistochemistry (IHC) were performed in all

cases. The tumor samples were fixed in buffered formalin, embedded in paraffin or fixed in

sucrose, and encapsulated in an optimal cutting temperature compound. The blocks were sec-

tioned into 6-μm tissue sections. Deparaffinized, hydrated with graded alcohol, and heat-acti-

vated antigen activation were performed as needed. After blocking the endogenous peroxidase

activity, the tissue was incubated with the primary antibodies Ki-67 (mouse monoclonal anti-

body; clone MIB-1; DAKO; 1:100) and CD31 (mouse monoclonal antibody; clone JC70A;

Dako; ready to use). Positive immunostaining was demonstrated with the diaminobenzidine

reaction, and slides were subsequently counterstained with hematoxylin, dehydrated, cleared

and mounted. The prepared sections were examined in a 200× field of view.

Cell counting was performed under a light microscope (Olympus, Tokyo, Japan) at 200×
magnification. The area for the tumor cell count was per field quantified using ImageJ 1.53k

(National Institutes of Health, Bethesda, ML USA) in approximately three areas at 200x magni-

fication, and data was recorded as the mean of three different locations within the specimen.

Fig 2. Illustration depicting image processing. Representative images featuring contrast-enhanced T1-weighted and non-contrast-enhanced T2-weighted

images of a non-contrast-enhancing tumor (NET), edema (Edema), and an enhancing tumor (ET). The region of interest (ROI) is selected to show the cerebral

blood volume (CBV), cerebral blood flow (CBF), and mean transit time (MTT) on fused non-contrast-enhanced T2-weighted images. Stereotactic biopsy of

each ROI is guided by a neuronavigation system. The cell density, Ki-67 index, and microvessel area are evaluated at the exact ROI in each biopsy specimen.

https://doi.org/10.1371/journal.pone.0316168.g002

PLOS ONE DSC-MRI for differentiating NETs from edemas in non-contrast T2 hyperintensity regions of glioblastoma

PLOS ONE | https://doi.org/10.1371/journal.pone.0316168 January 10, 2025 5 / 17

https://doi.org/10.1371/journal.pone.0316168.g002
https://doi.org/10.1371/journal.pone.0316168


Ki-67 labeled cells were also counted and the percentage of Ki-67 labeled cells was calculated

within the observed field. In addition, the tumor microvessel area was determined by calculat-

ing the area of the lumens and walls of tumor microvessels occupying the tissue per field quan-

tified using ImageJ 1.53k in approximately three areas at 200x magnification. The average

values obtained from approximately three fields were recorded as the value of the microvessel

area.

Statistics analysis

Statistical analysis was performed using JMP software (version 16.0; SAS Institute, Cary, NC,

USA). The Mann–Whitney U-test was used for comparisons between two groups, whereas the

Steel–Dwass test was used for comparisons between three or more groups. Nonparametric

tests were performed due to the small sample size. Spearman correlation was used for evaluat-

ing correlations between continuous variables. Receiver operating characteristic (ROC) curve

analysis was performed to compare the performance of each imaging parameter based on each

ROI for distinguishing NETs from Edemas. The p-values were considered statistically signifi-

cant at p<0.05.

Results

Correlation of MR perfusion imaging parameters and ADC values with Ki-

67 index, cell density, and microvessel area values based on a histological

comparison using stereotactic imaging

Based on a previous report that used morphological features, ROIs were placed regarding 12,

9, and 11 patients with NETs, Edemas, and ETs, respectively, in glioblastomas [28]. Stereotac-

tic tissue specimens in the areas that corresponded to the pre-defined ROIs of 12, 9, and 11

patients with NETs, Edemas, and ETs, respectively, were also obtained via post-surgical histo-

logical examination (Table 2). The Ki-67 index, cell density, and microvessel area were

Table 1. Patient characteristics with stereotactic tissue sampling.

# Sex Age MGMT promoter metylation status TERT promoter mutation Tumor location Enhanced tumor volume (cm3) Number of

stereotactic tissues

ET NET Edema

1 M 65 unmethylated mutant Right parietal 20.7 0 1 1

2 M 86 metylated mutant Left temporal 0.54 0 1 1

3 M 81 metylated wild type Right frontal 92.1 1 1 1

4 M 74 metylated mutant Right temporal 10.4 1 1 0

5 F 79 metylated wild type Left frontal 63.1 0 1 1

6 F 71 unmethylated wild type Left occipital 8.2 1 1 1

7 M 78 unmethylated mutant Right parietal 80.7 1 0 1

8 M 52 unmethylated mutant Left frontal 45.3 1 1 1

9 M 55 unmethylated mutant Right parietal 12 1 1 1

10 F 68 unmethylated mutant Right temporal 1.21 1 1 0

11 F 88 unmethylated wild type Right temporal 63 1 1 1

12 F 72 unmethylated mutant Right basal ganglia 25 1 1 0

13 F 84 unmethylated wild type Left temporal 13.3 1 1 0

14 M 50 metylated mutant Left temporal 74.8 1 0 0

ET = enhancing tumor, NET = non-contrast-enhancing tumors, Edema = vasogenic edema.

https://doi.org/10.1371/journal.pone.0316168.t001
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significantly higher in NETs than those in Edemas (p<0.05, p<0.01, and p<0.05, respectively)

(Fig 3A–3C). The Ki-67 index and microvessel area were significantly higher in ETs than those

in NETs (p<0.05, and p<0.05, respectively). However, no significant difference was observed

in cell density between ETs and NETs.

Fig 3. A, B, and C. Boxplots of the Ki-67 index, cell density, and microvessel area in non-contrast-enhancing tumors (NETs), edemas (Edemas), and

enhancing tumors (ETs). The Ki-67 index, cell density, and microvessel area were significantly higher in NETs compared to Edemas (p<0.05, p<0.01,

and p<0.05, respectively). The Ki-67 index and microvessel area were significantly higher in ETs than in NETs (p<0.05 and p<0.05, respectively).

However, no significant difference in cell density between ETs and NETs was observed. D, E, F, and G. Boxplots of the cerebral blood volume (CBV),

cerebral blood flow (CBF), mean transit time (MTT), and apparent diffusion coefficient (ADC) ratios in non-contrast-enhancing tumors (NETs), edemas

(Edemas), and enhancing tumors (ETs) based on a histological comparison using stereotactic imaging. The mean CBF ratio for Edemas was significantly

lower than that for NETs (p<0.01). The mean MTT ratio for Edemas was significantly higher than that for NETs (p<0.01) The ADC ratios were

significantly higher in NETs than in Edemas (p<0.05). However, no significant difference was observed in CBV ratios between NETs and Edemas.

https://doi.org/10.1371/journal.pone.0316168.g003

Table 2. The average of all parameters of ROIs in ETs, NEsT, Edemas, and Edemas-M.

ET; enhancing tumor, NET; non-contrast-enhancing tumor,Edemas; vasogenic edema, Edemas-M; meningioma,

CBV; cerebral blood volume, CBF; cerebral blood flow, MTT; mean transit time.

https://doi.org/10.1371/journal.pone.0316168.t002
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No significant difference was observed in the mean CBV ratios between Edemas, NETs,

and ETs (Fig 3D). The mean CBF ratio for Edemas was significantly lower than that for NETs

(p<0.01). In contrast, the mean MTT ratio for Edemas was significantly higher than that for

NETs (p<0.01). However, no significant difference was observed in the CBF and MTT ratios

between ETs and NETs (Fig 3E and 3F). To further clarify the distinction between NETs and

Edemas, we compared the validation using ADC values. The ADC ratios were significantly

higher in NETs than in Edemas (p<0.05) (Fig 3G). However, no significant difference was

observed in ADC ratios between ETs and NETs.

Stereotactic local comparison of CBF ratio with cell density, Ki-67 index, and microvessel

area were performed. The CBF ratio showed a correlation with cell density (R = 0.400,

p = 0.023), Ki-67 index (R = 0.374, p = 0.034), and microvessel area (R = 0.443, p = 0.011),

respectively (Fig 4A–4C). The MTT ratio also showed a correlation with cell density

(R = 0.409, p = 0.02), Ki-67 index (R = 0.322, p = 0.0003), and microvessel area, respectively

(R = 0.430, p = 0.014) (Fig 4D–4F). However, CBV ratio has shown no correlation with cell

density, Ki-67 index, or microvessel area. Similarly, stereotactic local comparisons of the ADC

ratio with cell density, Ki-67 index, and microvessel area revealed no correlations among these

factors (Fig 5A–5C).

We visually represented the interrelationships between cell density, Ki-67 index, and micro-

vascular area in stereotactically evaluated ETs, NETs, and Edemas using a 3D scatter plot

(Fig 6). The plots for Edemas were distributed over a smaller area for cell density, Ki-67 index,

Fig 4. Correlation of CBF ratio with cell density, Ki-67 and microvessel area based on a histological comparison using a stereotactic image. The CBF

ratio shows correlation with cell density (A: R = 0.400, p = 0.023), Ki-67 index (B: R = 0.374, p = 0.034), and microvessel area (C: R = 0.443, p = 0.011).

Correlation of MTT ratio with cell density, Ki-67 and microvessel area based on a histological comparison using a stereotactic image. The MTT ratio shows

correlation with cell density (D: R = 0.409, p = 0.02), Ki-67 index (E: R = 0.322, p = 0.0003), and microvessel area (F: R = 0.430, p = 0.014).

https://doi.org/10.1371/journal.pone.0316168.g004
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Fig 5. Correlation of the ADC ratio with cell density, Ki-67, and microvessel area based on a histological comparison using stereotactic imaging. The

ADC ratio shows no correlation with cell density, the Ki-67 index, or microvessel area.

https://doi.org/10.1371/journal.pone.0316168.g005

Fig 6. 3D scatter plot representing the interrelationships between cell density, the Ki-67 index, and microvascular

area in stereotactically evaluated ET, NETs, and Edemas. The plots for Edemas were distributed in a smaller area for

cell density, the Ki-67 index, and microvascular area compared to those for NETs and ETs. Although the plots for

NETs and ETs were mixed, the plots for ETs were found in areas with higher values for cell density, the Ki-67 index,

and microvascular area compared to the plots for NETs.

https://doi.org/10.1371/journal.pone.0316168.g006
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and microvascular area compared to those for NETs and ETs. Additionally, while the plots for

NETs and ETs overlapped, the plots for ETs were located in areas with higher values for cell

density, Ki-67 index, and microvascular area than those for NETs.

Diagnostic value of MR perfusion imaging parameters in differentiating

between NETs and Edemas

Based on a previous report that used morphological features, 31, 35, and 40 ROIs were placed

on NETs, Edemas, and ETs, respectively, in glioblastomas [28]. Similarly, 24 ROIs were placed

on the edema of meningiomas as controls. The mean CBF ratio for Edemas (0.56; range, 0.11–

1.08) was significantly lower than that for NETs (1.64; range, 0.39–4.05) (p<0.01). The mean

MTT ratio for Edemas (1.83; range, 1.22–3.30) was significantly higher than that for NETs

(0.96; range, 0.34–1.60) (p<0.01). In contrast, the CBF and MTT ratios for Edemas and the

controls showed similar tendencies (Fig 7, Table 2).

The receiver operating characteristic (ROC) analysis showed that the CBF ratio (area under

the curve [AUC] = 0.890) could effectively distinguish between NETs and Edemas with a sensi-

tivity and specificity of 74.2% and 97.1%, respectively (cut-off value = 0.943, p<0.01). The

ROC analysis also showed that MTT (AUC = 0.946) was effective in distinguishing between

NETs and Edemas with a sensitivity and specificity of 80.6% and 97.1%, respectively (cut-off

value = 1.229, p<0.01) (Fig 8).

We presented the probability map applied to NETs and Edemas lesions in two patients with

glioblastoma and meningioma (Figs 9 and 10). The probability map predicting NETs indicated

Fig 7. Boxplots of the cerebral blood volume (CBV), cerebral blood flow (CBF), and mean transit time (MTT) ratios in non-contrast-enhancing tumors

(NETs), edemas (Edemas), enhancing tumors (ETs) in 48 glioblastoma patients, and Edemas in the control group (Edemas-M). The mean CBF ratio for

Edemas (0.56; range, 0.11–1.08) was significantly lower than that for NETs (1.64; range, 0.39–4.05) (p<0.01). The mean MTT ratio for Edemas (1.83; range,

1.22–3.30) was significantly higher than that for NETs (0.96; range, 0.34–1.60) (p<0.01). In contrast, the CBF and MTT ratios for Edemas and the controls

exhibited similar tendencies. Boxplots of the cerebral blood flow (CBF) and mean transit time (MTT) ratios in local recurrent tumors in 12 relapsed

glioblastoma patients. The mean CBF ratio for the recurrent tumor was 1.136, exceeding the cut-off value of 0.943 to predict NETs. The mean MTT ratio for

the recurrent tumor was 0.944, falling below the cut-off value of 1.229 to predict NETs.

https://doi.org/10.1371/journal.pone.0316168.g007
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a CBF ratio over 0.943, represented in orange. The area colored blue corresponded to Edema

CBF ratios below 0.943. Additionally, the probability map predicting NETs showed an MTT

ratio below 1.229, also colored orange, while the area colored blue applied to Edema MTT

ratios above 1.229. Notably, the area of the probability CBF map for Edemas containing NETs

did not necessarily align with the area in the probability MTT map for Edemas in both glio-

blastoma and meningioma cases.

Prognostic values of MR perfusion imaging parameters

We evaluated the 12 local recurrent cases for preoperative CBF ratios and MTT ratios at recur-

rent lesions. All lesions were applicable in NETs and turned into enhancing tumors at recur-

rence. The mean CBF ratio for the recurrent tumors was 1.136, above the cut-off value of 0.943

to predict NETs. The mean MTT ratio for the recurrent tumors was 0.944, below the cut-off

value of 1.229 to predict NETs (Figs 7 and 8).

Discussion

Our study indicates that CBF and MTT can be used to distinguish NETs from Edemas in glio-

blastoma using stereotactic histological and radiological analyses. We performed histological

analysis of the microvessel areas, which were identified using stereotactically fused

T2-weighted and DSC-MR perfusion images, for ETs, NETs, and Edemas. Noguchi et al. pro-

posed that ASL-driven CBF may predict the histopathological vascular densities of brain

tumors [30]. Furthermore, Ningning et al. suggested that ASL-driven CBF showed a statisti-

cally significant positive correlation with microvascular density of tumor core lesions stereo-

tactically biopsied from patients with gliomas [31]. In contrast, Rotkopf et al. investigated the

correlation between DSC-MR perfusion imaging and stereotactic histological vascularity in

Fig 8. The receiver operating characteristic (ROC) curve shows reliable predictions that distinguish non-contrast-enhancing tumors

(NETs) and edemas (Edemas) in glioblastoma in terms of cerebral blood flow (CBF) and mean transit time (MTT). The CBF ratio (area

under the curve [AUC] = 0.890) effectively distinguishes between NETs and Edemas, with a sensitivity of 74.2% and a specificity of 97.1% (cut-

off value = 0.943, p<0.01). The MTT ratio (AUC = 0.946) also effectively distinguishes between NETs and Edemas, with a sensitivity of 80.6%

and a specificity of 97.1% (cut-off value = 1.229, p<0.01).

https://doi.org/10.1371/journal.pone.0316168.g008
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enhancing glioblastoma tumors. They verified that CBV was not significantly correlated with

CD31 (p = 0.30) in the core tumor lesions. Furthermore, there was no significant association

between Ki-67 and CBV [32]. However, those previous reports investigated the correlation

between MR perfusion and only tumor core region, not infiltrative tumor or edema. In our

study, the microvessel areas in ETs and NETs were significantly higher than those in Edemas.

Moreover, histological evaluation using a 3D scatter plot showed that the spatial distribution

of NETs was different from that of Edemas.

CBF and MTT mapping could be used to distinguish between NETs and Edemas on

T2-weighted images. Our study showed that the CBF and MTT ratio could predict vascularity

in ETs and NETs in patients with glioblastoma. Glioblastoma manifests as diffusely tumor

infiltration around pre-existing blood brain vessels and might also induce neovascularization

[33], which may have resulted in NETs and ETs showing lower MTT and higher CBF than

Edemas. Infiltrative tumor cells induce collective vessel co-option and blood vessel leakage

[33], which may result in the progression of NETs to ETs. In our study, the CBF ratios and

microvessel areas in ETs and NETs were significantly higher than those in Edemas. Further-

more, the MTT ratio in ETs and NETs were significantly lower than that in Edemas. The vas-

cular structure and permeability of NETs and ETs may involve the process of tumor

infiltration and angiogenesis progression.

Based on this histological differentiation between NETs and Edemas, we attempted to

radiologically distinguish NETs from Edemas. DSC-MR perfusion images have the potential

to discriminate between peritumoral lesions seen in glioblastomas and metastatic brain tumors

Fig 9. Illustrative case of glioblastoma. It shows probability maps for cerebral blood flow (CBF) and mean transit time (MTT), which predict non-contrast-

enhancing tumors (NET) and Edema, fused with T2-weighted images. The probability CBF map predicts a NET where the CBF ratio is higher than 0.943,

and it predicts Edema where the CBF ratio is lower than 0.943. The probability MTT map predicts a NET where the MTT ratio is lower than 1.229, and it

predicts Edema where the MTT ratio is higher than 1.229.

https://doi.org/10.1371/journal.pone.0316168.g009
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cases [13–16]. In these reports, CBV in non-enhancing peritumoral T2-hyperintense region

was significantly higher in patients with glioblastoma than that in metastatic brain tumors

cases [13–16]. The non-enhancing peritumoral area in glioblastoma in these reports was ana-

lyzed without distinguishing between infiltrating tumors and edema. Although a few studies

have been conducted to discriminate non-enhancing tumor from perilesional edema using

machine learning algorithms with various imaging parameters comprising DSC-MRI, there is

still no current consensus on a clinically usable method for reliably differentiating non-

enhancing tumor from perilesional edema on perfusion imaging, limiting to small sample size

[17–19]. The discrimination between NETs and Edemas using CBV ratio still remains contro-

versial. In our study, CBV ratios in ETs, NETs, and Edemas were not significantly different.

We particularly focused on the accurate placement of the ROI for ETs in the solid part of the

enhancing tumor area to exclude the confounding effects of tumor heterogeneity, signal loss

due to cyst formation, hemorrhage, and large blood vessels. Therefore, the CBV ratio of the ET

may not always represent the maximum values. On the other hand, previous reports have

determined CBV to be a useful estimation tool for angiogenesis in glioblastoma [34,35]. These

reports measured CBV using post-processing with a dedicated software package. However, it

is possible that the different software used for image processing of CBV measurements and the

varying algorithms may have influenced the results that differ from ours. The methods used

for ROI design and imaging processes for CBV may have led to an increased CBF ratio without

a significant increase in the CBV ratio in ETs. In addition, we validated the discrimination

between NETs and Edemas using ADC values, CBF ratios, and MTT ratios. Notably, previous

Fig 10. Illustrative case of meningioma. It shows probability maps for cerebral blood flow (CBF) and mean transit time (MTT), which predict non-

contrast-enhancing tumors (NETs) and Edemas, fused with T2-weighted images. The probability CBF map predicts a NET where the CBF ratio is higher

than 0.943, and it predicts Edema where the CBF ratio is lower than 0.943. The probability MTT map predicts NET where the MTT ratio is lower than 1.229,

and it predicts Edema where the MTT ratio is higher than 1.229.

https://doi.org/10.1371/journal.pone.0316168.g010
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reports have shown that ADC values can be used as indicators of glioma proliferation [36,37].

This background supports our investigation, as we demonstrated the potential usefulness of

ADC values for discriminating between NETs and Edemas, consistent with the results of CBF

and MTT ratios.

Glioblastomas grow aggressively and infiltrate adjacent brain tissue, extending beyond the

contrast-enhancing margin. Non-contrast-enhancing lesions beyond the enhancing compo-

nent of glioblastomas are thought to contain infiltrating tumors and vasogenic edema. Accord-

ing to our radiological analysis, the CBF and MTT ratios for Edemas and Edemas-M showed

no significant difference. This suggests that our radiological discrimination between Edemas

and NETs on the basis of the previous study [28] might be valid. Distinguishing between NETs

and Edemas preoperatively and resecting the infiltrative area contributes to better prognosis

and preservation of neurological function. Additionally, visually creating a threshold-based

CBF and MTT map can enhance preoperative surgical planning. Moreover, using MRI perfu-

sion preoperatively to differentiate between NETs and Edemas is expected to set an accurate

resection margin, allowing for an increased resection rate safely without worsening neurologi-

cal function. Furthermore, analysis based on local recurrent cases has revealed the potential

prognostic value of DSC-MRI, as DSC-MRI parameters can effectively discriminate between

recurrent tumors and predict future tumor recurrence [38,39]. Building on this, our study sug-

gests that the CBF ratio and MTT ratio may have the potential to predict recurrent lesions. In

particular, the proposed CBF and MTT cut-off values for distinguishing NETs in two patients

with glioblastoma and meningioma exhibited potential for differentiating Edemas from infil-

trating tumors, albeit with limitations. For instance, the Edema probability CBF map showed

the presence of NETs, while the probability MTT map did not identify them, even in the case

of meningioma. This suggests that the MTT map was better at detecting edema than the CBF

map. Ultimately, a more effective analysis is warranted to determine the accuracy of these cut-

off values using 11C-methionine (MET)-PET, which allows for more accurate delineation of

tumor extension than anatomical imaging achieved with MRI [40].

This study faces potential validation challenges. Firstly, it was limited by its small sample

size, which could have led to bias in our results. Additionally, we sampled tissue stereotactically

using a navigation system, which may have introduced coordinate errors during tissue sam-

pling. Furthermore, we encountered some issues with DSC images. Reproducibility problems

with DSC between patients, blurring due to the calculation method, or spatial resolution limi-

tations may also pose difficulties. In the future, the sampling error should be validated while

minimizing the effects of brain shifting and standardizing reproducible methods and analysis

processes. Overall, future large-scale studies are required to address these methodological chal-

lenges and improve the ability to differentiate between NETs and Edemas on T2-weighted

images.

There were limitations to this study due to the small sample size and the exploratory nature

of the study. Additionally, the low number of specimens may lead to bias in our results, poten-

tially hindering sound statistical analyses. It also remains unclear whether our findings are use-

ful for supratotal resection. Further analysis of the vascular structure and permeability

involved in tumor infiltration is necessary to differentiate NETs from Edemas in terms of

tumor infiltration mechanisms. Furthermore, large-scale studies would enhance statistical

power and validate the proposed differentiation between NETs and Edemas on T2-weighted

images from a prognostic perspective.

In conclusion, we aimed to differentiate between NETs and Edemas in glioblastoma using

DSC-MR perfusion imaging. Performing MR perfusion imaging in addition to conventional

MRI may prove useful in differentiating infiltrating tumors from vasogenic edema in non-con-

trast T2 hyperintensity regions of glioblastoma.
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